1
|
Stanzel SB, Spiesshoefer J, Trudzinski F, Cornelissen C, Kabitz HJ, Fuchs H, Boentert M, Mathes T, Michalsen A, Hirschfeld S, Dreher M, Windisch W, Walterspacher S. [S3 Guideline: Treating Chronic Respiratory Failure with Non-invasive Ventilation]. Pneumologie 2024. [PMID: 39467574 DOI: 10.1055/a-2347-6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The S3 guideline on non-invasive ventilation as a treatment for chronic respiratory failure was published on the website of the Association of the Scientific Medical Societies in Germany (AWMF) in July 2024. It offers comprehensive recommendations for the treatment of chronic respiratory failure in various underlying conditions, such as COPD, thoraco-restrictive diseases, obesity-hypoventilation syndrome, and neuromuscular diseases. An important innovation is the separation of the previous S2k guideline dating back to 2017, which included both invasive and non-invasive ventilation therapy. Due to increased scientific evidence and a significant rise in the number of affected patients, these distinct forms of therapy are now addressed separately in two different guidelines.The aim of the guideline is to improve the treatment of patients with chronic respiratory insufficiency using non-invasive ventilation and to make the indications and therapy recommendations accessible to all involved in the treatment process. It is based on the latest scientific evidence and replaces the previous guideline. This revised guideline provides detailed recommendations on the application of non-invasive ventilation, ventilation settings, and the subsequent follow-up of treatment.In addition to the updated evidence, important new features of this S3 guideline include new recommendations on patient care and numerous detailed treatment pathways that make the guideline more user-friendly. Furthermore, a completely revised section is dedicated to ethical issues and offers recommendations for end-of-life care. This guideline is an important tool for physicians and other healthcare professionals to optimize the care of patients with chronic respiratory failure. This version of the guideline is valid for three years, until July 2027.
Collapse
Affiliation(s)
- Sarah Bettina Stanzel
- Lungenklinik Köln-Merheim, Städtische Kliniken Köln
- Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Köln, Deutschland
| | - Jens Spiesshoefer
- Klinik für Pneumologie und internistische Intensivmedizin, RWTH Aachen, Aachen Deutschland
- Institute of Life Sciences, Scuola Superiore di Studi Universitari e di Perfezionamento Sant'Anna, Pisa, Italien
| | - Franziska Trudzinski
- Thoraxklinik Heidelberg gGmbH, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Christian Cornelissen
- Klinik für Pneumologie und internistische Intensivmedizin, RWTH Aachen, Aachen Deutschland
- Department für BioTex - Biohybride & Medizinische Textilien (BioTex), AME-Institut für Angewandte Medizintechnik, Helmholtz Institut Aachen, Aachen, Deutschland
| | | | - Hans Fuchs
- Klinik für Allgemeine Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Matthias Boentert
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Tim Mathes
- Institut für Medizinische Statistik, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Andrej Michalsen
- Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Klinikum Konstanz, Konstanz, Deutschland
| | - Sven Hirschfeld
- Querschnitt-gelähmten-Zentrum BG Klinikum Hamburg, Hamburg, Deutschland
| | - Michael Dreher
- Klinik für Pneumologie und internistische Intensivmedizin, RWTH Aachen, Aachen Deutschland
| | - Wolfram Windisch
- Lungenklinik Köln-Merheim, Städtische Kliniken Köln
- Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Köln, Deutschland
| | - Stephan Walterspacher
- Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Köln, Deutschland
- Sektion Pneumologie - Medizinische Klinik, Klinikum Konstanz, Konstanz, Deutschland
| |
Collapse
|
2
|
Vivodtzev I, Rong S, Ely MR, Patout M, Taylor JA. Paradoxical breathing during sleep is associated with increased sleep apnea and reduced ventilatory capacities in high-level spinal cord injury. J Sleep Res 2024; 33:e14171. [PMID: 38356306 PMCID: PMC11322418 DOI: 10.1111/jsr.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Sleep-disordered breathing is highly prevalent in individuals with high-level spinal cord injury. In addition, chest mechanics are known to be altered, leading to paradoxical breathing. Here we investigated the interaction between paradoxical breathing and sleep quality in these patients, and its association with measurements of respiratory function, hypercapnic ventilatory response and peak exercise ventilation. Home-based polysomnography was performed in 13 patients with spinal cord injury (C4 to T4) untreated for sleep-disordered breathing. We defined paradoxical breathing as counterphase between thoracic and abdominal movements during slow-wave and rapid eye movement sleep. Sleep quality, pulmonary function, hypercapnic ventilatory responses and peak exercise ventilation were compared between those with and without paradoxical breathing. Half of individuals presented with nocturnal paradoxical breathing. Despite similar age, body mass index, injury level, time since injury, and respiratory function, those with paradoxical breathing had higher apnea-hypopnea index (13 ± 8 versus 5 ± 3 events per hr) and average sleep heart rate (67 ± 12 versus 54 ± 4 bpm; p < 0.05). Moreover, paradoxical breathing was associated with lower hypercapnic ventilatory response (slope: 0.35 ± 0.17 versus 0.96 ± 0.38) and lower peak exercise ventilation (33 ± 4 versus 48 ± 12 L min-1; p < 0.05). Nocturnal respiratory muscle desynchronization could play a role in the pathophysiology of sleep apnea, and could relate to low ventilatory responses to both hypercapnia and exercise in high-level spinal cord injury. Polysomnography may be an important diagnostic tool for these patients for whom therapeutic approaches should be considered to treat this abnormality.
Collapse
Affiliation(s)
- Isabelle Vivodtzev
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75013 Paris, France1
| | - Sophie Rong
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75013 Paris, France1
| | - Matthew R. Ely
- Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston MA, SA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - Maxime Patout
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75013 Paris, France1
| | - J. Andrew Taylor
- Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston MA, SA
- Schoen Adams Research Institute at Spaulding Rehabilitation, Cardiovascular Research Laboratory, Cambridge, MA, USA
| |
Collapse
|
3
|
Yates BA, Brown R, Picard G, Taylor JA. Improved pulmonary function is associated with reduced inflammation after hybrid whole-body exercise training in persons with spinal cord injury. Exp Physiol 2023; 108:353-360. [PMID: 36622954 PMCID: PMC9991963 DOI: 10.1113/ep090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does 12 weeks of functional electrical stimulation (FES) rowing exercise training lead to suppressed systemic inflammation and an improvement in pulmonary function in persons with sub-acute spinal cord injury (SCI)? What is the main finding and its importance? Twelve weeks of FES rowing exercise improves pulmonary function and the magnitude of improvement is associated with reductions in inflammatory biomarkers. Thus, interventions targeting inflammation may lead to better pulmonary outcomes for person with sub-acute SCI. ABSTRACT The current study was designed to test the hypotheses that (1) reducing systemic inflammation via a 12-week functional electrical stimulation rowing exercise training (FESRT) prescription results in augmented pulmonary function, and (2) the magnitude of improvement in pulmonary function is inversely associated with the magnitude of systemic inflammation suppression in persons with sub-acute (≤2 years) spinal cord injury (SCI). We conducted a retrospective analysis of a randomized controlled trial (NCT#02139436). Twenty-one participants were enrolled (standard of care (SOC; n = 9) or FESRT (n = 12)). The exercise prescription was three sessions/week at 70-85% of peak heart rate. A two-way analysis of covariance and regression analysis was used to assess group differences and associations between pulmonary function, log transformed high-sensitivity C-reactive protein (hsCRPlog ) and white blood cell count (WBC). Following FESRT, clinically significant improvements in forced expiratory volume in 1 s (FEV1 ; 0.25 (0.08-0.43) vs. -0.06 (-0.26 to 0.15) litres) and forced vital capacity (0.22 (0.04-0.39) vs. 0.08 (-0.29 to 0.12) litres) were noted and systemic WBC (-1.45 (-2.48 to -0.50) vs. 0.41 (-0.74 to 1.56) μl) levels were suppressed compared to SOC (mean change (95% confidence interval); P < 0.05). Additionally, both ΔhsCRPlog and ΔWBC were predictors of ΔFEV1 (r2 = 0.89 and 0.43, respectively; P < 0.05). Twelve weeks of FESRT improves pulmonary function and reduces WBC in persons with sub-acute SCI. The potency of FESRT to augment pulmonary function may depend on adequate suppression of systemic inflammation.
Collapse
Affiliation(s)
- Brandon A. Yates
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMAUSA
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMAUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Robert Brown
- Pulmonary and Critical Care Medicine Unit and Department of MedicineMassachusetts General HospitalBostonMAUSA
| | - Glen Picard
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMAUSA
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMAUSA
| | - J. Andrew Taylor
- Cardiovascular Research LaboratorySpaulding Rehabilitation HospitalCambridgeMAUSA
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
4
|
Karatzanos E. Noninvasive Ventilation During Functional Electrical Stimulation Rowing in Spinal Cord Injury: An Add-on to Potentially Increase Benefits of Exercise Training. Chest 2021; 157:1058-1059. [PMID: 32386626 DOI: 10.1016/j.chest.2020.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Department, School of Medicine, National & Kapodistrian University of Athens, Evaggelismos General Hospital, Athens, Greece.
| |
Collapse
|
5
|
Clinical Benefits and System Design of FES-Rowing Exercise for Rehabilitation of Individuals with Spinal Cord Injury: A Systematic Review. Arch Phys Med Rehabil 2021; 102:1595-1605. [PMID: 33556345 DOI: 10.1016/j.apmr.2021.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To comprehensively and critically appraise the clinical benefits and engineering designs of functional electrical stimulation (FES)-rowing for management of individuals with spinal cord injury (SCI). DATA SOURCES Electronic database searches were conducted in Cumulative Index to Nursing & Allied Health Literature, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Excerpta Medica database, Emcare, Medline, PubMed, Scopus, and Web of Science databases from inception to May 12, 2020. STUDY SELECTION Search terms used were synonyms of "spinal cord injury" for Population and "Electric Stimulation (Therapy)/ and rowing" for Intervention. Two reviewers independently assessed articles based on the following inclusion criteria: recruited individuals with SCI; had aerobic FES-rowing exercise as study intervention; reported cardiovascular, muscular, bone mineral density, or metabolic outcomes; and examined engineering design of FES-rowing systems. Of the 256 titles that were retrieved in the primary search, 24 were included in this study. DATA EXTRACTION Study characteristics, quality, participants' characteristics, test descriptions, and results were independently extracted by 2 reviewers. The quality of studies was assessed with the Downs and Black checklist. DATA SYNTHESIS Comparison of peak oxygen consumption (V̇o2peak) rates showed that V̇o2peak during FES-rowing was significantly higher than arm-only exercise; FES-rowing training improved V̇o2peak by 11.2% on average (95% confidence interval, 7.25-15.1), with a 4.1% (95% confidence interval, 2.23-5.97) increase in V̇o2peak per month of training. FES-rowing training reduced bone density loss with increased time postinjury. The rowing ergometer used in 2 studies provided motor assistance during rowing. Studies preferred manual stimulation control (n=20) over automatic (n=4). CONCLUSIONS Our results suggest FES-rowing is a viable exercise for individuals with SCI that can improve cardiovascular performance and reduce bone density loss. Further randomized controlled trials are needed to better understand the optimal set-up for FES-rowing that maximizes the rehabilitation outcomes.
Collapse
|
6
|
Vivodtzev I, Taylor JA. Cardiac, Autonomic, and Cardiometabolic Impact of Exercise Training in Spinal Cord Injury: A QUALITATIVE REVIEW. J Cardiopulm Rehabil Prev 2021; 41:6-12. [PMID: 33351539 PMCID: PMC7768813 DOI: 10.1097/hcr.0000000000000564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Direct and indirect effects of spinal cord injury lead to important cardiovascular (CV) complications that are further increased by years of injury and the process of "accelerated aging." The present review examines the current evidence in the literature for the potential cardioprotective effect of exercise training in spinal cord injury. REVIEW METHODS PubMed and Web of Science databases were screened for original studies investigating the effect of exercise-based interventions on aerobic capacity, cardiac structure/function, autonomic function, CV function, and/or cardiometabolic markers. We compared the effects in individuals <40 yr with time since injury <10 yr with those in older individuals (≥40 yr) with longer time since injury (≥10 yr), reasoning that the two can be considered individuals with low versus high CV risk factors. SUMMARY Studies showed similar exercise effects in both groups (n = 31 in low CV risk factors vs n = 15 in high CV risk factors). The evidence does not support any effect of exercise training on autonomic function but does support an increased peripheral blood flow, improved left ventricular mass, higher peak cardiac output, greater lean body mass, better antioxidant capacity, and improved endothelial function. In addition, some evidence suggests that it can result in lower blood lipids, systemic inflammation (interleukin-6, tumor necrosis factor α, and C-reactive protein), and arterial stiffness. Training intensity, volume, and frequency were key factors determining CV gains. Future studies with larger sample sizes, well-matched groups of subjects, and randomized controlled designs will be needed to determine whether high-intensity hybrid forms of training result in greater CV gains.
Collapse
Affiliation(s)
- Isabelle Vivodtzev
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts (Drs Vivodtzev and Taylor); Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, Massachusetts (Drs Vivodtzev and Taylor); and Sorbonne Université, INSERM, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France (Dr Vivodtzev)
| | | |
Collapse
|
7
|
Serotonin 1A agonist and cardiopulmonary improvements with whole-body exercise in acute, high-level spinal cord injury: a retrospective analysis. Eur J Appl Physiol 2020; 121:453-463. [PMID: 33099664 DOI: 10.1007/s00421-020-04536-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE High-level spinal cord injury (SCI) can result in spinal and supraspinal respiratory control deficits leading to insufficient ventilatory responses to exercise and training-related adaptations. We hypothesized a serotonin agonist, known to improve respiratory function in animal models, would improve adaptations to whole-body functional electrical stimulation (FES) exercise training in patients with acute high-level SCI. METHODS We identified 10 patients (< 2 years of injury with SCI from C4 to T3) in our program who had performed 6 months of FES-row training while on Buspirone (29 ± 17 mg/day) between 2012 and 2018. We also identified well-matched individuals who trained for six months but not on Buspirone (n = 11). A peak incremental FES-rowing exercise test and resting pulmonary function test had been performed before and after training. RESULTS Those on Buspirone demonstrated greater increases in peak oxygen consumption (VO2peak: + 0.24 ± 0.23 vs. + 0.10 ± 0.13 L/min, p = 0.08) and peak ventilation (VEpeak: + 6.5 ± 8.1 vs. - 0.7 ± 6.9 L/min, p < 0.05) compared to control. In addition, changes in VO2peak and VEpeak were correlated across all patients (r = 0.63, p < 0.01), but most strongly in those on Buspirone (r = 0.85, p < 0.01). Furthermore, changes in respiratory function correlated with increased peak tidal volume in the Buspirone group (r > 0.66, p < 0.05). CONCLUSION These results suggest Buspirone improves cardiorespiratory adaptations to FES-exercise training in individuals with acute, high-level SCI. The strong association between increases in ventilatory and aerobic capacities suggests improved respiratory function is a mechanism; however, controlled studies are needed to determine if this preliminary finding is reproducible.
Collapse
|
8
|
Sharma N, Samuel AJ. Missed Randomization and Statistical Test Details. Chest 2020; 158:1784-1785. [PMID: 33036095 DOI: 10.1016/j.chest.2020.04.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Neha Sharma
- Department of Pediatric and Neonatal Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala district, Haryana, India
| | - Asir John Samuel
- Department of Pediatric and Neonatal Physiotherapy, Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala district, Haryana, India.
| |
Collapse
|
9
|
Vivodtzev I, Taylor JA. Response. Chest 2020; 158:1785. [PMID: 33036097 DOI: 10.1016/j.chest.2020.05.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Isabelle Vivodtzev
- Department of Physical Medicine and Rehabilitation, Harvard Medical School Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA; Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris.
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA; Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris
| |
Collapse
|
10
|
Solinsky R, Mercier H, Picard G, Taylor JA. Cardiometabolic Effects of High-Intensity Hybrid Functional Electrical Stimulation Exercise after Spinal Cord Injury. PM R 2020; 13:937-944. [PMID: 33027550 DOI: 10.1002/pmrj.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The prevalence of cardiometabolic disease following spinal cord injury is known to be high. However, it is unknown whether engaging in high-intensity exercise, which is advocated by recent guidelines, is beneficial or feasible for these individuals. OBJECTIVE To assess the effects of high-intensity, whole-body exercise on the prevalence of cardiometabolic disease in individuals with spinal cord injury. DESIGN Combination of a randomized controlled trial and an open label intervention study of functional electrical stimulation legs plus arms rowing. SETTING Outpatient academic rehabilitation hospital. PARTICIPANTS Forty individuals with spinal cord injury, with American Spinal Injury Association (ASIA) impairments scales A-D and neurological levels of injury C1-T12. INTERVENTION Six months of high-intensity, hybrid-functional electrical stimulation rowing. MAIN OUTCOME MEASURES Change in VO2max , serum lipids, and insulin resistance, prevalence of cardiometabolic disease. RESULTS Individuals averaged 42.1 ± 22.0 minutes of hybrid-functional electrical stimulation rowing a week over an average of 1.69 sessions per week over the 6 months of intervention. This amounted to an average of 170.9 ± 100 km rowed, at a mean heart rate of 82.7% of individualized maximum. Only one of 40 individuals met current exercise guidelines for the full 6 months. VO2max increased significantly (P < .001), yet prevalence of cardiometabolic disease did not change significantly (decrease from 22.5% to 20%, P = .70). Hemoglobin A1c did decrease significantly over this time (P = .01), although serum lipids and fasting glucose/insulin levels were unchanged. In exploratory subanalyses assessing individuals injured ≤12 months, those with more chronic injuries decreased their triglyceride-to-high-density lipoprotein (HDL) ratio (P = .04), a marker of cardiac mortality. Stratifying by neurological level of injury, individuals with paraplegia had worsened low-density lipoprotein (LDL) level (P = .02) and total cholesterol-to-HDL ratio (P = .04) over the 6-month intervention. CONCLUSIONS Sustained high-intensity exercise with hybrid functional electrical stimulation rowing does not decrease the prevalence of cardiometabolic disease after spinal cord injury.
Collapse
Affiliation(s)
- Ryan Solinsky
- Spaulding Rehabilitation Hospital, Boston, MA.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA.,Spaulding Research Institute, Boston, MA
| | - Hannah Mercier
- Spaulding Rehabilitation Hospital, Boston, MA.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA
| | - Glen Picard
- Spaulding Rehabilitation Hospital, Boston, MA
| | - J Andrew Taylor
- Spaulding Rehabilitation Hospital, Boston, MA.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA.,Spaulding Research Institute, Boston, MA
| |
Collapse
|
11
|
Vivodtzev I, Napolitano A, Picard G, Taylor JA. Ventilatory support during whole-body row training improves oxygen uptake efficiency in patients with high-level spinal cord injury: A pilot study. Respir Med 2020; 171:106104. [PMID: 32795903 DOI: 10.1016/j.rmed.2020.106104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
High-level spinal cord injury (SCI) is characterized by profound respiratory compromise. One consequence is a limitation of whole-body exercise-based rehabilitation, reducing its cardioprotective effect. We investigated the use of ventilatory support during training on cardiorespiratory response to exercise. Nine subjects with high-level SCI (T3-C4) were included in this double-blind sham-controlled study. All had training adaptations plateauing for more than 6 months before enrolling in the study. After performing baseline assessment, participants were randomly assigned to continue training with non-invasive ventilation (NIV: n = 6: IPAP = 20 ± 2, EPAP: 3 cmH2O) or sham (n = 3: IPAP = 5, EPAP: 3 cmH2O) for 3 months and performed again maximal exercise tests. We compared the oxygen uptake efficiency slope (OUES, the rate of increases in VO2 in relation to increasing VE) before and after training. Training with NIV increased OUES both compared to baseline (4.1 ± 1.1 vs. 3.4 ± 1.0, i.e. +20 ± 12%, p < 0.05) and Sham (p = 0.01), representing an increase in ability to uptake oxygen for a given ventilation. This result was sustained without NIV during the test, suggesting improved cardiopulmonary reserve. Best responders were the youngest whose characteristics were very similar to sham participants. In addition, NIV tended to increase weekly rowing distance by 24% (p = 0.09, versus 10% in sham). Our results are very suggestive of a positive effect of ventilatory support during whole-body exercise in high-level SCI. Training adaptations found are of great importance since this sub-population of patients have the greatest need for exercise-based cardio-protection.
Collapse
Affiliation(s)
- Isabelle Vivodtzev
- Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston, MA, USA; Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA; Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75013, Paris, France.
| | - Anthony Napolitano
- Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston, MA, USA; Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - Glen Picard
- Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - J Andrew Taylor
- Harvard Medical School, Department of Physical Medicine and Rehabilitation, Boston, MA, USA; Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| |
Collapse
|
12
|
Mercier HW, Picard G, Taylor JA, Vivodtzev I. Gains in aerobic capacity with whole-body functional electrical stimulation row training and generalization to arms-only exercise after spinal cord injury. Spinal Cord 2020; 59:74-81. [PMID: 32719528 PMCID: PMC7855132 DOI: 10.1038/s41393-020-0527-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Longitudinal study in adults (n = 27; 19-40 years old) with tetraplegic or paraplegic spinal cord injury (SCI). OBJECTIVES Determine physiological adaptations and generalizable fitness effects of 6 months of whole-body exercise training using volitional arm and functional electrical stimulation (FES) leg rowing. SETTING Outpatient hospital-based exercise facility and laboratory. METHODS Participants enrolled in hybrid FES-row training (FESRT) and performed peak exercise tests with arms-only (AO; baseline and 6 months) and FES rowing (baseline, 3, 6 months). RESULTS Participants demonstrated increased aerobic capacity (VO2peak) after FESRT (p < 0.001, np2 = 0.56) that tended to be higher when assessed with FES than AO rowing tests (0.15 ± 0.20 vs. 0.04 ± 0.22 L/min; p = 0.10). Changes in FES and AO VO2peak were significantly correlated (r = 0.55; p < 0.01), and 11 individuals demonstrated improvements (>6%) on both test formats. Younger age was the only difference between those who showed generalization of training effects and those who did not (mean age 26.6 ± 5.6 vs. 32.0 ± 5.7 years; p < 0.05) but changes in FES VO2peak correlated to time since injury in individuals <2 years post-SCI (r = -0.51, p < 0.01, n = 24). Lastly, VO2peak improvements were greater during the first 3 months vs. months 4-6 (+7.0% vs. +3.9%; p < 0.01) which suggests early training adaptations during FESRT. CONCLUSIONS Gains in aerobic capacity after whole-body FESRT are better reflected during FES-row testing format. They relate to high-intensity exercise and appear early during training, but they may not generalize to equivalent increases in AO exercise in all individuals with SCI.
Collapse
Affiliation(s)
- Hannah W Mercier
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA. .,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA.
| | - Glen Picard
- Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA
| | - Isabelle Vivodtzev
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Cardiovascular Research Laboratory, Cambridge, MA, USA.,Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|