1
|
Champigneulle B, Brugniaux JV, Stauffer E, Doutreleau S, Furian M, Perger E, Pina A, Baillieul S, Deschamps B, Hancco I, Connes P, Robach P, Pichon A, Verges S. Expedition 5300: limits of human adaptations in the highest city in the world. J Physiol 2024; 602:5449-5462. [PMID: 38146929 DOI: 10.1113/jp284550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023] Open
Abstract
Exposure to chronic hypobaric hypoxia imposes a significant physiological burden to more than 80 million humans living above 2500 m throughout the world. Among them, 50 000 live in the world's highest city, La Rinconada, located at 5000-5300 m in southern Peru. Expedition 5300 is the first scientific and medical programme led in La Rinconada to investigate the physiological adaptations and altitude-related health issues in this unique population. Dwellers from La Rinconada have very high haemoglobin concentration (20.3 ± 2.4 g/dL; n = 57) and those with chronic mountain sickness (CMS) exhibit even higher concentrations (23.1 ± 1.7 g/dL; n = 150). These values are associated with large total haemoglobin mass and blood volume, without an associated iron deficit. These changes in intravascular volumes lead to a substantial increase in blood viscosity, which is even larger in CMS patients. Despite these large haematological changes, 24 h blood pressure monitoring is essentially normal in La Rinconada, but some results suggest impaired vascular reactivity. Echocardiography revealed large right heart dilatation and high pulmonary arterial pressure as well as left ventricle concentric remodelling and grade I diastolic dysfunction. These changes in heart dimension and function tend to be more severe in highlanders with CMS. Polygraphy evaluations revealed a large reduction in nocturnal pulse oxygen saturation (median SpO2 = 79%), which is even more severe in CMS patients who also tended to show a higher oxygen desaturation index. The population of La Rinconada offers a unique opportunity to investigate the human responses to chronic severe hypoxia, at an altitude that is probably close to the maximum altitude human beings can permanently tolerate without presenting major health issues.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Julien V Brugniaux
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Emeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Doutreleau
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Alessandra Pina
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Blandine Deschamps
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), "Red Blood cell and Vascular Biology" Team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Robach
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2 laboratory, Grenoble, France
| |
Collapse
|
2
|
Ma J, Wang S, Liu H, Li J, Cui S. Mechanism of the apoptosis of bone marrow erythroblasts in rats under hypobaric hypoxia. Blood Cells Mol Dis 2024; 108:102861. [PMID: 38839522 DOI: 10.1016/j.bcmd.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
This study aimed to investigate the mechanism of the apoptosis of erythroblasts in rat bone marrow after the exposure to hypobaric hypoxia. Male SD rats were randomly divided into three groups. The hypoxic group was kept in a hypobaric hypoxia chamber at a simulated altitude of 5000 m for 7 and 28 days, respectively. The control group was kept at an altitude of 2260 m. We found that myeloid: erythroid (M:E) ratio was significantly lower after hypoxia exposure and the proportions of polychromatic erythroblasts and orthochromatic erythroblasts significantly increased compared to control group, along with significant increase in the proportion of CD71+ cells and apoptosis rate. The expression levels of caspase-3, Bax, and Cyt-C in CD71+ cells were higher after hypoxia exposure than those in control group, while there was no significant difference in the expression levels of TNFR and Fas. In conclusion, after exposure to hypobaric hypoxia the proliferation of peripheral blood and bone marrow erythroblasts in rats increased, and apoptosis also increased, indicating that bone marrow erythroblasts in rats is regulated by both proliferation and apoptosis, and the mitochondrial pathway is one of the important pathways for apoptosis.
Collapse
Affiliation(s)
- Jie Ma
- Department of Hematology, Qinghai University Affiliated Hospital, No. 29 Tongren Road, Xining, Qinghai, China
| | - Shengyan Wang
- Department of Hematology, Qinghai University Affiliated Hospital, No. 29 Tongren Road, Xining, Qinghai, China
| | - Huihui Liu
- Department of Hematology, Qinghai University Affiliated Hospital, No. 29 Tongren Road, Xining, Qinghai, China
| | - Jinjie Li
- Department of Hematology, Qinghai University Affiliated Hospital, No. 29 Tongren Road, Xining, Qinghai, China
| | - Sen Cui
- Department of Hematology, Qinghai University Affiliated Hospital, No. 29 Tongren Road, Xining, Qinghai, China.
| |
Collapse
|
3
|
Furian M, Ulliel-Roche M, Howe CA, Zerizer F, Marillier M, Bernard AC, Hancco I, Champigneulle B, Baillieul S, Stauffer E, Pichon AP, Doutreleau S, Verges S, Brugniaux JV. Cerebral homeostasis and orthostatic responses in residents of the highest city in the world. Sci Rep 2024; 14:17732. [PMID: 39085313 PMCID: PMC11291767 DOI: 10.1038/s41598-024-68389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Permanent residence at high-altitude and chronic mountain sickness (CMS) may alter the cerebrovascular homeostasis and orthostatic responses. Healthy male participants living at sea-level (LL; n = 15), 3800 m (HL3800m; n = 13) and 5100 m (HL5100m; n = 17), respectively, and CMS highlanders living at 5100 m (n = 31) were recruited. Middle cerebral artery mean blood flow velocity (MCAv), cerebral oxygen delivery (CDO2), mean blood pressure (MAP), heart rate variability and spontaneuous cardiac baroreflex sensitivity (cBRS) were assessed while sitting, initial 30 s and after 3 min of standing. Cerebral autoregulation index (ARI) was estimated (ΔMCAv%baseline)/ΔMAP%baseline) in response to the orthostatic challenge. Altitude and CMS were associated with hypoxemia and elevated hemoglobin concentration. While sitting, MCAv and LFpower negatively correlated with altitude but were not affected by CMS. CDO2 remained preserved. BRS was comparable across all altitudes, but lower with CMS. Within initial 30 s of standing, altitude and CMS correlated with a lesser ΔMAP while ARI remained unaffected. After 3 min standing, MCAv, CDO2 and cBRS remained preserved across altitudes. The LF/HF ratio increased in HL5100m compared to LL and HL3800m from sitting to standing. In contrary, CMS showed blunted autonomic nervous activation in responses to standing. Despite altitude- and CMS-associated hypoxemia, erythrocytosis and impaired blood pressure regulation (CMS only), cerebral homeostasis remained overall preserved.
Collapse
Affiliation(s)
- M Furian
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France.
- Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland.
| | - M Ulliel-Roche
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - C A Howe
- Center for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - F Zerizer
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - M Marillier
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - A C Bernard
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - I Hancco
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - B Champigneulle
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Baillieul
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - E Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - A P Pichon
- Laboratory Mobility, aging & exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - S Doutreleau
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - S Verges
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| | - J V Brugniaux
- HP2 Laboratory, Université Grenoble Alpes, Inserm (U1300), CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
4
|
Champigneulle B, Caton F, Seyve L, Stauffer É, Pichon A, Brugniaux JV, Furian M, Hancco I, Deschamps B, Kaestner L, Robach P, Connes P, Bouzat P, Polack B, Marlu R, Verges S. Are coagulation profiles in Andean highlanders with excessive erythrocytosis favouring hypercoagulability? Exp Physiol 2024; 109:899-914. [PMID: 38554124 PMCID: PMC11140178 DOI: 10.1113/ep091670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Chronic mountain sickness is a maladaptive syndrome that affects individuals living permanently at high altitude and is characterized primarily by excessive erythrocytosis (EE). Recent results concerning the impact of EE in Andean highlanders on clotting and the possible promotion of hypercoagulability, which can lead to thrombosis, were contradictory. We assessed the coagulation profiles of Andeans highlanders with and without excessive erythrocytosis (EE+ and EE-). Blood samples were collected from 30 EE+ and 15 EE- in La Rinconada (Peru, 5100-5300 m a.s.l.), with special attention given to the sampling pre-analytical variables. Rotational thromboelastometry tests were performed at both native and normalized (40%) haematocrit using autologous platelet-poor plasma. Thrombin generation, dosages of clotting factors and inhibitors were measured in plasma samples. Data were compared between groups and with measurements performed at native haematocrit in 10 lowlanders (LL) at sea level. At native haematocrit, in all rotational thromboelastometry assays, EE+ exhibited hypocoagulable profiles (prolonged clotting time and weaker clot strength) compared with EE- and LL (all P < 0.01). At normalized haematocrit, clotting times were normalized in most individuals. Conversely, maximal clot firmness was normalized only in FIBTEM and not in EXTEM/INTEM assays, suggesting abnormal platelet activity. Thrombin generation, levels of plasma clotting factors and inhibitors, and standard coagulation assays were mostly normal in all groups. No highlanders reported a history of venous thromboembolism based on the dedicated survey. Collectively, these results indicate that EE+ do not present a hypercoagulable profile potentially favouring thrombosis.
Collapse
Affiliation(s)
- Benoit Champigneulle
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
- Department of Anaesthesia and Critical Care, CHU Grenoble Alpes, Grenoble, France
| | | | - Landry Seyve
- Hemostasis Laboratory, Grenoble University Hospital, Grenoble, France
| | - Émeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France
| | - Aurélien Pichon
- Université de Poitiers, Laboratoire Move UR 20296, STAPS, Poitiers, France
| | | | - Michael Furian
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Ivan Hancco
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | | | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, Homburg, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Pierre Bouzat
- Department of Anaesthesia and Critical Care, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Benoit Polack
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Raphael Marlu
- Hemostasis Laboratory, Grenoble University Hospital, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
5
|
Pan C, Zhang Y, Yan J, Zhou Y, Wang S, Liu X, Zhang P, Yang H. Extreme environments and human health: From the immune microenvironments to immune cells. ENVIRONMENTAL RESEARCH 2023; 236:116800. [PMID: 37527745 DOI: 10.1016/j.envres.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure to extreme environments causes specific acute and chronic physiological responses in humans. The adaptation and the physiological processes under extreme environments predominantly affect multiple functional systems of the organism, in particular, the immune system. Dysfunction of the immune system affected by several extreme environments (including hyperbaric environment, hypoxia, blast shock, microgravity, hypergravity, radiation exposure, and magnetic environment) has been observed from clinical macroscopic symptoms to intracorporal immune microenvironments. Therefore, simulated extreme conditions are engineered for verifying the main influenced characteristics and factors in the immune microenvironments. This review summarizes the responses of immune microenvironments to these extreme environments during in vivo or in vitro exposure, and the approaches of engineering simulated extreme environments in recent decades. The related microenvironment engineering, signaling pathways, molecular mechanisms, clinical therapy, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Chengwei Pan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; School of Food Science and Engineering, Shaanxi University of Science & Technology, 710021, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
6
|
Macovei L, Macovei CM, Macovei DC. Coronary Syndromes and High-Altitude Exposure—A Comprehensive Review. Diagnostics (Basel) 2023; 13:diagnostics13071317. [PMID: 37046535 PMCID: PMC10092947 DOI: 10.3390/diagnostics13071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The aim of this review is to identify a preventive strategy in order to minimize the risk of adverse events in patients with coronary syndromes and acute exposure to high-altitude. For this purpose we searched the electronic database of PubMed, EMBASE, and Web of Science for studies published in the last 30 years in this field. The conclusions of this review are: patients with stable coronary artery disease on optimal treatment and in a good physical condition can tolerate traveling to high altitude up to 3500 m; on the other hand, patients with unstable angina or recent myocardial infarction no older than 6 months should take less interest in hiking or any activity involving high altitude. Air-traveling is contraindicated for patients with myocardial infarction within previous 2 weeks, angioplasty or intracoronary stent placement within previous 2 weeks, and unstable angina or coronary artery bypass grafting within previous 3 weeks. The main trigger for sudden cardiac death is the lack of gradual acclimatization to high-altitude and to the exercise activity, and the most important risk factor is prior myocardial infarction.
Collapse
Affiliation(s)
- Liviu Macovei
- Acute Cardiac Care Unit, Cardiology Clinic, Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, “Grigore T Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Carmen Mirela Macovei
- Pneumology Clinic, Pneumology Hospital, Dr. I Cihac No. 30 Street, 700115 Iasi, Romania
| | - Dragos Cristian Macovei
- Faculty of Economics and Business Administration, “Alexandru I Cuza” University, 700115 Iasi, Romania
| |
Collapse
|
7
|
Ortiz-Prado E, Villafuerte FC, Brugniaux JV, Izquierdo-Condoy J, Viscor G. Editorial: Stroke and infarction at high-altitude. Front Physiol 2022; 13:1114747. [PMID: 36569767 PMCID: PMC9782429 DOI: 10.3389/fphys.2022.1114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador,*Correspondence: Esteban Ortiz-Prado,
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada-LID/Fisiología del Transporte de Oxígeno-IIA, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Juan Izquierdo-Condoy
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Ginés Viscor
- Dirección Nacional de Inteligencia de la Salud, Ministerio de Salud Púbica, Quito, Ecuador
| |
Collapse
|
8
|
Manella G, Ezagouri S, Champigneulle B, Gaucher J, Mendelson M, Lemarie E, Stauffer E, Pichon A, Howe CA, Doutreleau S, Golik M, Verges S, Asher G. The human blood transcriptome exhibits time-of-day-dependent response to hypoxia: Lessons from the highest city in the world. Cell Rep 2022; 40:111213. [PMID: 35977481 PMCID: PMC9396531 DOI: 10.1016/j.celrep.2022.111213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
High altitude exposes humans to hypobaric hypoxia, which induces various physiological and molecular changes. Recent studies point toward interaction between circadian rhythms and the hypoxic response, yet their human relevance is lacking. Here, we examine the effect of different high altitudes in conjunction with time of day on human whole-blood transcriptome upon an expedition to the highest city in the world, La Rinconada, Peru, which is 5,100 m above sea level. We find that high altitude vastly affects the blood transcriptome and, unexpectedly, does not necessarily follow a monotonic response to altitude elevation. Importantly, we observe daily variance in gene expression, especially immune-related genes, which is largely altitude dependent. Moreover, using a digital cytometry approach, we estimate relative changes in abundance of different cell types and find that the response of several immune cell types is time- and altitude dependent. Taken together, our data provide evidence for interaction between the transcriptional response to hypoxia and the time of day in humans. Low oxygen availability upon high altitude vastly affects human blood transcriptome The transcriptomic changes upon altitude elevation are not necessarily monotonic The daily variance in gene expression is dependent on altitude The response of several immune cell types is time- and altitude dependent
Collapse
Affiliation(s)
- Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Benoit Champigneulle
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Jonathan Gaucher
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Monique Mendelson
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Emeline Lemarie
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Biologie vasculaire et du globule rouge", Université Claude Bernard Lyon 1, Université de Lyon, France; Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Aurélien Pichon
- Laboratoire MOVE, STAPS, Université de Poitiers, Poitiers, France
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Stéphane Doutreleau
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Samuel Verges
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, Grenoble, France.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
9
|
Swenson ER. Chronic Mountain Sickness Evolving Over Time. Chest 2022; 161:1136-1137. [DOI: 10.1016/j.chest.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022] Open
|