1
|
Sannigrahi A, Ghosh S, Pradhan S, Jana P, Jawed JJ, Majumdar S, Roy S, Karmakar S, Mukherjee B, Chattopadhyay K. Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion. EMBO Rep 2024; 25:5561-5598. [PMID: 39482488 PMCID: PMC11624268 DOI: 10.1038/s44319-024-00302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
The first step of successful infection by any intracellular pathogen relies on its ability to invade its host cell membrane. However, the detailed structural and molecular understanding underlying lipid membrane modification during pathogenic invasion remains unclear. In this study, we show that a specific Leishmania donovani (LD) protein, KMP-11, forms oligomers that bridge LD and host macrophage (MΦ) membranes. This KMP-11 induced interaction between LD and MΦ depends on the variations in cholesterol (CHOL) and ergosterol (ERG) contents in their respective membranes. These variations are crucial for the subsequent steps of invasion, including (a) the initial attachment, (b) CHOL transport from MΦ to LD, and (c) detachment of LD from the initial point of contact through a liquid ordered (Lo) to liquid disordered (Ld) membrane-phase transition. To validate the importance of KMP-11, we generate KMP-11 depleted LD, which failed to attach and invade host MΦ. Through tryptophan-scanning mutagenesis and synthesized peptides, we develop a generalized mathematical model, which demonstrates that the hydrophobic moment and the symmetry sequence code at the membrane interacting protein domain are key factors in facilitating the membrane phase transition and, consequently, the host cell infection process by Leishmania parasites.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratim Pradhan
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Junaid Jibran Jawed
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700156, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Syamal Roy
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- INSA Senior Scientist, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Sanat Karmakar
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
2
|
Trojani MC, Santucci-Darmanin S, Breuil V, Carle GF, Pierrefite-Carle V. Lysosomal exocytosis: From cell protection to protumoral functions. Cancer Lett 2024; 597:217024. [PMID: 38871244 DOI: 10.1016/j.canlet.2024.217024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
Collapse
Affiliation(s)
- Marie-Charlotte Trojani
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; INSERM, Paris, France.
| |
Collapse
|
3
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
4
|
Verga JBM, Graminha MAS, Jacobs-Lorena M, Cha SJ. Peptide selection via phage display to inhibit Leishmania-macrophage interactions. Front Microbiol 2024; 15:1362252. [PMID: 38476939 PMCID: PMC10927855 DOI: 10.3389/fmicb.2024.1362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction. Methods We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice. Results The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%. Conclusion We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.
Collapse
Affiliation(s)
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Jacobs-Lorena
- Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, GA, United States
| |
Collapse
|
5
|
Das K, Nozaki T. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Int J Mol Sci 2023; 24:10637. [PMID: 37445815 DOI: 10.3390/ijms241310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Eukaryotic cells have distinct membrane-enclosed organelles, each with a unique biochemical signature and specialized function. The unique identity of each organelle is greatly governed by the asymmetric distribution and regulated intracellular movement of two important biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid-transfer proteins (LTPs) plays essential roles in intra-cellular lipid trafficking and cellular lipid homeostasis, while vesicular transport regulates protein trafficking. A comparative analysis of non-vesicular lipid transport machinery in protists could enhance our understanding of parasitism and basis of eukaryotic evolution. Leishmania donovani, the trypanosomatid parasite, greatly depends on receptor-ligand mediated signalling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being important signalling molecules, have intracellular transport mechanisms that are largely unexplored in L. donovani. We have identified a repertoire of sixteen (16) potential lipid transfer protein (LTP) homologs based on a domain-based search on TriTrypDB coupled with bioinformatics analyses, which signifies the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology with regards to future therapeutic targets against visceral leishmaniasis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
de Korne CM, van Lieshout L, van Leeuwen FWB, Roestenberg M. Imaging as a (pre)clinical tool in parasitology. Trends Parasitol 2023; 39:212-226. [PMID: 36641293 DOI: 10.1016/j.pt.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Imaging of parasites is central to diagnosis of many parasitic diseases and has thus far played an important role in the development of antiparasitic strategies. The development of novel imaging technologies has revolutionized medicine in fields other than parasitology and has also opened up new avenues for the visualization of parasites. Here we review the role imaging technology has played so far in parasitology and how it may spur further advancement. We point out possibilities to improve current microscopy-based diagnostic methods and how to extend them with radiological imaging modalities. We also highlight in vivo tracking of parasites as a readout for efficacy of new antiparasitic strategies and as a source of fundamental insights for rational design.
Collapse
Affiliation(s)
- Clarize Maria de Korne
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands; Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Fijs Willem Bernhard van Leeuwen
- Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
7
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
8
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
9
|
Leishmania donovani Impedes Antileishmanial Immunity by Suppressing Dendritic Cells via the TIM-3 Receptor. mBio 2022; 13:e0330921. [PMID: 35924848 PMCID: PMC9426438 DOI: 10.1128/mbio.03309-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An immunological hallmark of visceral leishmaniasis (VL), caused by Leishmania donovani, is profound immunosuppression. However, the molecular basis for this immune dysfunction has remained ill defined. Since dendritic cells (DCs) normally initiate antileishmanial immune responses, we investigated whether DCs are dysregulated during L. donovani infection and assessed its role in immunosuppression. Accordingly, we determined the regulatory effect of L. donovani on DCs. Notably, it is still unclear whether L. donovani activates or suppresses DCs. In addition, the molecular mechanism and the relevant receptor (or receptors) mediating the immunoregulatory effect of L. donovani on DCs are largely undefined. Here, we report that L. donovani inhibited DC activation/maturation by transmitting inhibitory signals through the T cell immunoglobulin and mucin protein-3 (TIM-3) receptor and thereby suppressed antileishmanial immune responses. L. donovani in fact triggered TIM-3 phosphorylation in DCs, which in turn recruited and activated a nonreceptor tyrosine kinase, Btk. Btk then inhibited DC activation/maturation by suppressing the NF-κB pathway in an interleukin-10 (IL-10)-dependent manner. Treatment with TIM-3-specific blocking antibody or suppressed expression of TIM-3 or downstream effector Btk made DCs resistant to the inhibitory effects of L. donovani. Adoptive transfer experiments further demonstrated that TIM-3-mediated L. donovani-induced inhibition of DCs plays a crucial role in the suppression of the antileishmanial immune response in vivo. These findings identify TIM-3 as a new regulator of the antileishmanial immune response and demonstrate a unique mechanism for host immunosuppression associated with L. donovani infection. IMPORTANCE Visceral leishmaniasis (VL), a poverty-related disease caused by Leishmania donovani, is ranked by the World Health Organization as the second largest killer parasitic disease in the world. The protective immune response against VL is primarily regulated by dendritic cells (DCs), which upon activation/maturation initiate an antileishmanial immune response. However, it remains obscure whether L. donovani promotes or inhibits DC activation. In addition, the receptor through which L. donovani exerts immunoregulatory effect on DCs is ill defined. Here, we for the first time report that L. donovani inhibits DC activation and maturation via the T cell immunoglobulin and mucin protein-3 (TIM-3) receptor and thereby attenuates the capacity of DCs to trigger antileishmanial immune responses in vivo. In fact, we demonstrate here that suppression of TIM-3 expression in DCs augments antileishmanial immunity. Our study uncovers a unique mechanism by which L. donovani subverts host immune responses and suggests TIM-3 as a potential new target for immunotherapy against VL.
Collapse
|
10
|
Abstract
Removing membrane pores may help cancer cells survive T cell assault.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Chaparro V, Graber TE, Alain T, Jaramillo M. Transcriptional profiling of macrophages reveals distinct parasite stage-driven signatures during early infection by Leishmania donovani. Sci Rep 2022; 12:6369. [PMID: 35430587 PMCID: PMC9013368 DOI: 10.1038/s41598-022-10317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/05/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages undergo swift changes in mRNA abundance upon pathogen invasion. Herein we describe early remodelling of the macrophage transcriptome during infection by amastigotes or promastigotes of Leishmania donovani. Approximately 10–16% of host mRNAs were differentially modulated in L. donovani-infected macrophages when compared to uninfected controls. This response was partially stage-specific as a third of changes in mRNA abundance were either exclusively driven by one of the parasite forms or significantly different between them. Gene ontology analyses identified categories associated with immune functions (e.g. antigen presentation and leukocyte activation) among significantly downregulated mRNAs during amastigote infection while cytoprotective-related categories (e.g. DNA repair and apoptosis inhibition) were enriched in upregulated transcripts. Interestingly a combination of upregulated (e.g. cellular response to IFNβ) and repressed (e.g. leukocyte activation, chemotaxis) immune-related transcripts were overrepresented in the promastigote-infected dataset. In addition, Ingenuity Pathway Analysis (IPA) associated specific mRNA subsets with a number of upstream transcriptional regulators predicted to be modulated in macrophages infected with L. donovani amastigotes (e.g. STAT1 inhibition) or promastigotes (e.g. NRF2, IRF3, and IRF7 activation). Overall, our results indicate that early parasite stage-driven transcriptional remodelling in macrophages contributes to orchestrate both protective and deleterious host cell responses during L. donovani infection.
Collapse
|
12
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
13
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
14
|
Pramanik SK, Das A. Fluorescent probes for imaging bioactive species in subcellular organelles. Chem Commun (Camb) 2021; 57:12058-12073. [PMID: 34706371 DOI: 10.1039/d1cc04273d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Luminescent molecular probes and nanoscale materials have become important tools in biosensing and bioimaging applications because of their high sensitivity, fast response, specificity, and methodological simplicity. In recent years, there has been a notable advancement in fluorescent probes that respond to the subtle changes in subcellular microenvironments (e.g., polarity, pH, and viscosity) or distribution of certain crucial biomarkers (e.g., reactive oxygen species, ions, amino acids, and enzymes). The dynamic fluctuations of these bio-molecules in subcellular microenvironments control cellular homeostasis, immunity, signal conduction, and metabolism. Their abnormal expressions are linked to various biological disorders and disease states. Thus, the real-time monitoring of such bioactive species is intimately linked to clinical diagnostics. Appropriately designed luminescent probes are ideally suited for desired organelle specificity, as well as for reporting intracellular changes in biochemicals/microenvironmental factors with the luminescence ON response. In this perspective, we review our recent work on the development of fluorescent probes for sensing and imaging within sub-cellular organelles. We have also discussed the design aspects for developing a prodrug with a fluorescent probe as an integral part of possible theranostic applications. An overview of the design principles, photophysical properties, detection mechanisms, current challenges, and potential future directions of fluorescent probes is presented in this feature article. We have also discussed the limitations and challenges of developing the solution platform for sensing technologies in clinical diagnostics.
Collapse
Affiliation(s)
- Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India.
| | - Amitva Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741 246, West Bengal, India.
| |
Collapse
|
15
|
Rühl S, Broz P. Regulation of Lytic and Non-Lytic Functions of Gasdermin Pores. J Mol Biol 2021; 434:167246. [PMID: 34537232 DOI: 10.1016/j.jmb.2021.167246] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a necrotic form of cell death that was initially found to be induced upon activation of inflammatory caspases by inflammasome complexes. Mechanistically, pyroptosis induction requires cleavage of the caspase substrate gasdermin D (GSDMD), and the release of the GSDMD N-terminal fragment, which targets the plasma membrane to form large β-barrel pores. GSDMD shares this pore-forming ability with other gasdermin family members, which induce pyroptosis during infection or upon treatment with chemotherapy drugs. While induction of cell death has been assumed to be the main function of the gasdermin pores, increasing evidence suggests that these pores have non-lytic functions, such as in releasing cytokines or alarmins and in regulating intracellular signaling via ionic fluxes. Here we discuss how gasdermin pore formation is regulated to induce membrane permeabilization or lysis, how gasdermin pores achieve specificity for cargo-release and how cells repair gasdermin-induced damage to the plasma membrane.
Collapse
Affiliation(s)
- Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
16
|
Baron N, Tupperwar N, Dahan I, Hadad U, Davidov G, Zarivach R, Shapira M. Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLoS Negl Trop Dis 2021; 15:e0008352. [PMID: 33760809 PMCID: PMC8021392 DOI: 10.1371/journal.pntd.0008352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/05/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions. Leishmania parasites cause a broad spectrum of diseases with different pathological symptoms. During their life cycle the parasites shuffle between sand-fly vectors and mammalian hosts adapting to the changing environments via a stage specific program of gene expression that promotes their survival. Translation initiation plays a key role in control of gene expression and in Leishmania this is exemplified by the presence of multiple cap-binding complexes that interact with mRNAs. The parasites encode multiple paralogs of the cap-binding translation initiation factor eIF4E and of its corresponding binding partner eIF4G forming complexes with different potential functions. The role of LeishIF4E2 remains elusive: it does not bind any of the LeishIF4G candidate subunits and associates with polysomes, a feature less common for canonical translation factors. Here we generated a hemizygous Leishmania mutant of the least studied cap-binding paralog, LeishIF4E2, by eliminating one of the two alleles using the CRISPR-Cas9 methodology. The mutant showed morphological defects with short and rounded cells, and a significant reduction in their flagellar length. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. The mutants showed differences in their proteome: upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. Downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. It could affect translation of a particular set of transcripts, causing direct or downstream effects that do not affect global translation. Our results suggest that individual LeishIF4Es perform specific functions.
Collapse
Affiliation(s)
- Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Irit Dahan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
17
|
Tiwari R, Banerjee S, Tyde D, Saha KD, Ethirajan A, Mukherjee N, Chattopadhy S, Pramanik SK, Das A. Redox-Responsive Nanocapsules for the Spatiotemporal Release of Miltefosine in Lysosome: Protection against Leishmania. Bioconjug Chem 2021; 32:245-253. [PMID: 33438999 DOI: 10.1021/acs.bioconjchem.0c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmaniasis, a vector-borne disease, is caused by intracellular parasite Leishmania donovani. Unlike most intracellular pathogens, Leishmania donovani are lodged in parasitophorous vacuoles and replicate within the phagolysosomes in macrophages. Effective vaccines against this disease are still under development, while the efficacy of the available drugs is being questioned owing to the toxicity for nonspecific distribution in human physiology and the reported drug-resistance developed by Leishmania donovani. Thus, a stimuli-responsive nanocarrier that allows specific localization and release of the drug in the lysosome has been highly sought after for addressing two crucial issues, lower drug toxicity and a higher drug efficacy. We report here a unique lysosome targeting polymeric nanocapsules, formed via inverse mini-emulsion technique, for stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line. A benign polymeric backbone, with a disulfide bonding susceptible to an oxidative cleavage, is utilized for the organelle-specific release of miltefosine. Oxidative rupture of the disulfide bond is induced by intracellular glutathione (GSH) as an endogenous stimulus. Such a stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line over a few hours helped in achieving an improved drug efficacy by 200 times as compared to pure miltefosine. Such a drug formulation could contribute to a new line of treatment for leishmaniasis.
Collapse
Affiliation(s)
- Rajeshwari Tiwari
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Deepak Tyde
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | - Sumit Kumar Pramanik
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal, India
| |
Collapse
|
18
|
Corrotte M, Cerasoli M, Maeda FY, Andrews NW. Endophilin-A2-dependent tubular endocytosis promotes plasma membrane repair and parasite invasion. J Cell Sci 2020; 134:jcs249524. [PMID: 33093240 PMCID: PMC7725609 DOI: 10.1242/jcs.249524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endocytosis of caveolae has previously been implicated in the repair of plasma membrane wounds. Here, we show that caveolin-1-deficient fibroblasts lacking caveolae upregulate a tubular endocytic pathway and have a reduced capacity to reseal after permeabilization with pore-forming toxins compared with wild-type cells. Silencing endophilin-A2 expression inhibited fission of endocytic tubules and further reduced plasma membrane repair in cells lacking caveolin-1, supporting a role for tubular endocytosis as an alternative pathway for the removal of membrane lesions. Endophilin-A2 was visualized in association with cholera toxin B-containing endosomes and was recruited to recently formed intracellular vacuoles containing Trypanosoma cruzi, a parasite that utilizes the plasma membrane wounding repair pathway to invade host cells. Endophilin-A2 deficiency inhibited T. cruzi invasion, and fibroblasts deficient in both caveolin-1 and endophilin-A2 did not survive prolonged exposure to the parasites. These findings reveal a novel crosstalk between caveolin-1 and endophilin-A2 in the regulation of clathrin-independent endocytosis and plasma membrane repair, a process that is subverted by T. cruzi parasites for cell invasion.
Collapse
Affiliation(s)
- Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Department of Veterinary Medicine, VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mark Cerasoli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Giammarressi M, Vanegas O, Febres A, Silva-López A, López ED, Ponte-Sucre A. Chemotactic activities of vasoactive intestinal peptide, neuropeptide Y and substance P in Leishmania braziliensis. Exp Parasitol 2020; 219:108009. [PMID: 33007296 DOI: 10.1016/j.exppara.2020.108009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Cell-cell interaction and active migration (and invasion) of parasites into skin host-cell(s) are key steps for successful infection by Leishmania. Chemotaxis constitutes a primordial chapter of Leishmania-host cell interaction, potentially modulated by neuropeptides released into the skin due, for example, to the noxious stimuli represented by the insect bite. Herein we have evaluated in vitro the effect of sensory (Substance P, SP) and autonomic (Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY) neuropeptides on parasite taxis, and investigated the potential modulatory effect of SP on Leishmania (Viannia) braziliensis-macrophage interaction. We demonstrated that VIP (10-10 M) and NPY (10-9 M) are chemorepellent to the parasites, while SP (10-8 M) produces a chemoattractant response. SP did not affect macrophage viability but seems to impair parasite-macrophage interaction as it decreased promastigote adherence to macrophages. As this effect is blocked by ([D-Pro 2, D-Trp7,9]-Substance P (10-6 M), the observed action may be mediated by neurokinin-1 (NK1) transmembrane receptors. VIP and NPY repellent chemotactic effect is impaired by their corresponding receptor antagonists. Additionally, they suggest that SP may be a key molecule to guide promastigote migration towards, and interaction, with dendritic cells and macrophage host cells.
Collapse
Affiliation(s)
- Michelle Giammarressi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrián Silva-López
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Emilia Diaz López
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
20
|
Motility patterns of Trypanosoma cruzi trypomastigotes correlate with the efficiency of parasite invasion in vitro. Sci Rep 2020; 10:15894. [PMID: 32985548 PMCID: PMC7522242 DOI: 10.1038/s41598-020-72604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022] Open
Abstract
Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.
Collapse
|
21
|
Smirlis D, Dingli F, Pescher P, Prina E, Loew D, Rachidi N, Späth GF. SILAC-based quantitative proteomics reveals pleiotropic, phenotypic modulation in primary murine macrophages infected with the protozoan pathogen Leishmania donovani. J Proteomics 2019; 213:103617. [PMID: 31846769 DOI: 10.1016/j.jprot.2019.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Leishmaniases are major vector-borne tropical diseases responsible for great human morbidity and mortality, caused by protozoan, trypanosomatid parasites of the genus Leishmania. In the mammalian host, parasites survive and multiply within mononuclear phagocytes, especially macrophages. However, the underlying mechanisms by which Leishmania spp. affect their host are not fully understood. Herein, proteomic alterations of primary, bone marrow-derived BALB/c macrophages are documented after 72 h of infection with Leishmania donovani insect-stage promastigotes, applying a SILAC-based, quantitative proteomics approach. The protocol was optimised by combining strong anion exchange and gel electrophoresis fractionation that displayed similar depth of analysis (combined total of 6189 mouse proteins). Our analyses revealed 86 differentially modulated proteins (35 showing increased and 51 decreased abundance) in response to Leishmania donovani infection. The proteomics results were validated by analysing the abundance of selected proteins. Intracellular Leishmania donovani infection led to changes in various host cell biological processes, including primary metabolism and catabolic process, with a significant enrichment in lysosomal organisation. Overall, our analysis establishes the first proteome of bona fide primary macrophages infected ex vivo with Leishmania donovani, revealing new mechanisms acting at the host/pathogen interface. SIGNIFICANCE: Little is known on proteome changes that occur in primary macrophages after Leishmania donovani infection. This study describes a SILAC-based quantitative proteomics approach to characterise changes of bone marrow-derived macrophages infected with L. donovani promastigotes for 72 h. With the application of SILAC and the use of SAX and GEL fractionation methods, we have tested new routes for proteome quantification of primary macrophages. The protocols developed here can be applicable to other diseases and pathologies. Moreover, this study sheds important new light on the "proteomic reprogramming" of infected macrophages in response to L. donovani promastigotes that affects primary metabolism, cellular catabolic processes, and lysosomal/vacuole organisation. Thus, our study reveals key molecules and processes that act at the host/pathogen interface that may inform on new immuno- or chemotherapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; Hellenic Pasteur Institute, Molecular Parasitology Laboratory, Athens, Greece.
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Pascale Pescher
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
22
|
Characterization of Transplasma Membrane Electron Transport Chain in Wild and Drug-Resistant Leishmania donovani Promastigote and Amastigote. Acta Parasitol 2019; 64:710-719. [PMID: 30941668 DOI: 10.2478/s11686-019-00050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Leishmania donovani (L. donovani) is one of the parasites that cause leishmaniasis. The mechanisms by which L. donovani fights against adverse environment and becomes resistant to drugs are not well understood yet. OBJECTIVE The present study was designed to evaluate the effects of different regulators on the modulation of Transplasma Membrane Electron Transport (transPMET) systems of susceptible and resistant L. donovani cells. MATERIALS AND METHODS Effects of UV, different buffers, and electron transport inhibitors and stimulators on the reduction of α-lipoic acid (ALA), 1,2-naphthoquinone-4-sulphonic acid (NQSA) and ferricyanide were determined. RESULTS AND DISCUSSION ALA reductions were inhibited in susceptible, sodium antimony gluconate (SAG)-resistant and paromomycin (PMM)-resistant AG83 amastigote cells, and stimulated in susceptible and SAG-resistant AG83 promastigote cells upon UV exposure. The results indicate that UV irradiation almost oppositely affect ALA reductions in amastigotes and promastigotes. ALA reductions were stimulated in sensitive and inhibited in resistant GE1 amastigotes upon UV exposure. Susceptible amastigotes and promastigotes inhibited, and resistant amastigotes and promastigotes stimulated NQSA reduction under UV irradiation. Thus, susceptible and drug-resistant amastigotes and promastigotes are different in the reduction of ALA. Susceptible and resistant AG83 amastigotes and promastigotes inhibited the ferricyanide reductions upon UV exposure, which indicates, there is no such difference in ferricyanide reductions among susceptible as well as resistant AG83 amastigotes and promastigotes. The reductions of extracellular electron excerptors in susceptible promastigotes requires the availability of Na+ and Cl- ions for maximal activity but susceptible amastigotes are mostly not dependent on the availability of Na+ and Cl- ions. Both in promastigotes and amastigotes, reductions of electron acceptors were strongly inhibited by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. Furthermore, antimycin A, rotenone and capsaicin markedly inhibited the reductions of electron acceptors in promastigotes, but not in amastigotes. CONCLUSION Results of this study suggest that the transPMET system is functionally different in wild and resistant strains of L. donovani.
Collapse
|
23
|
Abstract
Leishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania. Leishmania parasites cycle between sand-fly vectors and mammalian hosts, adapting to changing environmental conditions by driving a stage-specific program of gene expression, which is tightly regulated by translation processes. Leishmania encodes six eIF4E orthologs (LeishIF4Es) and five eIF4G candidates, forming different cap-binding complexes with potentially varying functions. Most LeishIF4E paralogs display temperature sensitivity in their cap-binding activity, except for LeishIF4E1, which maintains its cap-binding activity under all conditions. We used the CRISPR-Cas9 system to successfully generate a null mutant of LeishIF4E1 and examine how its elimination affected parasite physiology. Although the LeishIF4E1–/– null mutant was viable, its growth was impaired, in line with a reduction in global translation. As a result of the mutation, the null LeishIF4E1–/– mutant had a defective morphology, as the cells were round and unable to grow a normal flagellum. This was further emphasized when the LeishIF4E1–/– cells failed to develop the promastigote morphology once they shifted from conditions that generate axenic amastigotes (33°C, pH 5.5) back to neutral pH and 25°C, and they maintained their short flagellum and circular structure. Finally, the LeishIF4E1–/– null mutant displayed difficulty in infecting cultured macrophages. The morphological changes and reduced infectivity of the mutant may be related to differences in the proteomic profile of LeishIF4E1–/– cells from that of controls. All defects monitored in the LeishIF4E1–/– null mutant were reversed in the add-back strain, in which expression of LeishIF4E1 was reconstituted, establishing a strong link between the cellular defects and the absence of LeishIF4E1 expression. IMPORTANCELeishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania.
Collapse
|
24
|
Veras PST, de Menezes JPB, Dias BRS. Deciphering the Role Played by Autophagy in Leishmania Infection. Front Immunol 2019; 10:2523. [PMID: 31736955 PMCID: PMC6838865 DOI: 10.3389/fimmu.2019.02523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 01/11/2023] Open
Abstract
In recent decades, studies have shown that, depending on parasite species and host background, autophagy can either favor infection or promote parasite clearance. To date, relatively few studies have attempted to assess the role played by autophagy in Leishmania infection. While it has been consistently shown that Leishmania spp. induce autophagy in a variety of cell types, published results regarding the effects of autophagic modulation on Leishmania survival are contradictory. The present review, after a short overview of the general aspects of autophagy, aims to summarize the current body of knowledge surrounding how Leishmania spp. adaptively interact with macrophages, the host cells mainly involved in controlling leishmaniasis. We then explore the scarce studies that have investigated interactions between these parasite species and the autophagic pathway, and finally present a critical perspective on how autophagy influences infection outcome.
Collapse
Affiliation(s)
- Patricia Sampaio Tavares Veras
- Laboratory of Host - Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil.,National Institute of Science and Technology of Tropical Diseases - CNPq, Salvador, Brazil
| | | | - Beatriz Rocha Simões Dias
- Laboratory of Host - Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
25
|
Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania. mSphere 2019; 4:4/5/e00450-19. [PMID: 31484740 PMCID: PMC6731530 DOI: 10.1128/msphere.00450-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined. The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/−) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence. IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.
Collapse
|
26
|
Walker BJ, Wheeler RJ. High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella. J Cell Sci 2019; 132:jcs231795. [PMID: 31371486 PMCID: PMC6737910 DOI: 10.1242/jcs.231795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Analysis of flagellum and cilium beating in three dimensions (3D) is important for understanding cell motility, and using fluorescence microscopy to do so would be extremely powerful. Here, high-speed multifocal plane fluorescence microscopy, where the light path is split to visualise multiple focal planes simultaneously, was used to reconstruct Trypanosoma brucei and Leishmania mexicana movement in 3D. These species are uniflagellate unicellular parasites for which motility is vital. It was possible to use either a fluorescent stain or a genetically-encoded fluorescent protein to visualise flagellum and cell movement at 200 Hz frame rates. This addressed two open questions regarding Trypanosoma and Leishmania flagellum beating, which contributes to their swimming behaviours: 1) how planar is the L. mexicana flagellum beat, and 2) what is the nature of flagellum beating during T. brucei 'tumbling'? We showed that L. mexicana has notable deviations from a planar flagellum beat, and that during tumbling the T. brucei flagellum bends the cell and beats only in the distal portion to achieve cell reorientation. This demonstrates high-speed multifocal plane fluorescence microscopy as a powerful tool for the analysis of beating flagella.
Collapse
Affiliation(s)
- Benjamin J Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
27
|
Soares Cavalcante-Costa V, Costa-Reginaldo M, Queiroz-Oliveira T, Silva Oliveira AC, Couto NF, dos Anjos DO, Lima-Santos J, Andrade LDO, Horta MF, Castro-Gomes T. Leishmania amazonensis hijacks host cell lysosomes involved in plasma membrane repair to induce invasion in fibroblasts. J Cell Sci 2019; 132:jcs.226183. [DOI: 10.1242/jcs.226183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting but overlooked finding is that other cell types and even non-phagocytic cells have been found infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells were not studied to date. Here we show that L. amazonensis can actively induce their own entry into fibroblasts independently of actin cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions such as calcium signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.
Collapse
Affiliation(s)
- Victor Soares Cavalcante-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Mariana Costa-Reginaldo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thamires Queiroz-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Anny Carolline Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Natália Fernanda Couto
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | | | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Bahia, Brasil
| | - Luciana de Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thiago Castro-Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| |
Collapse
|
28
|
Kühbacher A, Novy K, Quereda JJ, Sachse M, Moya-Nilges M, Wollscheid B, Cossart P, Pizarro-Cerdá J. Listeriolysin O-dependent host surfaceome remodeling modulates Listeria monocytogenes invasion. Pathog Dis 2018; 76:5184460. [PMID: 30445439 PMCID: PMC6282100 DOI: 10.1093/femspd/fty082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a pathogenic bacterium that invades epithelial cells by activating host signaling cascades, which promote bacterial engulfment within a phagosome. The pore-forming toxin listeriolysin O (LLO), which is required for bacteria phagosomal escape, has also been associated with the activation of several signaling pathways when secreted by extracellular bacteria, including Ca2+ influx and promotion of L. monocytogenes entry. Quantitative host surfaceome analysis revealed significant quantitative remodeling of a defined set of cell surface glycoproteins upon LLO treatment, including a subset previously identified to play a role in the L. monocytogenes infection process. Our data further shows that the lysosomal-associated membrane proteins LAMP-1 and LAMP-2 are translocated to the cellular surface and those LLO-induced Ca2+ fluxes are required to trigger the surface relocalization of LAMP-1. Finally, we identify late endosomes/lysosomes as the major donor compartments of LAMP-1 upon LLO treatment and by perturbing their function, we suggest that these organelles participate in L. monocytogenes invasion.
Collapse
Affiliation(s)
- Andreas Kühbacher
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.,INSERM, U604, Paris F-75015, France.,INRA, USC2020, Paris F-75015, France
| | - Karel Novy
- Institute of Molecular Systems Biology and Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Juan J Quereda
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.,INSERM, U604, Paris F-75015, France.,INRA, USC2020, Paris F-75015, France
| | - Martin Sachse
- Institut Pasteur, UTechS Ultrastructural BioImaging, Paris F-75015, France
| | - Maryse Moya-Nilges
- Institut Pasteur, UTechS Ultrastructural BioImaging, Paris F-75015, France
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology and Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.,INSERM, U604, Paris F-75015, France.,INRA, USC2020, Paris F-75015, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.,INSERM, U604, Paris F-75015, France.,INRA, USC2020, Paris F-75015, France.,Institut Pasteur, Unité de Recherche Yersinia, Paris F-75015, France
| |
Collapse
|
29
|
Mukhopadhyay AG, Dey CS. Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites. Mol Biochem Parasitol 2018; 225:27-37. [PMID: 30145318 DOI: 10.1016/j.molbiopara.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022]
Abstract
Trypanosomes of the genus Leishmania swim by undulating motions of a single flagellum driven by axonemal dynein ATPases, essential for parasite survival and infectivity. The flagellum possesses two waveforms; flagellar (tip-to-base) responsible for forward movements and ciliary (base-to-tip) possibly responsible for reorientation in response to changes in surroundings. However, the role of dyneins in regulating the two waveforms remains unknown. Moreover, the unpredictable nature of the parasite ciliary waveform makes it difficult to study. We have previously reported a detergent-extracted, ATP-reactivated model ideal for investigating flagellar motility regulation in Leishmania that allows one to generate reactivated Leishmania flagella with constitutively beating ciliary waves in presence of cyclic-AMP. Here, using three dynein inhibitors [erythro-9-(2-hydroxy-3-nonyl) adenine, ciliobrevin A and vanadate] we investigated the role of dyneins in regulating the two waveforms of Leishmania. Using high speed videomicroscopy we observed differential inhibition of beat frequencies and waveforms of flagellar and ciliary beats in live (in vivo) and ATP-reactivated (in vitro) parasites. Beat frequency of flagellar waveform was more strongly reduced than ciliary waveform. Surprisingly, inhibition of the ciliary waveform led to an altered phenotype with the distal half of the flagellum paralysed. ATPase assays confirmed that dynein activity of flagellar cells was more strongly inhibited compared to ciliary cells irrespective of the mechanism of inhibition. Possibly the two different waveforms are an outcome of changes in the mechanical properties of axonemal dyneins present at the tip of the flagellum that contains a sliding resistive structure. Our study suggests that dyneins responsible for the two waveforms in Leishmania bear different structural and functional conformations. Moreover, during ciliary beating, there is heterogeneity along the flagellum.
Collapse
Affiliation(s)
- Aakash Gautam Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
30
|
Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol 2018; 7:rsob.170165. [PMID: 28903998 PMCID: PMC5627057 DOI: 10.1098/rsob.170165] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The shape and form of protozoan parasites are inextricably linked to their pathogenicity. The evolutionary pressure associated with establishing and maintaining an infection and transmission to vector or host has shaped parasite morphology. However, there is not a 'one size fits all' morphological solution to these different pressures, and parasites exhibit a range of different morphologies, reflecting the diversity of their complex life cycles. In this review, we will focus on the shape and form of Leishmania spp., a group of very successful protozoan parasites that cause a range of diseases from self-healing cutaneous leishmaniasis to visceral leishmaniasis, which is fatal if left untreated.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
31
|
Mukhopadhyay AG, Dey CS. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania. Parasitol Res 2017; 116:3221-3228. [DOI: 10.1007/s00436-017-5608-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
32
|
Miranda N, Volpato H, da Silva Rodrigues JH, Caetano W, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:342-354. [PMID: 28821011 DOI: 10.1016/j.jphotobiol.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψm], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψm, and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically relevant form of this parasite.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Hélito Volpato
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Jean Henrique da Silva Rodrigues
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
33
|
Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani. Mol Biochem Parasitol 2017; 214:75-81. [DOI: 10.1016/j.molbiopara.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022]
|
34
|
Namayanja M, Dai Y, Nerima B, Matovu E, Lun ZR, Lubega GW, Zhengjun C. Trypanosoma brucei brucei traverses different biological barriers differently and may modify the host plasma membrane in the process. Exp Parasitol 2016; 174:31-41. [PMID: 28011167 DOI: 10.1016/j.exppara.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei are extracellular hemoflagellate protozoan parasites and one of the causative agents of a devastating zoonotic disease called African Trypanosomiasis. In humans, the disease is caused by Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense, which cross the blood brain barrier (BBB) causing neurological disorders which culminate in death if untreated. In some domestic animals and laboratory rodents, Trypanosoma brucei brucei causes a disease similar to that in humans. The mechanism by which Trypanosoma brucei brucei invade biological barriers including the BBB has not been fully elucidated. To further address this issue, Mardin Dardy Canine Kidney II (MDCKII) and Human dermal microvascular endothelial cell (HDMEC) monolayers were grown to confluence on transwell inserts to constitute in vitro biological barriers. MDCKII cells were chosen for their ability to form tight junctions similar to those formed by the BBB endothelial cells. Labeled trypanosomes were placed in the upper chamber of transwell inserts layered with confluent MDCKII/HDMEC monolayers and their ability to cross the monolayer over time evaluated. Our results show that only 0.5-1.25% of Trypanosoma brucei brucei were able to migrate across the monolayers after 3 h. By employing immune-staining and confocal microscopic analysis we observed that trypanosomes were located at the tight junctions and inside the cell in the MDCK II monolayers indicating that they crossed the monolayer using both the paracellular and transcellular routes. Our observations also showed that there seemed to be no obvious degradation of junction proteins Zonula Ocludens-1, Occludin and Ecadherin. In the HDMEC cell monolayer, our scanning electron microscopy data showed that Trypanosoma brucei brucei is able to modulate the plasma membrane to form invaginations similar to cuplike structures formed by Tlymphocytes. However these structures seemed to be independent of vascular adhesion molecules suggesting that they could be more like the membrane ruffles formed by certain intracellular bacteria during invasion. Taken together, our data reveal a mechanism by which Trypanosoma brucei brucei is able to cross different biological barriers including the BBB without causing any obvious damage.
Collapse
Affiliation(s)
- Monica Namayanja
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China; Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Yan Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China
| | - Barbara Nerima
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Enock Matovu
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Zhao-Rong Lun
- Centre for Parasitic Organisms, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510276, China
| | - George W Lubega
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Chen Zhengjun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China
| |
Collapse
|
35
|
De Muylder G, Vanhollebeke B, Caljon G, Wolfe AR, McKerrow J, Dujardin JC. Naloxonazine, an Amastigote-Specific Compound, Affects Leishmania Parasites through Modulation of Host-Encoded Functions. PLoS Negl Trop Dis 2016; 10:e0005234. [PMID: 28036391 PMCID: PMC5201425 DOI: 10.1371/journal.pntd.0005234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022] Open
Abstract
Host-directed therapies (HDTs) constitute promising alternatives to traditional therapy that directly targets the pathogen but is often hampered by pathogen resistance. HDT could represent a new treatment strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. This protozoan develops exclusively within phagocytic cells, where infection relies on a complex molecular interplay potentially exploitable for drug targets. We previously identified naloxonazine, a compound specifically active against intracellular but not axenic Leishmania donovani. We evaluated here whether this compound could present a host cell-dependent mechanism of action. Microarray profiling of THP-1 macrophages treated with naloxonazine showed upregulation of vATPases, which was further linked to an increased volume of intracellular acidic vacuoles. Treatment of Leishmania-infected macrophages with the vATPase inhibitor concanamycin A abolished naloxonazine effects, functionally demonstrating that naloxonazine affects Leishmania amastigotes indirectly, through host cell vacuolar remodeling. These results validate amastigote-specific screening approaches as a powerful way to identify alternative host-encoded targets. Although the therapeutic value of naloxonazine itself is unproven, our results further demonstrate the importance of intracellular acidic compartments for host defense against Leishmania, highlighting the possibility of targeting this host cell compartment for anti-leishmanial therapy.
Collapse
Affiliation(s)
- Géraldine De Muylder
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Guy Caljon
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| | - Alan R. Wolfe
- University of California, San Francisco, San Francisco, CA, United States of America
| | - James McKerrow
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform. Sci Rep 2016; 6:37308. [PMID: 27849021 PMCID: PMC5110981 DOI: 10.1038/srep37308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
The flagellum of parasitic trypanosomes is a multifunctional appendage essential for its viability and infectivity. However, the biological mechanisms that make the flagellum so dynamic remains unexplored. No method is available to access and induce axonemal motility at will to decipher motility regulation in trypanosomes. For the first time we report the development of a detergent-extracted/demembranated ATP-reactivated model for studying flagellar motility in Leishmania. Flagellar beat parameters of reactivated parasites were similar to live ones. Using this model we discovered that cAMP (both exogenous and endogenous) induced flagellar wave reversal to a ciliary waveform in reactivated parasites via cAMP-dependent protein kinase A. The effect was reversible and highly specific. Such an effect of cAMP on the flagellar waveform has never been observed before in any organism. Flagellar wave reversal allows parasites to change direction of swimming. Our findings suggest a possible cAMP-dependent mechanism by which Leishmania responds to its surrounding microenvironment, necessary for its survival. Our demembranated-reactivated model not only serves as an important tool for functional studies of flagellated eukaryotic parasites but has the potential to understand ciliary motility regulation with possible implication on human ciliopathies.
Collapse
|
37
|
Yau WL, Lambertz U, Colineau L, Pescher P, MacDonald A, Zander D, Retzlaff S, Eick J, Reiner NE, Clos J, Späth GF. Phenotypic Characterization of a Leishmania donovani Cyclophilin 40 Null Mutant. J Eukaryot Microbiol 2016; 63:823-833. [PMID: 27216143 DOI: 10.1111/jeu.12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 02/03/2023]
Abstract
Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani-infected macrophages. Here, we characterized in more detail the virulence defect of cyp40-/- null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40-/- parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40-dependent proteome by quantitative 2D-DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40-/- parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40-/- parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.
Collapse
Affiliation(s)
- Wai-Lok Yau
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Ulrike Lambertz
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Lucie Colineau
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Pascale Pescher
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France
| | - Andrea MacDonald
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Dorothea Zander
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Silke Retzlaff
- Electron Microscopy Service, Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Julia Eick
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Neil E Reiner
- Division of Infectious Diseases, Jack Bell Research Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Joachim Clos
- Clos Group (Leishmanasis), Bernhard-Nocht-Institut für Tropenmedizin, Bernhard-Nocht-Street 74, D-20359, Hamburg, Germany
| | - Gerald F Späth
- Unité de Parasitologie Moléculaire et Signalisation, Institut Pasteur and Institut National de la Santé et de la Recherche Médicale INSERM U1201, 25 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
38
|
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60:155-167. [PMID: 27448494 PMCID: PMC7082150 DOI: 10.1016/j.semcdb.2016.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Collapse
|
39
|
de Menezes JP, Saraiva EM, da Rocha-Azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasit Vectors 2016; 9:264. [PMID: 27146515 PMCID: PMC4857439 DOI: 10.1186/s13071-016-1540-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.
Collapse
Affiliation(s)
| | - Elvira M Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno da Rocha-Azevedo
- Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,Present Address: Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
40
|
Castro-Gomes T, Corrotte M, Tam C, Andrews NW. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes. PLoS One 2016; 11:e0152583. [PMID: 27028538 PMCID: PMC4814109 DOI: 10.1371/journal.pone.0152583] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.
Collapse
Affiliation(s)
- Thiago Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Christina Tam
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, United States of America
- * E-mail:
| |
Collapse
|
41
|
Alves LGA, Scariot DB, Guimarães RR, Nakamura CV, Mendes RS, Ribeiro HV. Transient Superdiffusion and Long-Range Correlations in the Motility Patterns of Trypanosomatid Flagellate Protozoa. PLoS One 2016; 11:e0152092. [PMID: 27007779 PMCID: PMC4805249 DOI: 10.1371/journal.pone.0152092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
We report on a diffusive analysis of the motion of flagellate protozoa species. These parasites are the etiological agents of neglected tropical diseases: leishmaniasis caused by Leishmania amazonensis and Leishmania braziliensis, African sleeping sickness caused by Trypanosoma brucei, and Chagas disease caused by Trypanosoma cruzi. By tracking the positions of these parasites and evaluating the variance related to the radial positions, we find that their motions are characterized by a short-time transient superdiffusive behavior. Also, the probability distributions of the radial positions are self-similar and can be approximated by a stretched Gaussian distribution. We further investigate the probability distributions of the radial velocities of individual trajectories. Among several candidates, we find that the generalized gamma distribution shows a good agreement with these distributions. The velocity time series have long-range correlations, displaying a strong persistent behavior (Hurst exponents close to one). The prevalence of “universal” patterns across all analyzed species indicates that similar mechanisms may be ruling the motion of these parasites, despite their differences in morphological traits. In addition, further analysis of these patterns could become a useful tool for investigating the activity of new candidate drugs against these and others neglected tropical diseases.
Collapse
Affiliation(s)
- Luiz G. A. Alves
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, United States of America
- National Institute of Science and Technology for Complex Systems, CNPq, Rio de Janeiro, RJ, 22290-180, Brazil
- * E-mail:
| | - Débora B. Scariot
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Renato R. Guimarães
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
- National Institute of Science and Technology for Complex Systems, CNPq, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Celso V. Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Renio S. Mendes
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
- National Institute of Science and Technology for Complex Systems, CNPq, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Haroldo V. Ribeiro
- Departamento de Física, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| |
Collapse
|
42
|
Thornton KL, Findlay RC, Walrad PB, Wilson LG. Investigating the Swimming of Microbial Pathogens Using Digital Holography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:17-32. [PMID: 27193535 DOI: 10.1007/978-3-319-32189-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp.
Collapse
Affiliation(s)
- K L Thornton
- Department of Physics, University of York, Heslington, York, YO10 5DD, England
| | - R C Findlay
- Department of Physics, University of York, Heslington, York, YO10 5DD, England.,Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, England
| | - P B Walrad
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, England
| | - L G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, England.
| |
Collapse
|
43
|
Krüger T, Engstler M. Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 2015; 46:113-27. [DOI: 10.1016/j.semcdb.2015.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
44
|
Andrews NW, Corrotte M, Castro-Gomes T. Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 2015; 45:10-7. [PMID: 26433178 DOI: 10.1016/j.semcdb.2015.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
The study of plasma membrane repair is coming of age. Mirroring human adolescence, the field shows at the same time signs of maturity and significant uncertainty, confusion and skepticism. Here we discuss concepts that emerged from experimental data over the years, some of which are solidly established while others are still subject to different interpretations. The firmly established concepts include the critical requirement for Ca(2+) in wound repair, and the role of rapid exocytosis of intracellular vesicles. Lysosomes are being increasingly recognized as the major vesicles involved in injury-induced exocytosis in many cell types, as a growing number of laboratories detect markers for these organelles on the cell surface and lysosomal hydrolases in the supernatant of wounded cells. The more recent observation of massive endocytosis following Ca(2+)-triggered exocytosis initially came as a surprise, but this finding is also being increasingly reported by different groups, shifting the discussion to the mechanisms by which endocytosis promotes repair, and whether it operates or not in parallel with the shedding of membrane blebs. We discuss how the abundant intracellular vesicles that undergo homotypic fusion close to wound sites, previously interpreted as exocytic membrane patches, actually acquire extracellular tracers demonstrating their endocytic origin. We also suggest that an initial, temporary patch that prevents cytosol loss until the bilayer is restored might result not from vesicular fusion, but from rapid Ca(2+)-dependent crosslinking and aggregation of cytosolic proteins. Finally, we propose that cell surface remodeling, orchestrated by the extracellular release of lysosomal hydrolases and perhaps also cytosolic molecules, may represent a key aspect of the plasma membrane repair mechanism that has received little attention so far.
Collapse
Affiliation(s)
- N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - M Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - T Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
45
|
Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis. Parasitology 2015; 142:1621-30. [PMID: 26396059 DOI: 10.1017/s003118201500116x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.
Collapse
|
46
|
Loussert Fonta C, Humbel BM. Correlative microscopy. Arch Biochem Biophys 2015; 581:98-110. [DOI: 10.1016/j.abb.2015.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/15/2022]
|
47
|
Abstract
Leishmania amazonensis is an intracellular protozoan parasite responsible for chronic cutaneous leishmaniasis (CL). CL is a neglected tropical disease responsible for infecting millions of people worldwide. L. amazonensis promotes alteration of various signaling pathways that are essential for host cell survival. Specifically, through parasite-mediated phosphorylation of extracellular signal regulated kinase (ERK), L. amazonensis inhibits cell-mediated parasite killing and promotes its own survival by co-opting multiple host cell functions. In this review, we highlight Leishmania-host cell signaling alterations focusing on those specific to (1) motor proteins, (2) prevention of NADPH subunit phosphorylation impairing reactive oxygen species production, and (3) localized endosomal signaling to up-regulate ERK phosphorylation. This review will focus upon mechanisms and possible explanations as to how Leishmania spp. evades the various layers of defense employed by the host immune response.
Collapse
|
48
|
Forestier CL, Gao Q, Boons GJ. Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? Front Cell Infect Microbiol 2015; 4:193. [PMID: 25653924 PMCID: PMC4301024 DOI: 10.3389/fcimb.2014.00193] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
A key feature of many pathogenic microorganisms is the presence of a dense glycocalyx at their surface, composed of lipid-anchored glycoproteins and non-protein-bound polysaccharides. These surface glycolipids are important virulence factors for bacterial, fungal and protozoan pathogens. The highly complex glycoconjugate lipophosphoglycan (LPG) is one of the dominant surface macromolecules of the promastigote stage of all Leishmania parasitic species. LPG plays critical pleiotropic roles in parasite survival and infectivity in both the sandfly vector and the mammalian host. Here, we review the composition of the Leishmania glycocalyx, the chemical structure of LPG and what is currently known about its effects in the mammalian host, specifically. We will then discuss the current approaches employed to elucidate LPG functions. Finally, we will provide a viewpoint on future directions that this area of investigation could take to unravel in detail the biological activity of the specific molecular elements composing the structurally complex LPG.
Collapse
Affiliation(s)
| | - Qi Gao
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, Department of Chemistry, University of Georgia Athens, GA, USA
| |
Collapse
|
49
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
50
|
Alcazar W, López AS, Alakurtti S, Tuononen ML, Yli-Kauhaluoma J, Ponte-Sucre A. Betulin derivatives impair Leishmania braziliensis viability and host–parasite interaction. Bioorg Med Chem 2014; 22:6220-6. [DOI: 10.1016/j.bmc.2014.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|