1
|
Zhu R, Wu Y, Huang Y, Jiang Y, Jiang Y, Zhang D, Sun H, Zhou Z, Zhou L, Weng S, Chen H, Chen X, Ning W, Zou Y, He M, Yang H, Deng W, Li Y, Chen Z, Ye X, Han J, Yin Z, Zhao H, Liu C, Que Y, Fang M, Yu H, Zhang J, Luo W, Li S, Zheng Q, Xu L, Xia N, Cheng T. Broadly therapeutic antibody provides cross-serotype protection against enteroviruses via Fc effector functions and by mimicking SCARB2. Nat Microbiol 2024; 9:2939-2953. [PMID: 39424982 DOI: 10.1038/s41564-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
Enteroviruses contain multiple serotypes and can cause severe neurological complications. The intricate life cycle of enteroviruses involving dynamic virus-receptor interaction hampers the development of broad therapeutics and vaccines. Here, using function-based screening, we identify a broadly therapeutic antibody h1A6.2 that potently protects mice in lethal models of infection with both enterovirus A71 and coxsackievirus A16 through multiple mechanisms, including inhibition of the virion-SCARB2 interactions and monocyte/macrophage-dependent Fc effector functions. h1A6.2 mitigates inflammation and improves intramuscular mechanics, which are associated with diminished innate immune signalling and preserved tissue repair. Moreover, cryogenic electron microscopy structures delineate an adaptive binding of h1A6.2 to the flexible and dynamic nature of the VP2 EF loop with a binding angle mimicking the SCARB2 receptor. The coordinated binding mode results in efficient binding of h1A6.2 to all viral particle types and facilitates broad neutralization of enterovirus, therefore informing a promising target for the structure-guided design of pan-enterovirus vaccine.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuanyuan Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yanan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Dongqing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Zhenhong Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Shihan Weng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Xiaoqing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuxiang Zou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Maozhou He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hongwei Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Weixi Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Zhenqin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Jinle Han
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Zhichao Yin
- Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, PR China
| | - Huan Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Che Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Yuqiong Que
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, PR China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, PR China.
| |
Collapse
|
2
|
Soppela S, Plavec Z, Gröhn S, Jartti M, Oikarinen S, Laajala M, Marjomaki V, Butcher SJ, Hankaniemi MM. Comparison of structure and immunogenicity of CVB1-VLP and inactivated CVB1 vaccine candidates. RESEARCH SQUARE 2024:rs.3.rs-4545395. [PMID: 38978565 PMCID: PMC11230480 DOI: 10.21203/rs.3.rs-4545395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. In this study, we investigated the immunogenicity of virus-like particle (VLP) and inactivated whole-virus vaccines for CVB1 when administrated to mice via either subcutaneous or intranasal routes formulated with and without commercial and experimental adjuvants. Here, the potential of utilizing epigallocatechin-3-gallate (EGCG) as a mucosal adjuvant synergistically with its ability to inactivate the virus were investigated. EGCG had promising adjuvant properties for CVB1-VLP when administered via the parenteral route but limited efficacy via intranasal administration. However, intranasal administration of the formalin-inactivated virus induced high CVB1-specific humoral, cellular, and mucosal immune responses. Also, based on CVB1-specific IgG-antibody responses, we conclude that CVB1-VLP can be taken up by immune cells when administrated intranasally and further structural engineering for the VLP may increase the mucosal immunogenicity. The preparations contained mixtures of compact and expanded A particles with 85% expanded in the formalin-inactivated virus, but only 52% in the VLP observed by cryogenic electron microscopy. To correlate the structure to immunogenicity, we solved the structures of the CVB1-VLP and the formalin-inactivated CVB1 virus at resolutions ranging from 2.15 A to 4.1 A for the expanded and compact VLP and virus particles by image reconstruction. These structures can be used in designing mutations increasing the stability and immunogenicity of CVB1-VLP in the future. Overall, our results highlight the potential of using formalin inactivated CVB1 vaccine in mucosal immunization programs and provide important information for future development of VLP-based vaccines against all enteroviruses.
Collapse
|
3
|
Wang J, Liu T, Gu S, Yang HH, Xie W, Gao C, Gu D. Cytoplasm Hydrogelation-Mediated Cardiomyocyte Sponge Alleviated Coxsackievirus B3 Infection. NANO LETTERS 2023; 23:8881-8890. [PMID: 37751402 PMCID: PMC10573321 DOI: 10.1021/acs.nanolett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tonggong Liu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Siyao Gu
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-hui Yang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Weidong Xie
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Dayong Gu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| |
Collapse
|
4
|
Charnesky AJ, Faust JE, Lee H, Puligedda RD, Goetschius DJ, DiNunno NM, Thapa V, Bator CM, Cho SHJ, Wahid R, Mahmood K, Dessain S, Chumakov KM, Rosenfeld A, Hafenstein SL. A human monoclonal antibody binds within the poliovirus receptor-binding site to neutralize all three serotypes. Nat Commun 2023; 14:6335. [PMID: 37816742 PMCID: PMC10564760 DOI: 10.1038/s41467-023-41052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3. The Fab-virus complexes show that Fab interacts with the same binding mode for each serotype and at the same angle of interaction relative to the capsid surface. For each of the Fab-virus complexes, we find that the binding site overlaps with the poliovirus receptor (PVR) binding site and maps across and into a depression in the capsid called the canyon. No conformational changes to the capsid are induced by Fab binding for any complex. Competition binding experiments between 9H2 and PVR reveal that 9H2 impedes receptor binding. Thus, 9H2 outcompetes the receptor to neutralize poliovirus. The ability to neutralize all three serotypes, coupled with the critical importance of the conserved receptor binding site make 9H2 an attractive antiviral candidate for future development.
Collapse
Affiliation(s)
- Andrew J Charnesky
- Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Julia E Faust
- Department of Biochemistry, The Pennsylvania State University, University Park, PA, USA
| | - Hyunwook Lee
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry, The Pennsylvania State University, University Park, PA, USA
| | - Rama Devudu Puligedda
- Lankenau Institute for Medical Research, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Daniel J Goetschius
- Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nadia M DiNunno
- Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vaskar Thapa
- Department of Biochemistry, The Pennsylvania State University, University Park, PA, USA
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sung Hyun Joseph Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rahnuma Wahid
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, 98121, USA
| | - Kutub Mahmood
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, 98121, USA
| | - Scott Dessain
- Lankenau Institute for Medical Research, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Konstantin M Chumakov
- Office of Vaccines Research and Review, Division of Viral Products, Laboratory of Method Development, FDA, Silver Spring, MD, USA
| | - Amy Rosenfeld
- Office of Vaccines Research and Review, Division of Viral Products, Laboratory of Method Development, FDA, Silver Spring, MD, USA
| | - Susan L Hafenstein
- Molecular, Cellular, and Integrative Biosciences Program, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Wang H, Fang Y, Jia Y, Tang J, Dong C. In silico epitope prediction and evolutionary analysis reveals capsid mutation patterns for enterovirus B. PLoS One 2023; 18:e0290584. [PMID: 37639390 PMCID: PMC10461833 DOI: 10.1371/journal.pone.0290584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Enterovirus B (EVB) is a common species of enterovirus, mainly consisting of Echovirus (Echo) and Coxsackievirus B (CVB). The population is generally susceptible to EVB, especially among children. Since the 21st century, EVB has been widely prevalent worldwide, and can cause serious diseases, such as viral meningitis, myocarditis, and neonatal sepsis. By using cryo-electron microscopy, the three-dimensional (3D) structures of EVB and their uncoating receptors (FcRn and CAR) have been determined, laying the foundation for the study of viral pathogenesis and therapeutic antibodies. A limited number of epitopes bound to neutralizing antibodies have also been determined. It is unclear whether additional epitopes are present or whether epitope mutations play a key role in molecular evolutionary history and epidemics, as in influenza and SARS-CoV-2. In the current study, the conformational epitopes of six representative EVB serotypes (E6, E11, E30, CVB1, CVB3 and CVB5) were systematically predicted by bioinformatics-based epitope prediction algorithm. We found that their epitopes were distributed into three clusters, where the VP1 BC loop, C-terminus and VP2 EF loop were the main regions of EVB epitopes. Among them, the VP1 BC loop and VP2 EF loop may be the key epitope regions that determined the use of the uncoating receptors. Further molecular evolution analysis based on the VP1 and genome sequences showed that the VP1 C-terminus and VP2 EF loop, as well as a potential "breathing epitope" VP1 N-terminus, were common mutation hotspot regions, suggesting that the emergence of evolutionary clades was driven by epitope mutations. Finally, footprints showed mutations were located on or near epitopes, while mutations on the receptor binding sites were rare. This suggested that EVB promotes viral epidemics by breaking the immune barrier through epitope mutations, but the mutations avoided the receptor binding sites. The bioinformatics study of EVB epitopes may provide important information for the monitoring and early warning of EVB epidemics and developing therapeutic antibodies.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yulu Fang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongtao Jia
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiajie Tang
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Changzheng Dong
- Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Public Health, Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
6
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Antanasijevic A, Schulze AJ, Reddy VS, Ward AB. High-resolution structural analysis of enterovirus-reactive polyclonal antibodies in complex with whole virions. PNAS NEXUS 2022; 1:pgac253. [PMID: 36712368 PMCID: PMC9802058 DOI: 10.1093/pnasnexus/pgac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Non-polio enteroviruses (NPEVs) cause serious illnesses in young children and neonates, including aseptic meningitis, encephalitis, and inflammatory muscle disease, among others. While over 100 serotypes have been described to date, vaccine only exists for EV-A71. Efforts toward rationally designed pan-NPEV vaccines would greatly benefit from structural biology methods for rapid and comprehensive evaluation of vaccine candidates and elicited antibody responses. Toward this goal, we introduced a cryo-electron-microscopy-based approach for structural analysis of virus- or vaccine-elicited polyclonal antibodies (pAbs) in complex with whole NPEV virions. We demonstrated the feasibility using coxsackievirus A21 and reconstructed five structurally distinct pAbs bound to the virus. The pAbs targeted two immunodominant epitopes, one overlapping with the receptor binding site. These results demonstrate that our method can be applied to map broad-spectrum polyclonal immune responses against intact virions and define potentially cross-reactive epitopes.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Autumn J Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
8
|
Cryo-electron microscopy and image classification reveal the existence and structure of the coxsackievirus A6 virion. Commun Biol 2022; 5:898. [PMID: 36056184 PMCID: PMC9438360 DOI: 10.1038/s42003-022-03863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) has recently overtaken enterovirus A71 and CV-A16 as the primary causative agent of hand, foot, and mouth disease worldwide. Virions of CV-A6 were not identified in previous structural studies, and it was speculated that the virus is unique among enteroviruses in using altered particles with expanded capsids to infect cells. In contrast, the virions of other enteroviruses are required for infection. Here we used cryo-electron microscopy (cryo-EM) to determine the structures of the CV-A6 virion, altered particle, and empty capsid. We show that the CV-A6 virion has features characteristic of virions of other enteroviruses, including a compact capsid, VP4 attached to the inner capsid surface, and fatty acid-like molecules occupying the hydrophobic pockets in VP1 subunits. Furthermore, we found that in a purified sample of CV-A6, the ratio of infectious units to virions is 1 to 500. Therefore, it is likely that virions of CV-A6 initiate infection, like those of other enteroviruses. Our results provide evidence that future vaccines against CV-A6 should target its virions instead of the antigenically distinct altered particles. Furthermore, the structure of the virion provides the basis for the rational development of capsid-binding inhibitors that block the genome release of CV-A6. A cryo-EM structure for the three conformers of coxsackievirus A6 provides insight into the infection process of this enterovirus, which is responsible for numerous cases of hand, foot, and mouth disease.
Collapse
|
9
|
Zheng Q, Zhu R, Yin Z, Xu L, Sun H, Yu H, Wu Y, Jiang Y, Huang Q, Huang Y, Zhang D, Liu L, Yang H, He M, Zhou Z, Jiang Y, Chen Z, Zhao H, Que Y, Kong Z, Zhou L, Li T, Zhang J, Luo W, Gu Y, Cheng T, Li S, Xia N. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022; 30:1279-1294.e6. [PMID: 36002016 DOI: 10.1016/j.chom.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Coxsackievirus B1 (CVB1) is an emerging pathogen associated with severe neonatal diseases including aseptic meningitis, myocarditis, and pancreatitis and also with the development of type 1 diabetes. We characterize the binding and therapeutic efficacies of three CVB1-specific neutralizing antibodies (nAbs) identified for their ability to inhibit host receptor engagement. High-resolution cryo-EM structures showed that these antibodies recognize different epitopes but with an overlapping region in the capsid VP2 protein and specifically the highly variable EF loop. Moreover, they perturb capsid-receptor interactions by binding various viral particle forms. Antibody combinations achieve synergetic neutralization via a stepwise capsid transition and virion disruption, indicating dynamic changes in the virion in response to multiple nAbs targeting the receptor-binding site. Furthermore, this three-antibody cocktail protects against lethal challenge in neonatal mice and limits pancreatitis and viral replication in a non-obese diabetic mouse model. These results illustrate the utility of nAbs for rational design of therapeutics against picornaviruses such as CVB.
Collapse
Affiliation(s)
- Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenhong Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, People's Republic of China.
| |
Collapse
|
10
|
Torii S, Corre MH, Miura F, Itamochi M, Haga K, Katayama K, Katayama H, Kohn T. Genotype-dependent kinetics of enterovirus inactivation by free chlorine and ultraviolet (UV) irradiation. WATER RESEARCH 2022; 220:118712. [PMID: 35691190 DOI: 10.1016/j.watres.2022.118712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Inactivation kinetics of enterovirus by disinfection is often studied using a single laboratory strain of a given genotype. Environmental variants of enterovirus are genetically distinct from the corresponding laboratory strain, yet it is poorly understood how these genetic differences affect inactivation. Here we evaluated the inactivation kinetics of nine coxsackievirus B3 (CVB3), ten coxsackievirus B4 (CVB4), and two echovirus 11 (E11) variants by free chlorine and ultraviolet irradiation (UV). The inactivation kinetics by free chlorine were genotype- (i.e., susceptibility: CVB5 < CVB3 ≈ CVB4 < E11) and genogroup-dependent and exhibited up to 15-fold difference among the tested viruses. In contrast, only minor (up to 1.3-fold) differences were observed in the UV inactivation kinetics. The differences in variability between the two disinfectants could be rationalized by their respective inactivation mechanisms: inactivation by UV mainly depends on the genomic size and composition, which was similar for all viruses tested, whereas free chlorine targets the viral capsid protein, which exhibited critical differences between genogroups and genotypes. Finally, we integrated the observed variability in inactivation rate constants into an expanded Chick-Watson model to estimate the overall inactivation of an enterovirus consortium. The results highlight that the distribution of inactivation rate constants and the abundance of each genotype are essential parameters to accurately predict the overall inactivation of an enterovirus population by free chlorine. We conclude that predictions based on inactivation data of a single variant or reference pathogen alone likely overestimate the true disinfection efficiency of free chlorine.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Marie-Hélène Corre
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama-shi, Ehime, Japan; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. J Virol 2022; 96:e0010522. [PMID: 35442060 PMCID: PMC9093117 DOI: 10.1128/jvi.00105-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackie virus B5 (CVB5), a main serotype in human Enterovirus B (EVB), can cause severe viral encephalitis and aseptic meningitis among infants and children. Currently, there is no approved vaccine or antiviral therapy available against CVB5 infection. Here, we determined the atomic structures of CVB5 in three forms: mature full (F) particle (2.73 Å), intermediate altered (A) particle (2.81 Å), and procapsid empty (E) particle (2.95 Å). Structural analysis of F particle of CVB5 unveiled similar structures of “canyon,” “puff,” and “knob” as those other EV-Bs. We observed structural rearrangements that are alike during the transition from F to A particle, indicative of similar antigenicity, cell entry, and uncoating mechanisms shared by all EV-Bs. Further comparison of structures and sequences among all structure-known EV-Bs revealed that while the residues targeted by neutralizing MAbs are diversified and drive the evolution of EV-Bs, the relative conserved residues recognized by uncoating receptors could serve as the basis for the development of antiviral vaccines and therapeutics. IMPORTANCE As one of the main serotypes in Enterovirus B, CVB5 has been commonly reported in recent years. The atomic structures of CVB5 shown here revealed classical features found in EV-Bs and the structural rearrangement occurring during particle expansion and uncoating. Also, structure- and sequence-based comparison between CVB5 and other structure-known EV-Bs screened out key domains important for viral evolution and survival. All these provide insights into the development of vaccine and therapeutics for EV-Bs.
Collapse
|
12
|
Wu Y, Yin Z, Zhu R, Xu L, Huang Q, Zhang D, Yang H, Zhou Z, Zhang J, Cheng T, Xia N. Development of a rapid neutralization assay for the detection of neutralizing antibodies against coxsackievirus B1. Diagn Microbiol Infect Dis 2022; 103:115676. [DOI: 10.1016/j.diagmicrobio.2022.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
|
13
|
Wang I, Gupta SK, Ems G, Jayawardena N, Strauss M, Bostina M. Cryo-EM Structure of a Possum Enterovirus. Viruses 2022; 14:v14020318. [PMID: 35215909 PMCID: PMC8879876 DOI: 10.3390/v14020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) represent a substantial concern to global health. Here, we present the cryo-EM structure of a non-human enterovirus, EV-F4, isolated from the Australian brushtail possum to assess the structural diversity of these picornaviruses. The capsid structure, determined to ~3 Å resolution by single particle analysis, exhibits a largely smooth surface, similar to EV-F3 (formerly BEV-2). Although the cellular receptor is not known, the absence of charged residues on the outer surface of the canyon suggest a different receptor type than for EV-F3. Density for the pocket factor is clear, with the entrance to the pocket being smaller than for other enteroviruses.
Collapse
Affiliation(s)
- Ivy Wang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
| | | | - Guillaume Ems
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Faculté des Sciences, Université de Namur, 5000 Namur, Belgium
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
- Correspondence: (M.S.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.S.); (M.B.)
| |
Collapse
|
14
|
Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proc Natl Acad Sci U S A 2022; 119:2118590119. [PMID: 35046043 PMCID: PMC8794823 DOI: 10.1073/pnas.2118590119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.
Collapse
|
15
|
Huang KYA. Structural basis for neutralization of enterovirus. Curr Opin Virol 2021; 51:199-206. [PMID: 34749266 DOI: 10.1016/j.coviro.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
Outbreaks of enteroviral infections are associated with morbidity and mortality in susceptible individuals worldwide. There are still no antiviral drugs or vaccines against most circulating enteroviruses. Antibody-mediated immunity is crucial for preventing and limiting enteroviral infections. In this review, we focus on enteroviruses that continue to cause endemics in recent years, such as rhinovirus, enterovirus A71, coxsackievirus, and echovirus, and introduce a structural understanding of the mechanisms of virus neutralization. The mechanisms by which virus-specific antibodies neutralize enteroviruses have been explored not only through study of viral structures, but also through understanding virus-antibody interactions at the amino acid level. Neutralizing epitopes are predominantly mapped on the canyon northern rim, canyon inner surface, canyon southern rim, and twofold and threefold plateaus of the capsid, where surface-exposed loops are located. This review also describes recent progress in deciphering the virus-receptor complex and structural rearrangements involved in the uncoating process, providing insight into plausible virus neutralization mechanisms.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
McClelland RD, Culp TN, Marchant DJ. Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. Front Cell Infect Microbiol 2021; 11:749039. [PMID: 34712624 PMCID: PMC8546218 DOI: 10.3389/fcimb.2021.749039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Viruses are diverse pathogens that use host factors to enter cells and cause disease. Imaging the entry and replication phases of viruses and their interactions with host factors is key to fully understanding viral infections. This review will discuss how confocal microscopy and imaging flow cytometry are used to investigate virus entry and replication mechanisms in fixed and live cells. Quantification of viral images and the use of cryo-electron microscopy to gather structural information of viruses is also explored. Using imaging to understand how viruses replicate and interact with host factors, we gain insight into cellular processes and identify novel targets to develop antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Ryley D McClelland
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Tyce N Culp
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - David J Marchant
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Lanahan MR, Maples RW, Pfeiffer JK. Tradeoffs for a viral mutant with enhanced replication speed. Proc Natl Acad Sci U S A 2021; 118:e2105288118. [PMID: 34282021 PMCID: PMC8325337 DOI: 10.1073/pnas.2105288118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.
Collapse
Affiliation(s)
- Matthew R Lanahan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Robert W Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048
| |
Collapse
|
18
|
Development of Group B Coxsackievirus as an Oncolytic Virus: Opportunities and Challenges. Viruses 2021; 13:v13061082. [PMID: 34198859 PMCID: PMC8227215 DOI: 10.3390/v13061082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.
Collapse
|