1
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. mSystems 2024; 9:e0056824. [PMID: 39503509 DOI: 10.1128/msystems.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR systems. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. IMPORTANCE Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - J L Weissman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
- Department of Biology, The City College of New York, New York, New York, USA
| | - Philip L F Johnson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Kim MK, Chen Q, Echterhof A, Pennetzdorfer N, McBride RC, Banaei N, Burgener EB, Milla CE, Bollyky PL. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections. Nat Commun 2024; 15:9987. [PMID: 39609398 PMCID: PMC11604943 DOI: 10.1038/s41467-024-53994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Bacteriophage (phage) therapy is a promising therapeutic modality for multidrug-resistant bacterial infections, but its application is mainly limited to personalized therapy due to the narrow host range of individual phages. While phage cocktails targeting all possible bacterial receptors could theoretically confer broad coverage, the extensive diversity of bacteria and the complexity of phage-phage interactions render this approach challenging. Here, using screening protocols for identifying "complementarity groups" of phages using non-redundant receptors, we generate effective, broad-range phage cocktails that prevent the emergence of bacterial resistance. We also discover characteristic interactions between phage complementarity groups and particular antibiotic classes, facilitating the prediction of phage-antibiotic as well as phage-phage interactions. Using this strategy, we create three phage-antibiotic cocktails, each demonstrating efficacy against ≥96% of 153 Pseudomonas aeruginosa clinical isolates, including biofilm cultures, and demonstrate comparable efficacy in an in vivo wound infection model. We similarly develop effective Staphylococcus aureus phage-antibiotic cocktails and demonstrate their utility of combined cocktails against polymicrobial (mixed P. aeruginosa/S. aureus) cultures, highlighting the broad applicability of this approach. These studies establish a blueprint for the development of effective, broad-spectrum phage-antibiotic cocktails, paving the way for off-the-shelf phage-based therapeutics to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert C McBride
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
4
|
Rycroft JA, Giorgio RT, Sargen M, Helaine S. Tracking the progeny of bacterial persisters using a CRISPR-based genomic recorder. Proc Natl Acad Sci U S A 2024; 121:e2405983121. [PMID: 39374386 PMCID: PMC11494289 DOI: 10.1073/pnas.2405983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/11/2024] [Indexed: 10/09/2024] Open
Abstract
The rise of antimicrobial failure is a global emergency, and causes beyond typical genetic resistance must be determined. One probable factor is the existence of subpopulations of transiently growth-arrested bacteria, persisters, that endure antibiotic treatment despite genetic susceptibility to the drug. The presence of persisters in infected hosts has been successfully established, notably through the development of fluorescent reporters. It is proposed that infection relapse is caused by persisters resuming growth after cessation of the antibiotic treatment, but to date, there is no direct evidence for this. This is because no tool or reporter currently exists to track the extent to which infection relapse is initiated by regrowth of persisters in the host. Indeed, once they have transitioned out of the persister state, the progeny of persisters are genetically and phenotypically identical to susceptible bacteria in the population, making it virtually impossible to ascertain the source of relapse. We designed pSCRATCH (plasmid for Selective CRISPR Array expansion To Check Heritage), a molecular tool that functions to record the state of antibiotic persistence in the genome of Salmonella persisters. We show that pSCRATCH successfully marks persisters by adding spacers in their CRISPR arrays and the genomic label is stable in persister progeny after exit from persistence. We further show that in a Salmonella infection model the system enables the discrimination of treatment failure originating from persistence versus resistance. Thus, pSCRATCH provides proof of principle for stable marking of persisters and a prototype for applications to more complex infection models and other pathogens.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol 2024; 79:102482. [PMID: 38714140 DOI: 10.1016/j.mib.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Phage therapy holds much promise as an alternative to antibiotics for fighting infection. However, this approach is no panacea as recent results show that a small fraction of cells survives lytic phage infection due to both dormancy (i.e. formation of persister cells) and resistance (genetic change). In this brief review, we summarize evidence suggesting phages induce the persister state. Therefore, it is predicted that phage cocktails should be combined with antipersister compounds to eradicate bacterial infections.
Collapse
Affiliation(s)
- Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
7
|
Khosravi A, Chen Q, Echterhof A, Koff JL, Bollyky PL. Phage Therapy for Respiratory Infections: Opportunities and Challenges. Lung 2024; 202:223-232. [PMID: 38772946 PMCID: PMC11570333 DOI: 10.1007/s00408-024-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 05/23/2024]
Abstract
We are entering the post-antibiotic era. Antimicrobial resistance (AMR) is a critical problem in chronic lung infections resulting in progressive respiratory failure and increased mortality. In the absence of emerging novel antibiotics to counter AMR infections, bacteriophages (phages), viruses that infect bacteria, have become a promising option for chronic respiratory infections. However, while personalized phage therapy is associated with improved outcomes in individual cases, clinical trials demonstrating treatment efficacy are lacking, limiting the therapeutic potential of this approach for respiratory infections. In this review, we address the current state of phage therapy for managing chronic respiratory diseases. We then discuss how phage therapy may address major microbiologic obstacles which hinder disease resolution of chronic lung infections with current antibiotic-based treatment practices. Finally, we highlight the challenges that must be addressed for successful phage therapy clinical trials. Through this discussion, we hope to expand on the potential of phages as an adjuvant therapy in chronic lung infections, as well as the microbiologic challenges that need to be addressed for phage therapy to expand beyond personalized salvage therapy.
Collapse
Affiliation(s)
- Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Stanford University, 279 Campus Drive, Beckman Center, Room B237, Stanford, CA, 94305, USA.
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care & Sleep Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594560. [PMID: 38952799 PMCID: PMC11216370 DOI: 10.1101/2024.05.16.594560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR system. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. Importance 2Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
|
9
|
Baquero F, Rodríguez-Beltrán J, Levin BR. Bacteriostatic cells instead of bacteriostatic antibiotics? mBio 2024; 15:e0268023. [PMID: 38126752 PMCID: PMC10865802 DOI: 10.1128/mbio.02680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Fernández-García L, Song S, Kirigo J, Battisti ME, Petersen ME, Tomás M, Wood TK. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage. Microbiol Spectr 2024; 12:e0338823. [PMID: 38054715 PMCID: PMC10783111 DOI: 10.1128/spectrum.03388-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE To date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maiken E. Petersen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - María Tomás
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Dion MB, Shah SA, Deng L, Thorsen J, Stokholm J, Krogfelt KA, Schjørring S, Horvath P, Allard A, Nielsen DS, Petit MA, Moineau S. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages. THE ISME JOURNAL 2024; 18:wrae005. [PMID: 38366192 PMCID: PMC10910852 DOI: 10.1093/ismejo/wrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Ling Deng
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
| | - Philippe Horvath
- IFF Danisco, Health & Biosciences, Dangé-Saint-Romain 86220, France
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dennis S Nielsen
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, Jouy-en-Josas 78350, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Maffei E, Woischnig AK, Burkolter MR, Heyer Y, Humolli D, Thürkauf N, Bock T, Schmidt A, Manfredi P, Egli A, Khanna N, Jenal U, Harms A. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun 2024; 15:175. [PMID: 38168031 PMCID: PMC10761892 DOI: 10.1038/s41467-023-44157-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages are ubiquitous viral predators that have primarily been studied using fast-growing laboratory cultures of their bacterial hosts. However, microbial life in nature is mostly in a slow- or non-growing, dormant state. Here, we show that diverse phages can infect deep-dormant bacteria and suspend their replication until the host resuscitates ("hibernation"). However, a newly isolated Pseudomonas aeruginosa phage, named Paride, can directly replicate and induce the lysis of deep-dormant hosts. While non-growing bacteria are notoriously tolerant to antibiotic drugs, the combination with Paride enables the carbapenem meropenem to eradicate deep-dormant cultures in vitro and to reduce a resilient bacterial infection of a tissue cage implant in mice. Our work might inspire new treatments for persistent bacterial infections and, more broadly, highlights two viral strategies to infect dormant bacteria (hibernation and direct replication) that will guide future studies on phage-host interactions.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Marco R Burkolter
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | - Thomas Bock
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Basel, Switzerland.
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Sünderhauf D, Klümper U, Gaze WH, Westra ER, van Houte S. Interspecific competition can drive plasmid loss from a focal species in a microbial community. THE ISME JOURNAL 2023; 17:1765-1773. [PMID: 37558861 PMCID: PMC10504238 DOI: 10.1038/s41396-023-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Plasmids are key disseminators of antimicrobial resistance genes and virulence factors, and it is therefore critical to predict and reduce plasmid spread within microbial communities. The cost of plasmid carriage is a key metric that can be used to predict plasmids' ecological fate, and it is unclear whether plasmid costs are affected by growth partners in a microbial community. We carried out competition experiments and tracked plasmid maintenance using a model system consisting of a synthetic and stable five-species community and a broad host-range plasmid, engineered to carry different payloads. We report that both the cost of plasmid carriage and its long-term maintenance in a focal strain depended on the presence of competitors, and that these interactions were species specific. Addition of growth partners increased the cost of a high-payload plasmid to a focal strain, and accordingly, plasmid loss from the focal species occurred over a shorter time frame. We propose that the destabilising effect of interspecific competition on plasmid maintenance may be leveraged in clinical and natural environments to cure plasmids from focal strains.
Collapse
Affiliation(s)
- David Sünderhauf
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| | - Uli Klümper
- Department Hydrosciences, Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Edze R Westra
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| |
Collapse
|
14
|
Attrill EL, Łapińska U, Westra ER, Harding SV, Pagliara S. Slow growing bacteria survive bacteriophage in isolation. ISME COMMUNICATIONS 2023; 3:95. [PMID: 37684358 PMCID: PMC10491631 DOI: 10.1038/s43705-023-00299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.
Collapse
Affiliation(s)
- Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK
| | - Edze R Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, UK
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
15
|
Watson BNJ, Pursey E, Gandon S, Westra ER. Transient eco-evolutionary dynamics early in a phage epidemic have strong and lasting impact on the long-term evolution of bacterial defences. PLoS Biol 2023; 21:e3002122. [PMID: 37713428 PMCID: PMC10530023 DOI: 10.1371/journal.pbio.3002122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/27/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
Organisms have evolved a range of constitutive (always active) and inducible (elicited by parasites) defence mechanisms, but we have limited understanding of what drives the evolution of these orthogonal defence strategies. Bacteria and their phages offer a tractable system to study this: Bacteria can acquire constitutive resistance by mutation of the phage receptor (surface mutation, sm) or induced resistance through their CRISPR-Cas adaptive immune system. Using a combination of theory and experiments, we demonstrate that the mechanism that establishes first has a strong advantage because it weakens selection for the alternative resistance mechanism. As a consequence, ecological factors that alter the relative frequencies at which the different resistances are acquired have a strong and lasting impact: High growth conditions promote the evolution of sm resistance by increasing the influx of receptor mutation events during the early stages of the epidemic, whereas a high infection risk during this stage of the epidemic promotes the evolution of CRISPR immunity, since it fuels the (infection-dependent) acquisition of CRISPR immunity. This work highlights the strong and lasting impact of the transient evolutionary dynamics during the early stages of an epidemic on the long-term evolution of constitutive and induced defences, which may be leveraged to manipulate phage resistance evolution in clinical and applied settings.
Collapse
Affiliation(s)
| | - Elizabeth Pursey
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Sylvain Gandon
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Edze Rients Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| |
Collapse
|
16
|
Fernández-García L, Wood TK. Phage-Defense Systems Are Unlikely to Cause Cell Suicide. Viruses 2023; 15:1795. [PMID: 37766202 PMCID: PMC10535081 DOI: 10.3390/v15091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
As new phage-defense systems (PDs) are discovered, the overlap between their mechanisms and those of toxin/antitoxin systems (TAs) is becoming clear in that both use similar means to reduce cellular metabolism; for example, both systems have members that deplete energetic compounds (e.g., NAD+, ATP) and deplete nucleic acids, and both have members that inflict membrane damage. Moreover, both TAs and PDs are similar in that rather than altruistically killing the host to limit phage propagation (commonly known as abortive infection), both reduce host metabolism since phages propagate less in slow-growing cells, and slow growth facilitates the interaction of multiple phage-defense systems.
Collapse
Affiliation(s)
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA;
| |
Collapse
|
17
|
Luthe T, Kever L, Thormann K, Frunzke J. Bacterial multicellular behavior in antiviral defense. Curr Opin Microbiol 2023; 74:102314. [PMID: 37030144 DOI: 10.1016/j.mib.2023.102314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Multicellular behavior benefits seemingly simple organisms such as bacteria, by improving nutrient uptake, resistance to stresses, or by providing advantages in predatory interactions. Several recent studies have shown that this also extends to the defense against bacteriophages, which are omnipresent in almost all habitats. In this review, we summarize strategies conferring protection against phage infection at the multicellular level, covering secretion of small antiphage molecules or membrane vesicles, the role of quorum sensing in phage defense, the development of transient phage resistance, and the impact of biofilm components and architecture. Recent studies focusing on these topics push the boundaries of our understanding of the bacterial immune system and set the ground for an appreciation of bacterial multicellular behavior in antiviral defense.
Collapse
|
18
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
19
|
Saroj DB, Ahire JJ, Shukla R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023; 13:238. [PMID: 37333714 PMCID: PMC10275836 DOI: 10.1007/s13205-023-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
In this study, we report on whole genome sequence analysis of clinically documented, commercial probiotic Bacillus clausii 088AE and genome features contributing to probiotic properties. The whole genome sequence of B. clausii 088AE generated a single scaffold of 4,598,457 bp with 44.74 mol% G + C. This assembled genome sequence annotated by the RAST resulted in 4371 coding genes, 75 tRNAs, and 22 rRNAs. Gene ontology classification indicated 39.5% proteins with molecular function, 44.24% cellular component, and 16.25% proteins involved in biological processes. In taxonomic analysis, B. clausii 088AE shared 99% identity with B. clausii DSM 8716. The gene sequences related to safety and genome stability such as antibiotic resistance (840), virulence factors (706), biogenic amines (1), enterotoxin (0), emetic toxin (0), lanthipeptides (4), prophage (4) and clustered regularly interspaced short palindromic repeats (CRISPR) sequences (11), were identified and evaluated for safety and functions. The absence of functional prophage sequences and the presence of CRISPR indicated an advantage in genome stability. Moreover, the presence of genome features contributing to probiotic characteristics such as acid, and bile salt tolerance, adhesion to the gut mucosa, and environmental resistance ensure the strains survivability when consumed as a probiotic. In conclusion, the absence of risks associated with sequences/genes in the B. clausii 088AE genome and the presence of essential probiotic traits confirm the strain to be safe for use as a probiotic.
Collapse
Affiliation(s)
- Dina B. Saroj
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Jayesh J. Ahire
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Rohit Shukla
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| |
Collapse
|
20
|
Liu ZL, Hu EZ, Niu DK. Investigating the Relationship between CRISPR-Cas Content and Growth Rate in Bacteria. Microbiol Spectr 2023; 11:e0340922. [PMID: 37022199 PMCID: PMC10269591 DOI: 10.1128/spectrum.03409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023] Open
Abstract
CRISPR-Cas systems provide adaptive immunity for prokaryotic cells by recognizing and eliminating the recurrent genetic invaders whose sequences had been captured in a prior infection and stored in the CRISPR arrays as spacers. However, the biological/environmental factors determining the efficiency of this immune system have yet to be fully characterized. Recent studies in cultured bacteria showed that slowing the growth rate of bacterial cells could promote their acquisition of novel spacers. This study examined the relationship between the CRISPR-Cas content and the minimal doubling time across the bacteria and the archaea domains. Every completely sequenced genome could be used to predict a minimal doubling time. With a large data set of 4,142 bacterial samples, we found that the predicted minimal doubling times are positively correlated with spacer number and other parameters of the CRISPR-Cas systems, like array number, Cas gene cluster number, and Cas gene number. Different data sets gave different results. Weak results were obtained in analyzing bacterial empirical minimal doubling times and the archaea domain. Still, the conclusion of more spacers in slowly grown prokaryotes was supported. In addition, we found that the minimal doubling times are negatively correlated with the occurrence of prophages, and the spacer numbers per array are negatively associated with the number of prophages. These observations support the existence of an evolutionary trade-off between bacterial growth and adaptive defense against virulent phages. IMPORTANCE Accumulating evidence indicates that slowing the growth of cultured bacteria could stimulate their CRISPR spacer acquisition. We observed a positive correlation between CRISPR-Cas content and cell cycle duration across the bacteria domain. This observation extends the physiological conclusion to an evolutionary one. In addition, the correlation provides evidence supporting the existence of a trade-off between bacterial growth/reproduction and antiviral resistance.
Collapse
Affiliation(s)
- Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Makky S, Abdelrahman F, Rezk N, Easwaran M, El-Shibiny A. Phages for treatment Pseudomonas aeruginosa infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:1-19. [PMID: 37770166 DOI: 10.1016/bs.pmbts.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
22
|
Aman Mohammadi M, Maximiano MR, Hosseini SM, Franco OL. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess Biosyst Eng 2023; 46:483-497. [PMID: 36707422 DOI: 10.1007/s00449-022-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/29/2023]
Abstract
The developments in the food supply chain to support the growing population of the world is one of today's most pressing issues, and to achieve this goal improvements should be performed in both crops and microbes. For this purpose, novel approaches such as genome editing (GE) methods have upgraded the biological sciences for genome manipulation and, among such methods, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are the main exciting innovations since the Green Revolution. CRISPR/Cas systems can be a potent tool for the food industry, improvement of agricultural crops and even for protecting food-grade bacteria from foreign genetic invasive elements. This review introduces the history and mechanism of the CRISPR-Cas system as a genome editing tool and its applications in the vaccination of starter cultures, production of antimicrobials and bioactive compounds, and genome editing of microorganisms.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariana Rocha Maximiano
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Octavio Luiz Franco
- S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Graduate Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
23
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
24
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
25
|
In vitro and in vivo therapeutical efficiency of the staphylococcus phages and the effect of phage infectivity in well-mixed and spatial environment. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022; 14:1425. [PMID: 35890320 PMCID: PMC9318951 DOI: 10.3390/pharmaceutics14071425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Pamela C. Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Andy J. Spakowitz
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| |
Collapse
|
27
|
Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, Vervoort JJM, Brouns SJJ, Swarts DC. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell 2022; 185:1471-1486.e19. [PMID: 35381200 PMCID: PMC9097488 DOI: 10.1016/j.cell.2022.03.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.
Collapse
Affiliation(s)
- Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Jacques J M Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
28
|
McKenzie RE, Keizer EM, Vink JNA, van Lopik J, Büke F, Kalkman V, Fleck C, Tans SJ, Brouns SJJ. Single cell variability of CRISPR-Cas interference and adaptation. Mol Syst Biol 2022; 18:e10680. [PMID: 35467080 PMCID: PMC10561596 DOI: 10.15252/msb.202110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
While CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times. In contrast, for invaders with escaping PAM mutations we found large cell-to-cell variability, which originates from primed CRISPR adaptation. Faster growth and cell division and higher levels of Cascade increase the chance of clearance by interference, while slower growth is associated with increased chances of clearance by priming. Our findings suggest that Cascade binding to the mutated invader DNA, rather than spacer integration, is the main source of priming heterogeneity. The highly stochastic nature of primed CRISPR adaptation implies that only subpopulations of bacteria are able to respond quickly to invading threats. We conjecture that CRISPR-Cas dynamics and heterogeneity at the cellular level are crucial to understanding the strategy of bacteria in their competition with other species and phages.
Collapse
Affiliation(s)
- Rebecca E McKenzie
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Emma M Keizer
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Jochem N A Vink
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Jasper van Lopik
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Ferhat Büke
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Vera Kalkman
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM)Spatial Systems Biology GroupUniversity of FreiburgFreiburgGermany
| | - Sander J Tans
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Stan J J Brouns
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| |
Collapse
|
29
|
Barrangou R, Marraffini LA. Turning CRISPR on with antibiotics. Cell Host Microbe 2022; 30:12-14. [PMID: 35026132 DOI: 10.1016/j.chom.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas systems have the ability to integrate invasive DNA sequences to build adaptive immunity in bacteria. In this issue Dimitriu et al. show bacteriostatic antibiotics prompt CRISPR acquisition events, illustrating how environmental conditions affect complex dynamics between host and virus and the corresponding biological and genetic arms race.
Collapse
Affiliation(s)
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|