1
|
Çimen D, Bereli N, Günaydın S, Denizli A. Preparation of magnetic poly(ethylene glycol dimethacrylate-N-Methacryloyl-(L)-glutamic acid) particles for thrombin purification. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1219:123653. [PMID: 36871346 DOI: 10.1016/j.jchromb.2023.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
In this study, magnetic poly(ethylene glycol dimethacrylate-N-methacryloyl-(L)-glutamic acid) (mPEGDMA-MAGA) particles were prepared by the dispersion polymerization in order to purify thrombin effectively. mPEGDMA-MAGA particles were synthesized by adding different ratios of magnetite (Fe3O4) to the medium in addition to the monomer phases EGDMA and MAGA. The characterization studies of mPEGDMA-MAGA particles were used by fourier transform infrared spectroscopy, zeta size measurement, scanning electron microscopy and electron spin resonance. mPEGDMA-MAGA particles were used in thrombin adsorption studies from aqueous thrombin solutions in both batch and magnetically stabilized fluidized bed (MSFB) system. Maximum adsorption capacity in pH 7.4 phosphate buffer solution is 964 IU/g polymer and 134 IU/g polymer in MSFB system and batch system, respectively. The developed magnetic affinity particles enabled the separation of thrombin from different patient serum samples in one step. It has also been observed that magnetic particles can be used repeatedly without significant reduction in adsorption capacity.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Serdar Günaydın
- University of Health Sciences, Department of Cardiovascular Surgery, Ankara City Hospital, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
2
|
Fu Q, Xie D, Ge J, Zhang W, Shan H. Negatively Charged Composite Nanofibrous Hydrogel Membranes for High-Performance Protein Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193500. [PMID: 36234628 PMCID: PMC9565482 DOI: 10.3390/nano12193500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 06/02/2023]
Abstract
Nanofibrous materials are considered as promising candidates for fabricating high-efficiency chromatography media, which are urgently needed in protein pharmaceuticals purification and biological research, yet still face several bottlenecks. Herein, novel negatively charged composite nanofibrous hydrogel membranes (NHMs) are obtained by a facile combination of electrospinning and surface coating modification. The resulting NHMs exhibit controllable morphologies and chemical structures. Benefitting from the combined effect of the stable framework of silicon dioxide (SiO2) nanofiber and the function layer of negatively charged hydrogel, as well as good pore connectivity among nanofibers, NHMs exhibit a high protein adsorption capacity of around 1000 mg g-1, and are superior to the commercial cellulose fibrous adsorbent (Sartobind®) and the reported nanofibrous membranous adsorbents. Moreover, due to their relatively stable physicochemical and mechanical properties, NHMs possess comprehensive adsorption performance, favorable resistance to acid and solvents, good selectivity, and excellent regenerability. The designed NHMs composite adsorbents are expected to supply a new protein chromatography platform for effective protein purification in biopharmaceuticals and biochemical reagents.
Collapse
Affiliation(s)
- Qiuxia Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dandan Xie
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jianlong Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Haoru Shan
- School of Textile and Clothing, Nantong University, Nantong 226019, China
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Billotto LS, Marcus RK. Comparative Analysis of Trilobal Capillary‐Channeled Polymer Fiber Columns with Superficially Porous and Monolithic Phases Towards Reversed‐Phase Protein Separations. J Sep Sci 2022; 45:3811-3826. [DOI: 10.1002/jssc.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Lacey S. Billotto
- Department of Chemistry Biosystems Research Complex Clemson University
| | - R. Kenneth Marcus
- Department of Chemistry Biosystems Research Complex Clemson University
| |
Collapse
|
4
|
Mejía-Manzano LA, Campos-García VR, Perdomo-Abúndez FC, Medina-Rivero E, González-Valdez J. Mono-PEGylated lysozyme purification with increased productivity and isomer differentiation through heparin monolith chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123323. [PMID: 35700648 DOI: 10.1016/j.jchromb.2022.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
PEGylated protein purification with the required quality attributes has represented a bioengineering challenge and Affinity Monolith Chromatography (AMC) has never been exploited for this goal. This work reports the generation of a heparin-modified affinity monolith disk by reductive alkylation with raised ligand density for its use as chromatographic support in the separation of lysozyme PEGylation reactions (LPRs) with three different PEG sizes (1, 20 and 40 kDa). For immobilized heparin determination a modified toluidine colorimetric assay adapted to microplate format was proposed. The heparin modified-disk was able to differentiate positional isomers of 20 kDa mono-PEGylated lysozyme at neutral pH using a salt linear gradient. Identity of PEG-conjugates was verified by SDS-PAGE and positional isomers were partially characterized by peptide mapping mass spectrometry. 20 kDa mono-PEGylated lysozyme conjugate purity (99.69 ± 0.05%) was comparable with traditional chromatographic methods while productivity (0.0964 ± 0.0001 mg/mL*min) was increased up to 6.1 times compared to that obtained in heparin packed-bed affinity chromatography procedures. The proposed AMC method represents a reliable, efficient, easy-handling, fast and single-step operation for the analysis or preparative isolation of PEGylated proteins containing a heparin binding domain.
Collapse
Affiliation(s)
- Luis Alberto Mejía-Manzano
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, Mexico
| | - Víctor R Campos-García
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, Mexico
| | - Francisco C Perdomo-Abúndez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, Mexico.
| |
Collapse
|
5
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Bimodal gigaporous polystyrene microspheres with glycopolymer surfaces for high-speed protein chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chai MH, Zhang X, Zhao L, Hao WJ, Huang YP, Liu ZS. Combination of deep eutectic solvent and organic–inorganic hybrid monomer to prepare monolith for improvement of hydrophilic protein extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Aslıyüce S, Idil N, Mattiasson B. Upgrading of bio-separation and bioanalysis using synthetic polymers: Molecularly imprinted polymers (MIPs), cryogels, stimuli-responsive polymers. Eng Life Sci 2022; 22:204-216. [PMID: 35382542 PMCID: PMC8961038 DOI: 10.1002/elsc.202100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Bio-separation plays a crucial role in many areas. Different polymers are suitable for bio-separation and are useful for applications in applications in both science and technology. Besides biopolymers, there are a broad spectrum of synthetic polymers with tailor-made properties. The synthetic polymers are characterized by their charges, solubility, hydrophilicity/hydrophobicity, sensitivity to environmental conditions and stability. Furthermore, ongoing developments are of great interest on biodegradable polymers for the treatment of diseases. Smart polymers have gained great attention due to their unique characteristics especially emphasizing simultaneously changing their chemical and physical property upon exposure to changes in environmental conditions. In this review, methodologies applied in bio-separation using synthetic polymers are discussed and efficient candidates are focused for the construction of synthetic polymers.
Collapse
Affiliation(s)
- Sevgi Aslıyüce
- Department of ChemistryBiochemistry DivisionHacettepe UniversityAnkaraTurkey
| | - Neslihan Idil
- Department of BiologyBiotechnology DivisionHacettepe UniversityAnkaraTurkey
| | - Bo Mattiasson
- Department of BiotechnologyLund UniversityLundSweden
- Indienz ABAnnebergs Gård, BillebergaLundSweden
| |
Collapse
|
9
|
Podgornik A. Characterization of a convection-based support microstructure through a flow resistance parameter. J Sep Sci 2022; 45:1984-1996. [PMID: 35218615 PMCID: PMC10138761 DOI: 10.1002/jssc.202100955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/11/2022]
Abstract
Modern convection-based supports differ substantially in pore size, porosity, and microstructure topology. Due to such variability, it is challenging to evaluate the contribution of a particular microstructure topology on flow resistance. We demonstrated that the flow resistance parameter (ϕ) introduced decades ago can be used as a criterion to evaluate the effect of microstructure topology on a pressure drop when the pore size is used as a characteristic support dimension. Furthermore, the ϕ value of simple cubic packing was calculated over the entire range of open porosity and compared to the ϕ values determined for pressure drop models derived for particular convection-based supports and experimental values of various convection-based supports from the literature. It was shown that different convection-based supports become clustered into distinct groups when plotted according to their ϕ and open porosity values, allowing their discrimination. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aleš Podgornik
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia.,COBIK, Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
10
|
Ghosh R, Hale G, Durocher Y, Gatt P. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation. J Chromatogr A 2022; 1667:462881. [DOI: 10.1016/j.chroma.2022.462881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
|
11
|
Fuks PE, Carta G. Preparation and characterization of agarose-encapsulated ceramic hydroxyapatite particles for flow-through chromatography. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2026388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Preston E. Fuks
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Henneberg F, Chari A. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Life (Basel) 2021; 11:1289. [PMID: 34947821 PMCID: PMC8707722 DOI: 10.3390/life11121289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these macromolecular machines is fundamental to elucidate mechanisms by which they maintain homeostasis. As the faithful function of macromolecular complexes is essential for cell survival, their mis-function leads to the development of human diseases. Furthermore, detailed mechanistic interrogation of the function of macromolecular machines can be exploited to develop and optimize biotechnological processes. The purification of intact macromolecular complexes is an essential prerequisite for this; however, chromatographic purification schemes can induce the dissociation of subunits or the disintegration of the whole complex. Here, we discuss the development and application of chromatography-free purification strategies based on fractionated PEG precipitation and orthogonal density gradient centrifugation that overcomes existing limitations of established chromatographic purification protocols. The presented case studies illustrate the capabilities of these procedures for the purification of macromolecular complexes.
Collapse
Affiliation(s)
- Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
13
|
Bian J, Girotti J, Fan Y, Levy ES, Zang N, Sethuraman V, Kou P, Zhang K, Gruenhagen J, Lin J. Fast and versatile analysis of liposome encapsulation efficiency by nanoParticle exclusion chromatography. J Chromatogr A 2021; 1662:462688. [PMID: 34915190 DOI: 10.1016/j.chroma.2021.462688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
Liposomes are an attractive drug delivery platform for a wide variety of pharmaceutical molecules. Encapsulation efficiency, which refers to the amount of drug contained inside liposomes compared with the total amount of drug, is a critical quality attribute of liposome products, as the free drug in a liposomal formulation may cause toxicity or undesired biodistribution. The determination of encapsulation efficiency requires the measurement of at least two of the three drug populations: total drug, encapsulated drug and free drug. However, direct measurement of the encapsulated drug and free drug remains a challenging analytical task. Nanoparticle exclusion chromatography (nPEC), an emerging high-performance liquid chromatography (HPLC) technique, has shown great potential in separating and quantifying the free drug in liposomal formulations. In this study, nPEC was systematically evaluated for two representative liposomal formulations containing either hydrophilic or hydrophobic small molecule drugs. It is reported for the first time that the insoluble free drug suspended in the aqueous formulation can be directly measured by nPEC. This free drug in the suspension sample was quantified with excellent accuracy and precision. On the other hand, the total drug measurement from dissociated liposomes was confirmed by the benchmark methodology of reversed phase liquid chromatography (RPLC). The facile quantitation of free and total drug in the liposome formulation enables the fast and accurate determination of the encapsulation efficiency, which can be used to guide the formulation development and characterize the product quality.
Collapse
Affiliation(s)
- Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James Girotti
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuchen Fan
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elizabeth S Levy
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nanzhi Zang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vijay Sethuraman
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ponien Kou
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason Gruenhagen
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Adsorption isotherms and thermodynamic properties of a butyl functionalized hydrophobic macroporous cryogel. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
You F, Shi QH. Kinetic investigation of protein adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation: The implication of the chromatographic mechanism. J Chromatogr A 2021; 1654:462460. [PMID: 34438303 DOI: 10.1016/j.chroma.2021.462460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
With the growing concerns of polymer-grafted ion-exchange chromatography, the importance of protein adsorption on charged polymer-grafted surfaces cannot be stressed enough. However, a full understanding in adsorption in polymer brushes is still a great challenge due to the lack of in situ characterization technique. In this work, we use quartz crystal microbalance with dissipation to in situ investigate adsorption kinetics of γ-globulin and recombinant human lactoferrin on poly(3-sulfopropyl methacrylate) (pSPM) sensors prepared via atom transfer radical polymerization. With an increase of chain length and grafting density, great increasing amounts of proteins on pSPM-grafted sensors revealed that protein underwent a transition from monolayer to multilayer adsorption. It was attributed to direct protein binding into charged brushes, in which more binding sites involved and more coupled water lost. However, such a strong binding and rigid structure of proteins limited the protein transport in pSPM brushes and "chain delivery" effect. With an increase in grafting density, moreover, denser brushes hindered adjustment in protein conformation in pSPM brushes and further exacerbated protein transport in pSPM brushes. Furthermore, the influence of buffer pH and salt concentration further validated the ion exchange characteristics of protein adsorption into pSPM brushes. The research provided a variety of in situ evidence of protein binding and conformation evolution in pSPM brushes and elucidated mechanism of protein adsorption in pSPM brushes.
Collapse
Affiliation(s)
- Fenfen You
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qing-Hong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
17
|
Liu C, Yu J, You J, Wang Z, Zhang M, Shi L, Zhuang X. Cellulose/Chitosan Composite Sponge for Efficient Protein Adsorption. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jiajing Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junyang You
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhihua Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Meiling Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lei Shi
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
18
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
19
|
Simon U, Scorza LCT, Teworte S, McCormick AJ, Dimartino S. Demonstration of protein capture and separation using three-dimensional printed anion exchange monoliths fabricated in one-step. J Sep Sci 2020; 44:1078-1088. [PMID: 32898296 DOI: 10.1002/jssc.202000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional printing applications in separation science are currently limited by the lack of materials compatible with chromatographic operations and three-dimensional printing technologies. In this work, we propose a new material for Digital Light Processing printing to fabricate functional ion exchange monoliths in a single step. Through copolymerization of the bifunctional monomer [2-(acryloyloxy)ethyl] trimethylammonium chloride, monolithic structures with quaternary amine ligands were fabricated. The novel formulation was optimized in terms of protein binding and recovery, microporous structure, and its swelling susceptibility by increasing its cross-link density and employing cyclohexanol and dodecanol as pore forming agents. In static conditions, the material demonstrated a maximum binding capacity of 104.2 ± 10.6 mg/mL for bovine serum albumin, in line with commercially available materials. Its anion exchange behavior was validated by separating bovine serum albumin and myoglobin on a monolithic bed with Schoen gyroid morphology. The same column geometry was tested for the purification of C-phycocyanin from clarified as well as cell-laden Arthrospira platensis feedstocks. This represents the first demonstration of one-step printed stationary phases to capture proteins directly from solid-laden feedstocks. We believe that the material presented here represents a significant improvement towards implementation of three-dimensional printed chromatography media in the field of separation science.
Collapse
Affiliation(s)
- Ursula Simon
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, UK
| | - Livia C T Scorza
- School of Biological Sciences, SynthSys & Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah Teworte
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, UK
| | - Alistair J McCormick
- School of Biological Sciences, SynthSys & Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Dimartino
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Li R, Zhang Z, Pei X, Xia X. Covalent Immobilization of L-Asparaginase and Optimization of Its Enzyme Reactor for Reducing Acrylamide Formation in a Heated Food Model System. Front Bioeng Biotechnol 2020; 8:584758. [PMID: 33178677 PMCID: PMC7593842 DOI: 10.3389/fbioe.2020.584758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is a potent carcinogen and neurotoxin that is mainly formed by the Maillard reaction of asparagine with starch at high temperatures. In this work, a food safety immobilization system for L-asparaginase (L-ASNase) consisting of food-grade agarose (Aga) spheres and N-hydroxysuccinimide esters was developed to decrease the formation of acrylamide in a fluid food model system. L-asparaginase was successfully immobilized with a maximum immobilization efficiency of 68.43%. The immobilized enzymes exhibited superior storage stability and reusability with 93.21 and 72.25% of the initial activity retained after six consecutive cycles and storage for 28 days, indicating its high industrial application potential. Meanwhile, a simplified mathematical model of the enzyme reactor was developed and verified with experiments, which demonstrated its auxiliary role in the design and optimization of reactors. In addition, simulated fluidized food components were continuously catalyzed in the designed packed bed reactor, achieving a reduction rate of nearly 89%.
Collapse
Affiliation(s)
| | | | | | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Padwal P, Finger C, Fraga-García P, Kaveh-Baghbaderani Y, Schwaminger SP, Berensmeier S. Seeking Innovative Affinity Approaches: A Performance Comparison between Magnetic Nanoparticle Agglomerates and Chromatography Resins for Antibody Recovery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39967-39978. [PMID: 32786242 DOI: 10.1021/acsami.0c05007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoclonal antibodies are key molecules in medicine and pharmaceuticals. A potentially crucial drawback for faster advances in research here is their high price due to the extremely expensive antibody purification process, particularly the affinity capture step. Affinity chromatography materials have to demonstrate the high binding capacity and recovery efficiency as well as superior chemical and mechanical stability. Low-cost materials and robust, faster processes would reduce costs and enhance industrial immunoglobulin purification. Therefore, exploring the use of alternative materials is necessary. In this context, we conduct the first comparison of the performance of magnetic nanoparticles with commercially available chromatography resins and magnetic microparticles with regard to immobilizing Protein G ligands and recovering immunoglobulin G (IgG). Simultaneously, we demonstrate the suitability of bare as well as silica-coated and epoxy-functionalized magnetite nanoparticles for this purpose. All materials applied have a similar specific surface area but differ in the nature of their matrix and surface accessibility. The nanoparticles are present as micrometer agglomerates in solution. The highest Protein G density can be observed on the nanoparticles. IgG adsorbs as a multilayer on all materials investigated. However, the recovery of IgG after washing indicates a remaining monolayer, which points to the specificity of the IgG binding to the immobilized Protein G. One important finding is the impact of the ligand-binding stoichiometry (Protein G surface coverage) on IgG recovery, reusability, and the ability to withstand long-term sanitization. Differences in the materials' performances are attributed to mass transfer limitations and steric hindrance. These results demonstrate that nanoparticles represent a promising material for the economical and efficient immobilization of proteins and the affinity purification of antibodies, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Priyanka Padwal
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Constanze Finger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Yasmin Kaveh-Baghbaderani
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
22
|
Silva RJS, Mendes JP, Carrondo MJT, Marques PM, Peixoto C. Continuous Chromatography Purification of Virus-Based Biopharmaceuticals: A Shortcut Design Method. Methods Mol Biol 2020; 2095:367-384. [PMID: 31858479 DOI: 10.1007/978-1-0716-0191-4_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel biopharmaceutical products, such as vaccines and viral vectors, play a significant role in the development of innovative therapeutic, prophylactic, and clinical applications. However, several challenges are posed when manufacturing these products. The diversity of cell lines and the different physical and chemical properties of these biologicals require the use of different production and processing technologies. Alternative purification strategies that can improve the purification yield, such as continuous chromatography, are regarded nowadays as enabling technologies to overcome some of the bottlenecks in biomanufacturing. This chapter offers a shortcut approach to implement a semi-continuous chromatography purification of hepatitis C virus-like particles produced in insect cells with recombinant baculovirus. Although the purification is based on ion exchange chromatography, the present methodology can be extended to other types of chromatography.
Collapse
Affiliation(s)
| | - João P Mendes
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | - Paula M Marques
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Fabrication of macroporous microspheres with core-shell structure for negative chromatography purification of virus. J Chromatogr A 2020; 1610:460578. [DOI: 10.1016/j.chroma.2019.460578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
|
24
|
Affinity Membranes and Monoliths for Protein Purification. MEMBRANES 2019; 10:membranes10010001. [PMID: 31878114 PMCID: PMC7022333 DOI: 10.3390/membranes10010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Affinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes and monoliths, are the commonly available supports. The present work deals with non-competitive binding of bovine serum albumin (BSA) on different chromatographic media functionalized with Cibacron Blue F3GA (CB). The aim is to set up the development of the purification process starting from the lab-scale characterization of a commercially available CB resin, regenerated cellulose membranes and polymeric monoliths, functionalized with CB to identify the best option. The performance of the three different chromatographic media is evaluated in terms of BSA binding capacity and productivity. The experimental investigation shows promising results for regenerated cellulose membranes and monoliths, whose performance are comparable with those of the packed column tested. It was demonstrated that the capacity of convective stationary phases does not depend on flow rate, in the range investigated, and that the productivity that can be achieved with membranes is 10 to 20 times higher depending on the initial BSA concentration value, and with monoliths it is approximately twice that of beads, at the same superficial velocity.
Collapse
|
25
|
Multia E, Tear CJY, Palviainen M, Siljander P, Riekkola ML. Fast isolation of highly specific population of platelet-derived extracellular vesicles from blood plasma by affinity monolithic column, immobilized with anti-human CD61 antibody. Anal Chim Acta 2019; 1091:160-168. [DOI: 10.1016/j.aca.2019.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
|
26
|
Fu Q, Liu L, Si Y, Yu J, Ding B. Shapeable, Underwater Superelastic, and Highly Phosphorylated Nanofibrous Aerogels for Large-Capacity and High-Throughput Protein Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44874-44885. [PMID: 31670935 DOI: 10.1021/acsami.9b15760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing nanofibrous aerogels with high porosity, robust underwater mechanical strength, and rich adsorption ligands, has been considered as one of the most promising strategies for preparing the next generation of high-efficiency and high-throughput chromatographic media; yet great challenges still remain. Herein, a novel type of highly phosphorylated nanofibrous aerogels (PNFAs) is fabricated, for the first time, by combining electrospinning, cryogenic induced phase separation regulation, and in situ phosphorylation modification. The PNFAs exhibit outstanding underwater superelasticity and excellent compression fatigue resistance (∼0% plastic deformation after 1000 compression cycles), as well as favorable shape-memory property. Besides, the PNFAs also can be bent and compressed even in the ultracold liquid nitrogen without obvious plastic deformation, further highlighting their robust structural stability. Benefiting from the superelastic, interconnected, and highly phosphorylated 3D nanofibrous frameworks, the PNFAs possess a superb protein adsorption capability of 3.3 × 103 mg g-1 and a large liquid flux of 1.5 × 104 L m-2 h-1, which are superior to the commercial and previously reported fiber-based chromatographic media. Moreover, the PNFAs also exhibit superior performance stability, easy assembly, and outstanding applicability, highlighting their potential actual application. The successful preparation of such fascinating PNFAs may not only provide a new option for the current protein adsorption and purification engineering, but also could open up some new perspectives for further design and development of next-generation nanofibrous aerogel-based chromatographic media for various bioseparation applications.
Collapse
Affiliation(s)
- Qiuxia Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Lifang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
27
|
Fabrication of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) macroporous microspheres through activators regenerated by electron transfer atom transfer radical polymerization for rapid separation of proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121794. [DOI: 10.1016/j.jchromb.2019.121794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Accepted: 09/07/2019] [Indexed: 12/30/2022]
|
28
|
Kargl R, Bračič M, Resnik M, Mozetič M, Bauer W, Stana Kleinschek K, Mohan T. Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blends. Front Chem 2019; 7:581. [PMID: 31552215 PMCID: PMC6743410 DOI: 10.3389/fchem.2019.00581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
This work describes the preparation of spin-coated thin polymer films composed of cellulose (CE), ethyl cellulose (EC), and cellulose acetate (CA) in the form of bi- or mono-component coatings on sensors of a quartz crystal microbalance with dissipation monitoring (QCM-D). Depending on the composition and derivative, hydrophilicity can be varied resulting in materials with different surface properties. The surfaces of mono- and bi-component films were also analyzed by atomic force microscopy (AFM) and large differences in the morphologies were found comprising nano- to micrometer sized pores. Extended protein adsorption studies were performed by a QCM-D with 0.1 and 10 mg mL−1 bovine serum albumin (BSA) and 0.1 and 1 mg mL−1 fibrinogen from bovine plasma in phosphate buffered saline. Analysis of the mass of bound proteins was conducted by applying the Voigt model and a comparison was made with the Sauerbrey wet mass of the proteins for all films. The amount of deposited proteins could be influenced by the composition of the films. It is proposed that the observed effects can be exploited in biomaterial science and that they can be used to extent the applicability of bio-based polymer thin films composed of commercial cellulose derivatives.
Collapse
Affiliation(s)
- Rupert Kargl
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia.,Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Institute of Paper, Pulp and Fibre Technology (IPZ), Graz University of Technology, Graz, Austria
| | - Matej Bračič
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Matic Resnik
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Wolfgang Bauer
- Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Institute of Paper, Pulp and Fibre Technology (IPZ), Graz University of Technology, Graz, Austria
| | - Karin Stana Kleinschek
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia.,Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
29
|
Pereira Aguilar P, Schneider TA, Wetter V, Maresch D, Ling WL, Tover A, Steppert P, Jungbauer A. Polymer-grafted chromatography media for the purification of enveloped virus-like particles, exemplified with HIV-1 gag VLP. Vaccine 2019; 37:7070-7080. [PMID: 31300289 DOI: 10.1016/j.vaccine.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Polymer-grafted chromatography media, especially ion exchangers, are high performance materials for protein purification. However, due to the pore size limitation, conventional chromatography beads are usually not considered for the downstream processing of large biomolecules such as virus-like particles (VLPs). Contrariwise, since the outer surface of the chromatography beads provides satisfactory binding capacity for VLPs and impurities of smaller size can bind inside of the beads, conventional porous beads should be considered for VLP capture and purification. We used HIV-1 gag VLPs with a diameter of 100-200 nm as a model to demonstrate that polymer-grafted anion exchangers are suitable for the purification of bionanoparticles. The equilibrium binding capacity was 1 × 1013 part/mL resin. Moderate salt concentration up to 100 mM NaCl did not affect binding, allowing direct loading of cell culture supernatant onto the column for purification. Dynamic binding capacity at 10% breakthrough, when loading cell culture supernatant, was approximately 6 × 1011 part/mL column; only 1-log lower than for monoliths. Endonuclease treatment of the cell culture supernatant did not increase the dynamic binding capacity, suggesting that dsDNA does not compete for the binding sites of VLPs. Nevertheless, due to simultaneous elution of particles and dsDNA, endonuclease treatment is required to reduce dsDNA contamination in the product. Proteomic analysis revealed that HIV-1 gag VLPs contain different host cell proteins in their cargo. This cargo is composed of conserved proteins and other proteins that vary from one particle population to another, as well as from batch to batch. This process allowed the separation of different particle populations. HIV-1 gag VLPs were directly captured and purified from cell culture supernatant with a total particle recovery in the elution of about 35%. Columns packed with beads can be scaled to practically any dimension and therefore a tailored design of the process is possible.
Collapse
Affiliation(s)
| | | | - Viktoria Wetter
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Daniel Maresch
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Petra Steppert
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria; Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| |
Collapse
|
30
|
Pinheiro BB, Rios NS, Rodríguez Aguado E, Fernandez-Lafuente R, Freire TM, Fechine PB, dos Santos JC, Gonçalves LR. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 2019; 130:798-809. [DOI: 10.1016/j.ijbiomac.2019.02.145] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
|
31
|
Towards rational design of porous nanostructured biopolymeric microparticles for biomacromolecules separation: A case study of intraparticle diffusion facilitation and BSA adsorption on agarose microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:518-528. [DOI: 10.1016/j.msec.2018.07.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
|
32
|
Effect of the Length-to-Width Aspect Ratio of a Cuboid Packed-Bed Device on Efficiency of Chromatographic Separation. Processes (Basel) 2018. [DOI: 10.3390/pr6090160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In recent papers we have discussed the use of cuboid packed-bed devices as alternative to columns for chromatographic separations. These devices address some of the major flow distribution challenges faced by preparative columns used for process-scale purification of biologicals. Our previous studies showed that significant improvements in separation metrics such as the number of theoretical plates, peak shape, and peak resolution in multi-protein separation could be achieved. However, the length-to-width aspect ratio of a cuboid packed-bed device could potentially affect its performance. A systematic comparison of six cuboid packed-bed devices having different length-to-width aspect ratios showed that it had a significant effect on separation performance. The number of theoretical plates per meter in the best-performing cuboid packed-bed device was about 4.5 times higher than that in its equivalent commercial column. On the other hand, the corresponding number in the worst-performing cuboid-packed bed was lower than that in the column. A head-to-head comparison of the best-performing cuboid packed bed and its equivalent column was carried out. Performance metrics compared included the widths and dispersion indices of flow-through and eluted protein peaks. The optimized cuboid packed-bed device significantly outperformed its equivalent column with regards to all these attributes.
Collapse
|
33
|
Zaveckas M, Goda K, Ziogiene D, Gedvilaite A. Purification of recombinant trichodysplasia spinulosa–associated polyomavirus VP1-derived virus-like particles using chromatographic techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:7-13. [DOI: 10.1016/j.jchromb.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
|
34
|
Winderl J, Spies T, Hubbuch J. Packing characteristics of winged shaped polymer fiber supports for preparative chromatography. J Chromatogr A 2018; 1553:67-80. [DOI: 10.1016/j.chroma.2018.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 02/02/2023]
|
35
|
Qu JB, Liu Y, Liu JY, Huan GS, Wei SN, Li SH, Liu JG. One-Pot Synthesis of Bimodal Gigaporous Polystyrene Microspheres with Hydrophilic Surfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Bo Qu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuan Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jun-Yi Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guan-Sheng Huan
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Sheng-Nan Wei
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shi-Hai Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jian-Guo Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
36
|
Zhang H, Zhao L, Huang Y, Zhu K, Wang Q, Yang R, Su Z, Ma G. Uniform polysaccharide composite microspheres with controllable network by microporous membrane emulsification technique. Anal Bioanal Chem 2018; 410:4331-4341. [DOI: 10.1007/s00216-018-1084-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/16/2022]
|
37
|
Krepper W, Satzer P, Beyer BM, Jungbauer A. Temperature dependence of antibody adsorption in protein A affinity chromatography. J Chromatogr A 2018; 1551:59-68. [DOI: 10.1016/j.chroma.2018.03.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 01/02/2023]
|
38
|
Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling. J Chromatogr B Analyt Technol Biomed Life Sci 2018. [DOI: 10.1016/j.jchromb.2018.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Wittkopp F, Peeck L, Hafner M, Frech C. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Janakiraman VN, Solé M, Maria S, Pezzini J, Cabanne C, Santarelli X. Comparative study of strong cation exchangers: Structure-related chromatographic performances. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1080:1-10. [DOI: 10.1016/j.jchromb.2018.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
|
41
|
Arkell K, Knutson HK, Frederiksen SS, Breil MP, Nilsson B. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint. J Chromatogr A 2018; 1532:98-104. [PMID: 29198837 DOI: 10.1016/j.chroma.2017.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C4 adsorbent (0.41 kg/(m3 column h)) is less than half of that on the C18 adsorbent (0.87 kg/(m3 column h)). This is partly caused by the higher selectivity between the insulin variants on the C18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C18 adsorbent is higher than for the C4 one, the insulin solubility is also higher, allowing a higher pool concentration. An alternative method of finding the suggested operating point was also evaluated, and it was shown to give very satisfactory results for well-mapped Pareto fronts.
Collapse
Affiliation(s)
- Karolina Arkell
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-211 00, Lund, Sweden.
| | - Hans-Kristian Knutson
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-211 00, Lund, Sweden
| | | | | | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-211 00, Lund, Sweden
| |
Collapse
|
42
|
Luo YD, Zhang QL, Yao SJ, Lin DQ. Evaluation of adsorption selectivity of immunoglobulins M, A and G and purification of immunoglobulin M with mixed-mode resins. J Chromatogr A 2018; 1533:77-86. [DOI: 10.1016/j.chroma.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
43
|
Nweke MC, McCartney RG, Bracewell DG. Mechanical characterisation of agarose-based chromatography resins for biopharmaceutical manufacture. J Chromatogr A 2017; 1530:129-137. [DOI: 10.1016/j.chroma.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
|
44
|
Steinebach F, Wälchli R, Pfister D, Morbidelli M. Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/01/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fabian Steinebach
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| | - Ruben Wälchli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| | | | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences; ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
45
|
Dorn M, Eschbach F, Hekmat D, Weuster-Botz D. Influence of different packing methods on the hydrodynamic stability of chromatography columns. J Chromatogr A 2017; 1516:89-101. [DOI: 10.1016/j.chroma.2017.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/11/2017] [Accepted: 08/06/2017] [Indexed: 11/15/2022]
|
46
|
Jiang L, Marcus RK. Microwave-assisted, grafting polymerization preparation of strong cation exchange nylon 6 capillary-channeled polymer fibers and their chromatographic properties. Anal Chim Acta 2017; 977:52-64. [DOI: 10.1016/j.aca.2017.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/25/2022]
|
47
|
Relating saturation capacity to charge density in strong cation exchangers. J Chromatogr A 2017; 1507:95-103. [DOI: 10.1016/j.chroma.2017.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
|
48
|
Basconi JE, Carta G, Shirts MR. Effects of protein properties on adsorption and transport in polymer‐grafted ion exchangers: A multiscale modeling study. AIChE J 2017. [DOI: 10.1002/aic.15798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Basconi
- Dept. of Chemical EngineeringUniversity of VirginiaCharlottesville VA22904
| | - Giorgio Carta
- Dept. of Chemical EngineeringUniversity of VirginiaCharlottesville VA22904
| | - Michael R. Shirts
- Dept. of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulder CO80309
| |
Collapse
|
49
|
Experimental design of a twin-column countercurrent gradient purification process. J Chromatogr A 2017; 1492:19-26. [DOI: 10.1016/j.chroma.2017.02.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/21/2022]
|
50
|
Arkell K, Breil MP, Frederiksen SS, Nilsson B. Mechanistic Modeling of Reversed-Phase Chromatography of Insulins with Potassium Chloride and Ethanol as Mobile-Phase Modulators. ACS OMEGA 2017; 2:136-146. [PMID: 30023511 PMCID: PMC6044668 DOI: 10.1021/acsomega.6b00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to investigate the adsorption mechanism in reversed-phase chromatography (RPC) of proteins and to develop a model for the effect of dual mobile phase modulators-a salt and an organic solvent-on this process. Two different adsorption mechanisms were considered: (1) pure association of a protein molecule and one or more ligands and (2) displacement of the organic modulator, with which the adsorbent is saturated, by the protein upon association with one or more ligands. One model was then derived from each of the two considered mechanisms, combining thermodynamic theories on salting-in, RPC, and the solubility of proteins. The model was then applied to chromatographic data from an earlier report as well as supplementary data for solubility and vapor-liquid equilibria, and case-specific simplifications were made. We found that an adaptation of Kirkwood's electrostatic theories to hydrophobic interaction chromatography describes the observed effect of KCl well. Combining chromatographic and solubility data for one of the insulins, we concluded that the variation in the activity coefficient of the insulin with respect to the concentration of ethanol alone cannot describe its effect on retention. Consequently, one or more other phenomena must affect the adsorption process. Our second model fits the retention data well, supporting the hypothesis that ethanol is directly involved in the adsorption mechanism in this case. Using additional experiments at a high-protein load, we extended the linear-range equilibrium model into a dynamic model for preparative conditions. This model shows good agreement with the high-load data for one of the insulin variants, without any additional effects of the modulator concentrations on the adsorption capacity.
Collapse
Affiliation(s)
- Karolina Arkell
- Department
of Chemical Engineering, Faculty of Engineering, Lund University, P.O. Box 124, SE-21100 Lund, Sweden
| | - Martin P. Breil
- Modelling and Optimization and Mathematical Modelling, Novo Nordisk A/S, Smørmosevej 17-19, DK-2880 Bagsværd, Denmark
| | - Søren S. Frederiksen
- Modelling and Optimization and Mathematical Modelling, Novo Nordisk A/S, Smørmosevej 17-19, DK-2880 Bagsværd, Denmark
| | - Bernt Nilsson
- Department
of Chemical Engineering, Faculty of Engineering, Lund University, P.O. Box 124, SE-21100 Lund, Sweden
| |
Collapse
|