1
|
Khedoe PPSJ, van 't Wout EFA. Buddy, bystander or betrayer: B cells in lymphoid aggregates in AATD emphysema. Eur Respir J 2025; 65:2402163. [PMID: 39746767 DOI: 10.1183/13993003.02163-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025]
Affiliation(s)
- P Padmini S J Khedoe
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emily F A van 't Wout
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Balderacchi AM, Bignotti M, Ottaviani S, Denardo A, Barzon V, Ben Khlifa E, Vailati G, Piloni D, Benini F, Corda L, Corsico AG, Ferrarotti I, Fra A. Quantification of circulating alpha-1-antitrypsin polymers associated with different SERPINA1 genotypes. Clin Chem Lab Med 2024; 62:1980-1990. [PMID: 38407261 DOI: 10.1515/cclm-2023-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Alpha-1-antitrypsin deficiency is a genetic disorder caused by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin (AAT), the major serine protease inhibitor in plasma. Reduced AAT levels are associated with elevated risk of developing emphysema mainly due to uncontrolled activity of neutrophil elastase in the lungs. The prevalent Z-AAT mutant and many rare pathogenic AAT variants also predispose to liver disease due to their accumulation as polymeric chains in hepatocytes. Part of these polymers are secreted into the bloodstream and could represent biomarkers of intra-hepatic accumulation. Moreover, being inactive, they further lower lung protection against proteases. Aim of our study is to accurately quantify the percentage of circulating polymers (CP) in a cohort of subjects with different SERPINA1 genotypes. METHODS CP concentration was measured in plasma or Dried Blood Spot (DBS) by a sensitive sandwich ELISA based on capture by the polymer-specific 2C1 monoclonal antibody. RESULTS CP were significantly elevated in patients with the prevalent PI*SZ and PI*ZZ genotypes, with considerable intra-genotype variability. Notably, higher percentage of polymers was observed in association with elevated C-reactive protein. CP levels were also increased in carriers of the Mmalton variant, and of Mprocida, I, Plowell and Mherleen in heterozygosity with Z-AAT. CONCLUSIONS These findings highlight the importance of implementing CP quantification in a clinical laboratory. Indeed, the variable amount of CP in patients with the same genotype may correlate with the variable severity of the associated lung and liver diseases. Moreover, CP can reveal the polymerogenic potential of newly discovered ultrarare AAT variants.
Collapse
Affiliation(s)
- Alice M Balderacchi
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mattia Bignotti
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Stefania Ottaviani
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Denardo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Valentina Barzon
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Emna Ben Khlifa
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Guido Vailati
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Davide Piloni
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Benini
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Luciano Corda
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Angelo G Corsico
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Annamaria Fra
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Abo KM, Merritt C, Basil MC, Lin SM, Cantu E, Morley MP, Bawa P, Gallagher M, Byers DE, Morrisey EE, Wilson AA. Pulmonary Cellular Toxicity in Alpha-1 Antitrypsin Deficiency. Chest 2024; 166:472-479. [PMID: 38360172 PMCID: PMC11443245 DOI: 10.1016/j.chest.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Carly Merritt
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan M Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Marissa Gallagher
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA.
| |
Collapse
|
4
|
Perez-Luz S, Matamala N, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. NAFLD and AATD Are Two Diseases with Unbalanced Lipid Metabolism: Similarities and Differences. Biomedicines 2023; 11:1961. [PMID: 37509601 PMCID: PMC10377048 DOI: 10.3390/biomedicines11071961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. In this review, we discuss the similarities and differences between the molecular pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to investigate the physio pathological mechanisms of liver steatosis.
Collapse
Affiliation(s)
- Sara Perez-Luz
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Gema Gomez-Mariano
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Sabina Janciauskiene
- Department of Respiratory Medicine and Infectious Diseases, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover Medical School, 30625 Hannover, Germany
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
5
|
Khodayari N, Oshins R, Aranyos AM, Duarte S, Mostofizadeh S, Lu Y, Brantly M. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2022; 323:G594-G608. [PMID: 36256438 DOI: 10.1152/ajpgi.00207.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alek M Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Khodayari N, Oshins R, Mehrad B, Lascano JE, Qiang X, West JR, Holliday LS, Lee J, Wiesemann G, Eydgahi S, Brantly M. Cigarette smoke exposed airway epithelial cell-derived EVs promote pro-inflammatory macrophage activation in alpha-1 antitrypsin deficiency. Respir Res 2022; 23:232. [PMID: 36068572 PMCID: PMC9446525 DOI: 10.1186/s12931-022-02161-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA.
| | - Regina Oshins
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | - Jorge E Lascano
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | | | - Jesse R West
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | - L Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jungnam Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | - Gayle Wiesemann
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Soroush Eydgahi
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd Rm M453A, Gainesville, FL, 32610, USA
| |
Collapse
|
7
|
Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proc Natl Acad Sci U S A 2022; 119:e2206103119. [PMID: 35901208 PMCID: PMC9351467 DOI: 10.1073/pnas.2206103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.
Collapse
|
8
|
Lee J, Mohammad N, Lu Y, Kang K, Han K, Brantly M. Alu RNA induces NLRP3 expression through TLR7 activation in α-1-antitrypsin-deficient macrophages. JCI Insight 2022; 7:158791. [PMID: 35730566 DOI: 10.1172/jci.insight.158791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
α-1 antitrypsin (AAT) is a serine protease inhibitor that plays a pivotal role in maintaining lung homeostasis. The most common AAT allele associated with AAT deficiency (AATD) is PiZ. Z-AAT accumulates in cells due to misfolding, causing severe AATD. The major function of AAT is to neutralize neutrophil elastase in the lung. It is generally accepted that loss of antiprotease function is a major cause of COPD in individuals with AATD. However, it is now being recognized that the toxic gain-of-function effect of Z-AAT in macrophage likely contributes to lung disease. In the present study, we determined that TLR7 signaling is activated in Z-MDMs, and the expression level of NLRP3, one of the targets of TLR7 signaling, is significantly higher in Z- compared with M-MDMs. We also determined that the level of endosomal Alu RNA is significantly higher in Z-compared with M-MDMs. Alu RNA is a known endogenous ligand that activates TLR7 signaling. Z-AAT likely induces the expression of Alu elements in MDMs and accelerates monocyte death, leading to the higher level of endosomal Alu RNA in Z-MDMs. Taken together,this study identifies a mechanism responsible for the toxic gain of function of Z-AAT macrophages.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Keunsoo Kang
- Department of Microbiology, Dankook University College of Natural Science, Cheonan, Republic of Korea
| | - Kyudong Han
- Department of Microbiology, Dankook University College of Natural Science, Cheonan, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Izquierdo M, Rawal H, Armstrong M, Marion CR. Alpha-1 Asthma Overlap Syndrome: a Clinical Overview. Curr Allergy Asthma Rep 2022; 22:101-111. [PMID: 35596100 DOI: 10.1007/s11882-022-01036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic diseases that is associated with severe complications and yet remains underdiagnosed. The pulmonary symptoms of both AATD and asthma include cough, excessive sputum production, dyspnea, and wheezing. These symptoms overlap significantly leading to difficulty distinguishing between these two conditions and suspicion that there may be an overlap syndrome. We aim to discuss the pathophysiology, clinical manifestations, and treatment of both alpha-1 antitrypsin and asthma and how they may overlap. RECENT FINDINGS Recent literature suggests that there is an association between asthma and AATD. This association has been hypothesized to be secondary to an imbalance of elastase and anti-elastase leading to a pro-inflammatory state in patients with AATD. This review serves to overview the pathophysiology, clinical manifestations, and treatment of alpha-1 antitrypsin, asthma, and the increasingly recognized intersection of the two, AATD-asthma overlap syndrome.
Collapse
Affiliation(s)
- Manuel Izquierdo
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Himanshu Rawal
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Michael Armstrong
- Department of Internal Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Chad R Marion
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Department On Internal Medicine, Section On Pulmonary, Critical Care and Sleep Medicine, W. G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, NC, USA.
| |
Collapse
|
10
|
Núñez A, Belmonte I, Miranda E, Barrecheguren M, Farago G, Loeb E, Pons M, Rodríguez-Frías F, Gabriel-Medina P, Rodríguez E, Genescà J, Miravitlles M, Esquinas C. Association between circulating alpha-1 antitrypsin polymers and lung and liver disease. Respir Res 2021; 22:244. [PMID: 34526035 PMCID: PMC8442448 DOI: 10.1186/s12931-021-01842-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is considered one of the most common genetic diseases and is characterised by the misfolding and polymerisation of the alpha-1 antitrypsin (AAT) protein within hepatocytes. The relevance of circulating polymers (CP) of AAT in the pathogenesis of lung and liver disease is not completely understood. Therefore, the main objective of our study was to determine whether there is an association between the levels of CP of AAT and the severity of lung and liver disease. METHOD This was a cross-sectional study in patients with different phenotypes of AATD and controls. To quantify CP, a sandwich ELISA was performed using the 2C1 monoclonal antibody against AAT polymers. Sociodemographic data, clinical characteristics, and liver and lung parameters were collected. RESULTS A cohort of 70 patients was recruited: 32 Pi*ZZ (11 on augmentation therapy); 29 Z-heterozygous; 9 with other genotypes. CP were compared with a control group of 47 individuals (35 Pi*MM and 12 Pi*MS). ZZ patients had the highest concentrations of CP (p < 0.001) followed by Z heterozygous. The control group and patients with Pi*SS and Pi*SI had the lowest CP concentrations. Pi*ZZ also had higher levels of liver stiffness measurements (LSM) than the remaining AATD patients. Among patients with one or two Z alleles, two patients with lung and liver impairment showed the highest concentrations of CP (47.5 µg/mL), followed by those with only liver abnormality (n = 6, CP = 34 µg/mL), only lung (n = 18, CP = 26.5 µg/mL) and no abnormalities (n = 23, CP = 14.3 µg/mL). Differences were highly significant (p = 0.004). CONCLUSIONS Non-augmented Pi*ZZ and Z-patients with impaired lung function and increased liver stiffness presented higher levels of CP than other clinical phenotypes. Therefore, CP may help to identify patients more at risk of developing lung and liver disease and may provide some insight into the mechanisms of disease.
Collapse
Affiliation(s)
- Alexa Núñez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Elena Miranda
- Department of Biology and Biotechnologies, 'Charles Darwin' and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Georgina Farago
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Eduardo Loeb
- Pneumology Department, Teknon Medical Center, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBEREHD), Barcelona, Spain
- Clinical Biochemistry Research Group/Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Gabriel-Medina
- Department of Clinical Biochemistry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Rodríguez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joan Genescà
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBEREHD), Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, P. Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
11
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
12
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2021; 57:457-463. [PMID: 35698951 DOI: 10.1016/j.arbr.2020.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/11/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
13
|
Pini L, Tiberio L, Arici M, Corda L, Giordani J, Bargagli E, Tantucci C. Z-alpha1-antitrypsin polymers and small airways disease: a new paradigm in alfa-1 anti-trypsin deficiency-related COPD development? Monaldi Arch Chest Dis 2021; 91. [PMID: 34468105 DOI: 10.4081/monaldi.2021.1883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
The presence of Alpha1-Antitrypsin (AAT) polymers, known to promote a sustained pro-inflammatory activity, has been previously demonstrated in bronchial biopsies of subjects with Z-AAT deficiency (AATD) suggesting a possible role in the development of COPD through a small airway disease impairment. The study aimed to assess the presence of small airways dysfunction and the potential correlation with the presence of Z-AAT polymers obtained by Exhaled Breath Condensate (EBC) collection in PiZZ subjects, as compared with matched healthy PiMM subjects. We enrolled 19 asymptomatic, never smoker subjects: 9 PiZZ and 10 PiMM as controls, without obstructive ventilatory defect (i.e., normal FEV1/VC% ratio). All subjects underwent complete pulmonary function tests (PFT). EBC was collected in all subjects. ELISA test was applied to search for Z-AAT polymers. The PiZZ subjects showed normal lung volumes and DLCO values. However, in comparison with PiMM subjects, the single breath test N2 wash-out revealed significant differences regarding the phase III slope (1.45±0.35 N2/L vs. 0.96±0.40 N2/L) (p<0.02) in the PiZZ subjects, while the closing volume/vital capacity ratio (14.3±4.5 % vs. 11.3±6.3 %) was not significantly increased. The ELISA test detected the presence of Z-AAT polymers in 44% of PiZZ patients. Asymptomatic, never smoker PiZZ subjects with normal spirometry and lung diffusion capacity showed airways impairment when compared to PiMM subjects. Although Z-AAT polymers were found only in 44% of PiZZ subjects, these findings suggest the possibility that chronic bronchiolitis can develop as a result of the long-term pro-inflammatory activity of Z-AAT polymers in subjects with Z-related AATD.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia.
| | - Marianna Arici
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Luciano Corda
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia.
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena.
| | - Claudio Tantucci
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| |
Collapse
|
14
|
Callea F, Francalanci P, Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22115778. [PMID: 34071368 PMCID: PMC8198767 DOI: 10.3390/ijms22115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).
Collapse
Affiliation(s)
- Francesco Callea
- Bugando Medical Centre, Department of Molecular Histopathology, Catholic University Health Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Paola Francalanci
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Isabella Giovannoni
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
| |
Collapse
|
15
|
Pini L, Paoletti G, Heffler E, Tantucci C, Puggioni F. Alpha1-antitrypsin deficiency and asthma. Curr Opin Allergy Clin Immunol 2021; 21:46-51. [PMID: 33284159 DOI: 10.1097/aci.0000000000000711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of the article is to highlight the association between α1-antitrypsin deficiency (AATD) and asthma. RECENT FINDINGS AATD is one of the most common and underrecognized autosomal disorders associated with an increased risk of developing liver and lung diseases. An association between α1-antitrypsin and asthma has been suggested, especially with severe forms of this disease. Many studies have shown an increased prevalence of asthma in the α1-antitrypsin-deficient population overtime (4-38%). The biological mechanism underlying these two conditions and able to bind them has not yet been well investigated. As α1-antitrypsin is the main inhibitor of the serine proteinase and it is an important anti-inflammatory protein with pronounced immunomodulatory activities, it can be hypothesized that the link between AATD and asthma might be represented by the elastase/antielastase imbalance and the proinflammatory effect that occurs because of the reduction of this protein. SUMMARY There is a strong need for further researches to better understand the molecular mechanisms binding AATD and asthma. It is also recommendable to screen for AATD, late-onset asthma patients, and/or those with not fully reversible airways obstruction.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, Spedali Civili
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Claudio Tantucci
- Respiratory Medicine Unit, Spedali Civili
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
16
|
Belchamber KBR, Walker EM, Stockley RA, Sapey E. Monocytes and Macrophages in Alpha-1 Antitrypsin Deficiency. Int J Chron Obstruct Pulmon Dis 2020; 15:3183-3192. [PMID: 33311976 PMCID: PMC7725100 DOI: 10.2147/copd.s276792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic condition characterised by low circulating levels of alpha-1 antitrypsin (AAT), a serine proteinase inhibitor. The most common deficiency variants are the S and Z mutations, which cause the accumulation of misfolded AAT in hepatocytes resulting in endoplasmic reticular stress and insufficient release of AAT into the circulation (<11μmol/L). This leads to liver disease, as well as an increased risk of emphysema due to unopposed proteolytic activity of neutrophil-derived serine proteinases in the lungs. AATD has been traditionally viewed as an inflammatory disorder caused directly by a proteinase-antiproteinase imbalance in the lung, but increasing evidence suggests that low AAT levels may affect other cellular functions. Recently, AAT polymers have been identified in both monocytes and macrophages from AATD patients and evidence is building that these cells may also play a role in the development of AATD lung disease. Alveolar macrophages are phagocytic cells that are important in the lung immune response but are also implicated in driving inflammation. This review explores the potential implications of monocyte and macrophage involvement in non-liver AAT synthesis and the pathophysiology of AATD lung disease.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Eloise M Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Robert A Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
17
|
Lechowicz U, Rudzinski S, Jezela-Stanek A, Janciauskiene S, Chorostowska-Wynimko J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int J Mol Sci 2020; 21:E9187. [PMID: 33276468 PMCID: PMC7731214 DOI: 10.3390/ijms21239187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-antitrypsin (AAT), an acute-phase protein encoded by the SERPINA1 gene, is a member of the serine protease inhibitor (SERPIN) superfamily. Its primary function is to protect tissues from enzymes released during inflammation, such as neutrophil elastase and proteinase 3. In addition to its antiprotease activity, AAT interacts with numerous other substances and has various functions, mainly arising from the conformational flexibility of normal variants of AAT. Therefore, AAT has diverse biological functions and plays a role in various pathophysiological processes. This review discusses major molecular forms of AAT, including complex, cleaved, glycosylated, oxidized, and S-nitrosylated forms, in terms of their origin and function.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
- Member of the German Center for Lung Research DZL, Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, 30625 Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| |
Collapse
|
18
|
Santos G, Turner AM. Alpha-1 antitrypsin deficiency: an update on clinical aspects of diagnosis and management. Fac Rev 2020; 9:1. [PMID: 33659933 PMCID: PMC7886062 DOI: 10.12703/b/9-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Clinical heterogeneity has been demonstrated in alpha-1 antitrypsin deficiency (AATD), such that clinical suspicion plays an important role in its diagnosis. The PiZZ genotype is the most common severe deficiency genotype and so tends to result in the worst clinical presentation, hence it has been the major focus of research. However, milder genotypes, especially PiSZ and PiMZ, are also linked to the development of lung and liver disease, mainly when unhealthy behaviors are present, such as smoking and alcohol use. Monitoring and managing AATD patients remains an area of active research. Lung function tests or computed tomography (CT) densitometry may allow physicians to identify progressive disease during follow up of patients, with a view to decision making about AATD-specific therapy, like augmentation therapy, or eventually surgical procedures such as lung volume reduction or transplant. Different types of biological markers have been suggested for disease monitoring and therapy selection, although most need further investigation. Intravenous augmentation therapy reduces the progression of emphysema in PiZZ patients and is available in many European countries, but its effect in milder deficiency is less certain. AATD has also been suggested to represent a risk factor and trigger for pulmonary infections, like those induced by mycobacteria. We summarize the last 5-10 years' key findings in AATD diagnosis, assessment, and management, with a focus on milder deficiency variants.
Collapse
Affiliation(s)
- Gabriela Santos
- Pneumology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
19
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2020; 57:S0300-2896(20)30084-3. [PMID: 32439252 DOI: 10.1016/j.arbres.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|