1
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
3
|
Li HL, Tse YK, Chandramouli C, Hon NWL, Cheung CL, Lam LY, Wu M, Huang JY, Yu SY, Leung KL, Fei Y, Feng Q, Ren Q, Cheung BMY, Tse HF, Verma S, Lam CSP, Yiu KH. Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Pneumonia and Septic Shock. J Clin Endocrinol Metab 2022; 107:3442-3451. [PMID: 36181458 PMCID: PMC9693836 DOI: 10.1210/clinem/dgac558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Individuals with type 2 diabetes mellitus (DM) have an increased risk of pneumonia and septic shock. Traditional glucose-lowering drugs have recently been found to be associated with a higher risk of infections. It remains unclear whether sodium-glucose cotransporter 2 inhibitors (SGLT2is), which have pleiotropic/anti-inflammatory effects, may reduce the risk of pneumonia and septic shock in DM. METHODS MEDLINE, Embase, and ClinicalTrials.gov were searched from inception up to May 19, 2022, for randomized, placebo-controlled trials of SGLT2i that included patients with DM and reported outcomes of interest (pneumonia and/or septic shock). Study selection, data extraction, and quality assessment (using the Cochrane Risk of Bias Assessment Tool) were conducted by independent authors. A fixed-effects model was used to pool the relative risk (RRs) and 95% CI across trials. RESULTS Out of 4568 citations, 26 trials with a total of 59 264 patients (1.9% developed pneumonia and 0.2% developed septic shock) were included. Compared with placebo, SGLT2is significantly reduced the risk of pneumonia (pooled RR 0.87, 95% CI 0.78-0.98) and septic shock (pooled RR 0.65, 95% CI 0.44-0.95). There was no significant heterogeneity of effect size among trials. Subgroup analyses according to the type of SGLT2i used, baseline comorbidities, glycemic control, duration of DM, and trial follow-up showed consistent results without evidence of significant treatment-by-subgroup heterogeneity (all Pheterogeneity > .10). CONCLUSION Among DM patients, SGLT2is reduced the risk of pneumonia and septic shock compared with placebo. Our findings should be viewed as hypothesis generating, with concepts requiring validation in future studies.
Collapse
Affiliation(s)
- Hang-Long Li
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Yi-Kei Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Chanchal Chandramouli
- National Heart Centre Singapore, Singapore 169609, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Nicole Wing-Lam Hon
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Lok-Yee Lam
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Meizhen Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Jia-Yi Huang
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Si-Yeung Yu
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Ka-Lam Leung
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Yue Fei
- Division of Clinical Pharmacology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Qi Feng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Qingwen Ren
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Bernard M Y Cheung
- Division of Clinical Pharmacology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Carolyn S P Lam
- National Heart Centre Singapore, Singapore 169609, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China
| |
Collapse
|
4
|
Tissue-Type Plasminogen Activator-Inhibitor Complex as an Early Predictor of Septic Shock: A Retrospective, Single-Center Study. DISEASE MARKERS 2022; 2022:9364037. [PMID: 35401879 PMCID: PMC8984737 DOI: 10.1155/2022/9364037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Background Sepsis can progress to septic shock and death, and identifying biomarkers of this progression may permit timely intervention to prevent it. This study explored whether levels of tissue-type plasminogen activator-inhibitor complex (t-PAIC) in serum can predict septic shock early. Methods We retrospectively analyzed 311 sepsis patients who had been admitted to the intensive care unit (ICU) at our tertiary care hospital between May 2018 and April 2021, and we divided them into those who progressed to septic shock (n = 203) or not (n = 108) based on sepsis-3 definition. After matching patients in the two groups based on propensity scoring, we screened for risk factors of septic shock using logistic regression. We assessed potential predictors of such shock based on the area under the receiver-operating characteristic curve (AUC), Kaplan-Meier survival curves, and correlation analysis. Results After propensity score matching to generate two equal groups of 108 patients, we found that serum t-PAIC was significantly higher in septic shock patients. Uni- and multivariate logistic regression identified t-PAIC as an independent risk factor for septic shock (OR 1.14, 95% CI 1.09–1.19, P < 0.001) and a biomarker that predicted it with an AUC up to 0.875 (95% CI, 0.829-0.920). Based on the optimal cut-off of t‐PAIC = 17.9 ng/mL, we found that patients at or above this threshold had significantly higher lactate levels and scores on the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA). Such patients also had significantly worse survival (HR 2.4, 95% CI 1.38–4.34, P = 0.004). Spearman's correlation coefficients were 0.66 between t-PAIC and lactate, and 0.52 between t-PAIC and SOFA. Conclusions Serum levels of t-PAIC may be an independent risk factor for septic shock, and they may correlate with the severity of such shock.
Collapse
|
5
|
Chan YH, Musa NF, Chong YJ, Saat SA, Hafiz F, Shaari K, Israf DA, Tham CL. 2,4,6-Trihydroxy-3-geranyl acetophenone suppresses vascular leakage and leukocyte infiltration in lipopolysaccharide-induced endotoxemic mice. PHARMACEUTICAL BIOLOGY 2021; 59:732-740. [PMID: 34155953 PMCID: PMC8221152 DOI: 10.1080/13880209.2021.1933083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Lipopolysaccharide (LPS) exacerbates systemic inflammatory responses and causes excessive fluid leakage. 2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) has been revealed to protect against LPS-induced vascular inflammation and endothelial hyperpermeability in vitro. OBJECTIVE This study assesses the in vivo protective effects of tHGA against LPS-induced systemic inflammation and vascular permeability in endotoxemic mice. MATERIALS AND METHODS BALB/c mice were intraperitoneally pre-treated with tHGA for 1 h, followed by 6 h of LPS induction. Evans blue permeability assay and leukocyte transmigration assay were performed in mice (n = 6) pre-treated with 2, 20 and 100 mg/kg tHGA. The effects of tHGA (20, 40 and 80 mg/kg) on LPS-induced serum TNF-α secretion, lung dysfunction and lethality were assessed using ELISA (n = 6), histopathological analysis (n = 6) and survivability assay (n = 10), respectively. Saline and dexamethasone were used as the negative control and drug control, respectively. RESULTS tHGA significantly inhibited vascular permeability at 2, 20 and 100 mg/kg with percentage of inhibition of 48%, 85% and 86%, respectively, in comparison to the LPS control group (IC50=3.964 mg/kg). Leukocyte infiltration was suppressed at 20 and 100 mg/kg doses with percentage of inhibition of 73% and 81%, respectively (IC50=17.56 mg/kg). However, all tHGA doses (20, 40 and 80 mg/kg) failed to prevent endotoxemic mice from lethality because tHGA could not suppress TNF-α overproduction and organ dysfunction. DISCUSSION AND CONCLUSIONS tHGA may be developed as a potential therapeutic agent for diseases related to uncontrolled vascular leakage by combining with other anti-inflammatory agents.
Collapse
Affiliation(s)
- Yee Han Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nazmi Firdaus Musa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Arfah Saat
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faizul Hafiz
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- CONTACT Chau Ling Tham Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Endothelial Dysfunction and Neutrophil Degranulation as Central Events in Sepsis Physiopathology. Int J Mol Sci 2021; 22:ijms22126272. [PMID: 34200950 PMCID: PMC8230689 DOI: 10.3390/ijms22126272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a major health problem worldwide. It is a time-dependent disease, with a high rate of morbidity and mortality. In this sense, an early diagnosis is essential to reduce these rates. The progressive increase of both the incidence and prevalence of sepsis has translated into a significant socioeconomic burden for health systems. Currently, it is the leading cause of noncoronary mortality worldwide and represents one of the most prevalent pathologies both in hospital emergency services and in intensive care units. In this article, we review the role of both endothelial dysfunction and neutrophil dysregulation in the physiopathology of this disease. The lack of a key symptom in sepsis makes it difficult to obtain a quick and accurate diagnosis of this condition. Thus, it is essential to have fast and reliable diagnostic tools. In this sense, the use of biomarkers can be a very important alternative when it comes to achieving these goals. Both new biomarkers and treatments related to endothelial dysfunction and neutrophil dysregulation deserve to be further investigated in order to open new venues for the diagnosis, treatment and prognosis of sepsis.
Collapse
|
7
|
Vandewalle J, Libert C. Glucocorticoids in Sepsis: To Be or Not to Be. Front Immunol 2020; 11:1318. [PMID: 32849493 PMCID: PMC7396579 DOI: 10.3389/fimmu.2020.01318] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a highly lethal syndrome resulting from dysregulated immune and metabolic responses to infection, thereby compromising host homeostasis. Activation of the hypothalamic–pituitary–adrenal (HPA) axis and subsequently adrenocortical glucocorticoid (GC) production during sepsis are important regulatory processes to maintain homeostasis. Multiple preclinical studies have proven the pivotal role of endogenous GCs in tolerance against sepsis by counteracting several of the sepsis characteristics, such as excessive inflammation, vascular defects, and hypoglycemia. Sepsis is however often complicated by dysfunction of the HPA axis, resulting from critical-illness-related corticosteroid insufficiency (CIRCI) and GC resistance. Therefore, GCs have been tested as an adjunctive therapy in sepsis and septic shock in different randomized clinical trials (RCTs). Nonetheless, these studies produced conflicting results. Interestingly, adding vitamin C and thiamin to GC therapy enhances the effects of GCs, probably by reducing GC resistance, and this results in an impressive reduction in sepsis mortality as was shown in two recent preliminary retrospective before–after studies. Multiple RCTs are currently underway to validate this new combination therapy in sepsis.
Collapse
Affiliation(s)
- Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
9
|
Mehta S, Gill SE. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. J Thorac Dis 2019; 11:21-28. [PMID: 30863561 DOI: 10.21037/jtd.2018.11.74] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanjay Mehta
- Pulmonary Injury, Inflammation, and Repair Laboratory (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada.,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sean E Gill
- Pulmonary Injury, Inflammation, and Repair Laboratory (PIIRL), Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada.,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
10
|
Pietrasanta C, Pugni L, Ronchi A, Bottino I, Ghirardi B, Sanchez-Schmitz G, Borriello F, Mosca F, Levy O. Vascular Endothelium in Neonatal Sepsis: Basic Mechanisms and Translational Opportunities. Front Pediatr 2019; 7:340. [PMID: 31456998 PMCID: PMC6700367 DOI: 10.3389/fped.2019.00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal sepsis remains a major health issue worldwide, especially for low-birth weight and premature infants, with a high risk of death and devastating sequelae. Apart from antibiotics and supportive care, there is an unmet need for adjunctive treatments to improve the outcomes of neonatal sepsis. Strong and long-standing research on adult patients has shown that vascular endothelium is a key player in the pathophysiology of sepsis and sepsis-associated organ failure, through a direct interaction with pathogens, leukocytes, platelets, and the effect of soluble circulating mediators, in part produced by endothelial cells themselves. Despite abundant evidence that the neonatal immune response to sepsis is distinct from that of adults, comparable knowledge on neonatal vascular endothelium is much more limited. Neonatal endothelial cells express lower amounts of adhesion molecules compared to adult ones, and present a reduced capacity to neutralize reactive oxygen species. Conversely, available evidence on biomarkers of endothelial damage in neonates is not as robust as in adult patients, and endothelium-targeted therapeutic opportunities for neonatal sepsis are almost unexplored. Here, we summarize current knowledge on the structure of neonatal vascular endothelium, its interactions with neonatal immune system and possible endothelium-targeted diagnostic and therapeutic tools for neonatal sepsis. Furthermore, we outline areas of basic and translational research worthy of further study, to shed light on the role of vascular endothelium in the context of neonatal sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Ilaria Bottino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Beatrice Ghirardi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organisation Center of Excellence, Naples, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
11
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Dickinson CM, LeBlanc BW, Edhi MM, Heffernan DS, Faridi MH, Gupta V, Cioffi WG, O'Brien X, Reichner JS. Leukadherin-1 ameliorates endothelial barrier damage mediated by neutrophils from critically ill patients. J Intensive Care 2018; 6:19. [PMID: 29568527 PMCID: PMC5855997 DOI: 10.1186/s40560-018-0289-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background Multi-organ failure occurs during critical illness and is mediated in part by destructive neutrophil-to-endothelial interactions. The β2 integrin receptor, CR3 (complement receptor 3; Mac-1; CD11b/CD18), which binds endothelial intercellular adhesion molecule-1 (ICAM-1), plays a key role in promoting the adhesion of activated neutrophils to inflamed endothelia which, when prolonged and excessive, can cause vascular damage. Leukadherin-1 (LA-1) is a small molecule allosteric activator of CR3 and has been shown to promote adhesion of blood neutrophils to inflamed endothelium and restrict tissue infiltration. Therefore, LA-1 offers a novel mechanism of anti-inflammatory action by activation, rather than inhibition, of the neutrophil CR3 integrin. However, whether promotion of neutrophil-to-endothelial interaction by this novel therapeutic is of benefit or detriment to endothelial barrier function is not known. Methods Critically ill septic and trauma patients were prospectively enrolled from the surgical and the trauma ICU. Blood was collected from these patients and healthy volunteers. Neutrophils were isolated by dextran sedimentation and adhered to TNF-α (tumor necrosis factor-α)-activated human umbilical vein endothelial (HUVEC) monolayers in the presence or absence of fMLP (formylmethionine-leucine-phenylalanine) and/or LA-1. Electric cell-substrate impedance sensing (ECIS) and exposure of underlying collagen were used to quantify endothelial barrier function and permeability. Results Neutrophils from critically ill trauma and septic patients caused similar degrees of endothelial barrier disruption which exceeded that caused by cells obtained from healthy controls both kinetically and quantitatively. LA-1 protected barrier function in the absence and presence of fMLP which served as a secondary stimulant to cause maximal loss of barrier function. LA-1 protection was also observed by quantifying collagen exposure underlying endothelial cells challenged with fMLP-stimulated neutrophils. LA-1 treatment resulted in decreased migration dynamics of neutrophils crawling on an endothelial monolayer with reduced speed (μm/s = 0.25 ± 0.01 vs. 0.06 ± 0.01, p < 0.05), path length (μm = 199.5 ± 14.3 vs. 42.1 ± 13.0, p < 0.05), and displacement (μm = 65.2 ± 4.7 vs. 10.4 ± 1.3; p < 0.05). Conclusion Neutrophils from patients with trauma or sepsis cause endothelial barrier disruption to a similar extent relative to each other. The CR3 agonist LA-1 protects endothelial barrier function from damage caused by neutrophils obtained from both populations of critically ill patients even when exposed to secondary stimulation.
Collapse
Affiliation(s)
- Catherine M Dickinson
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Brian W LeBlanc
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Muhammad M Edhi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Daithi S Heffernan
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Mohd Hafeez Faridi
- 2College of Pharmacy, Chicago State University, Chicago, IL USA.,3Rush University Medical Center, Chicago, IL USA
| | - Vineet Gupta
- 3Rush University Medical Center, Chicago, IL USA
| | - William G Cioffi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Xian O'Brien
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Jonathan S Reichner
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|