1
|
Tetala KKR. Preparation of Affinity Chromatography Monolith in Miniaturized Format and Application for Protein Separation. Methods Mol Biol 2022; 2466:229-240. [PMID: 35585321 DOI: 10.1007/978-1-0716-2176-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity chromatography is one of the versatile technique to selectively separate target biomolecules from complex biological sources (plasma, saliva, urine, etc.). Conventional chromatography resins possess technical limitations at mini-analytical scale, which was overcome with the use of alternative material known as monoliths. This chapter discusses on the how to modify the fused silica capillary inner surface, prepare polymer monoliths within the capillary confinements, chelation of metal-ions on monoliths and protein separation from diluted human plasma using metal-ion monolith microcolumn.
Collapse
Affiliation(s)
- Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
3
|
Olsen C, Skottvoll FS, Brandtzaeg OK, Schnaars C, Rongved P, Lundanes E, Wilson SR. Investigating Monoliths (Vinyl Azlactone-co-Ethylene Dimethacrylate) as a Support for Enzymes and Drugs, for Proteomics and Drug-Target Studies. Front Chem 2019; 7:835. [PMID: 31850321 PMCID: PMC6902630 DOI: 10.3389/fchem.2019.00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Prior to mass spectrometry, on-line sample preparation can be beneficial to reduce manual steps, increase speed, and enable analysis of limited sample amounts. For example, bottom-up proteomics sample preparation and analysis can be accelerated by digesting proteins to peptides in an on-line enzyme reactor. We here focus on low-backpressure 100 μm inner diameter (ID) × 160 mm, 180 μm ID × 110 mm or 250 μm ID × 140 mm vinyl azlactone-co-ethylene dimethacrylate [poly(VDM-co-EDMA)] monoliths as supports for immobilizing of additional molecules (i.e., proteases or drugs), as the monolith was expected to have few unspecific interactions. For on-line protein digestion, monolith supports immobilized with trypsin enzyme were found to be suited, featuring the expected characteristics of the material, i.e., low backpressure and low carry-over. Serving as a functionalized sample loop, the monolith units were very simple to connect on-line with liquid chromatography. However, for on-line target deconvolution, the monolithic support immobilized with a Wnt pathway inhibitor was associated with numerous secondary interactions when exploring the possibility of selectively trapping target proteins by drug-target interactions. Our initial observations suggest that (poly(VDM-co-EDMA)) monoliths are promising for e.g., on-line bottom-up proteomics, but not a "fit-for-all" material. We also discuss issues related to the repeatability of monolith-preparations.
Collapse
Affiliation(s)
| | | | | | - Christian Schnaars
- Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, University of Oslo, Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Vidic U, Trbojević-Akmačić I, Černigoj U, Albers M, Gašperšič J, Pučić-Baković M, Vidič J, Štrancar A, Lauc G. Semi-high-throughput isolation andN-glycan analysis of human fibrinogen using monolithic supports bearing monoclonal anti-human fibrinogen antibodies. Electrophoresis 2017; 38:2922-2930. [DOI: 10.1002/elps.201700140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Malena Albers
- Genos Glycoscience Research Laboratory; Zagreb Croatia
- Hannover Medical School; Institute of Clinical Biochemistry; Hannover Germany
| | | | | | - Jana Vidič
- BIA Separations d.o.o.; Ajdovščina Slovenia
| | - Aleš Štrancar
- BIA Separations d.o.o.; Ajdovščina Slovenia
- COBIK; Ajdovščina Slovenia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory; Zagreb Croatia
- Faculty of Pharmacy and Biochemistry; University of Zagreb; Zagreb Croatia
| |
Collapse
|
5
|
Moravcová D, Rantamäki AH, Duša F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 2016; 37:880-912. [PMID: 26800083 DOI: 10.1002/elps.201500520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
Abstract
Here, we have reviewed separation studies utilizing monolithic capillary columns for separation of compounds preceding MS analysis. The review is divided in two parts according to the used separation method, namely CEC and capillary LC (cLC). Based on our overview, monolithic CEC-MS technique have been more focused on the syntheses of highly specialized and selective separation phase materials for fast and efficient separation of specific types of analytes. In contrast, monolithic cLC-MS is more widely used and is often employed, for instance, in the analysis of oligonucleotides, metabolites, and peptides and proteins in proteomic studies. While poly(styrene-divinylbenzene)-based and silica-based monolithic capillaries found their place in proteomic analyses, the other laboratory-synthesized monoliths still wait for their wider utilization in routine analyses. The development of new monolithic materials will most likely continue due to the demand of more efficient and rapid separation of increasingly complex samples.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | | - Filip Duša
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
6
|
Chen C, Zhu C, Huang Y, Nie Y, Yang J, Shen R, Sun D. Regenerated bacterial cellulose microfluidic column for glycoproteins separation. Carbohydr Polym 2016; 137:271-276. [DOI: 10.1016/j.carbpol.2015.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/06/2015] [Accepted: 10/25/2015] [Indexed: 01/11/2023]
|
7
|
Vlakh EG, Korzhikov VA, Hubina AV, Tennikova TB. Molecular imprinting: a tool of modern chemistry for the preparation of highly selective monolithic sorbents. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Vlakh EG, Platonova GA, Tennikova TB. Affinity chromatography of proteins on monolithic columns. Methods Mol Biol 2014; 1129:303-24. [PMID: 24648084 DOI: 10.1007/978-1-62703-977-2_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, monolithic stationary phases, because of their morphology, are widely used for development and realization of fast dynamic and static processes based on mass transition between liquid and solid phases. These are liquid chromatography, solid phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including bioaffinity mode, represents a unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.In this work, the examples of application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator from E. coli cell lysate and Chinese Hamster Ovary cell culture supernatant, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents an original and practically valuable method that can be used in biotechnology.
Collapse
Affiliation(s)
- E G Vlakh
- Chemical Faculty, St. Petersburg State University, Bolshoy pr. 31, 199004, St. Petersburg, Russia
| | | | | |
Collapse
|
9
|
Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A. Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnol J 2013; 8:671-81. [DOI: 10.1002/biot.201200328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
|
10
|
|
11
|
Podgornik A, Krajnc NL. Application of monoliths for bioparticle isolation. J Sep Sci 2012; 35:3059-72. [DOI: 10.1002/jssc.201200387] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Aleš Podgornik
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
- BIA Separations d.o.o.; Ajdovščina Slovenia
| | - Nika Lendero Krajnc
- BIA Separations d.o.o.; Ajdovščina Slovenia
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
| |
Collapse
|
12
|
Calleri E, Ambrosini S, Temporini C, Massolini G. New monolithic chromatographic supports for macromolecules immobilization: Challenges and opportunities. J Pharm Biomed Anal 2012; 69:64-76. [DOI: 10.1016/j.jpba.2012.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 01/15/2023]
|
13
|
Pecher HS, Zimathies A, Weller MG. Oligoepoxide-Based Monoliths: Synthesis and Application as Affinity Capillary Column for Enrichment of Immunoglobulin G. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Sinitsyna ES, Walter JG, Vlakh EG, Stahl F, Kasper C, Tennikova TB. Macroporous methacrylate-based monoliths as platforms for DNA microarrays. Talanta 2012; 93:139-46. [PMID: 22483890 DOI: 10.1016/j.talanta.2012.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/28/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
Abstract
Macroporous monoliths with different surface functionalization (reactive groups) were utilized as platforms for DNA analysis in microarray format. The slides based on a copolymer glycidyl methacrylate-co-ethylene dimethacrylate (GMA-EDMA) have been chosen as well known and thoroughly studied standard. In particular, this material has been used at optimization of DNA microanalytical procedure. The concentration and pH of spotting solution, immobilization temperature and time, blocking agent and coupling reaction duration were selected as varied parameters. The efficiency of analysis performed on 3-D monolithic platforms was compared to that established for commercially available glass slides. As a practical example, a diagnostic test for detection of CFTR gene mutation was carried out. Additionally, the part of presented work was devoted to preparation of aptamer-based test-system that allowed successful and highly sensitive detection both of DNA and protein.
Collapse
Affiliation(s)
- Ekaterina S Sinitsyna
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Faye C, Chamieh J, Moreau T, Granier F, Faure K, Dugas V, Demesmay C, Vandenabeele-Trambouze O. In situ characterization of antibody grafting on porous monolithic supports. Anal Biochem 2012; 420:147-54. [DOI: 10.1016/j.ab.2011.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
16
|
Arrua RD, Alvarez Igarzabal CI. Macroporous monolithic supports for affinity chromatography. J Sep Sci 2011; 34:1974-87. [DOI: 10.1002/jssc.201100197] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/21/2023]
|
17
|
Sinitsyna E, Vlakh E, Rober M, Tennikova T. Hydrophilic methacrylate monoliths as platforms for protein microarray. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Maksimova E, Vlakh E, Tennikova T. Methacrylate-based monolithic layers for planar chromatography of polymers. J Chromatogr A 2011; 1218:2425-31. [DOI: 10.1016/j.chroma.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
19
|
Batista-Viera F, Janson JC, Carlsson J. Affinity Chromatography. METHODS OF BIOCHEMICAL ANALYSIS 2011; 54:221-58. [DOI: 10.1002/9780470939932.ch9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Mönster A, Hiller O, Grüger D, Blasczyk R, Kasper C. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns. J Chromatogr A 2011; 1218:706-10. [DOI: 10.1016/j.chroma.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
21
|
Joo H, Lee JH. Polyaniline nanofiber coated monolith reactor for enzymatic bioconversion. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Gehrke CW, Hage DS. Chromatography-Advances and Applications in Environmental, Space, Biological, and Medical Sciences. CHROMATOGRAPHY 2010. [DOI: 10.1002/9780470555729.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Abstract
Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bioaffinity chromatography (including immunochromatography) is summarized and discussed. After giving an introduction into affinity chromatography, information on different biomolecules (antibodies, enzymes, lectins, aptamers) that can act as ligands in bioaffinity chromatography is presented. Subsequently, the history of monoliths, their advantages, preparation and formats (disks, capillaries and microchips) as well as ligand immobilization techniques are mentioned. Finally, analytical and preparative applications of bioaffinity chromatography on monoliths are presented. During the last four years 37 papers appeared. Protein A and G are still most often used as ligands for the enrichment of immunoglobulins. Antibodies and lectins remain popular for the analysis of mainly smaller molecules and saccharides, respectively. The highly porous cryogels modified with ligands are applied for the sorting of different cells or bacteria. New is the application of aptamers and phages as ligands on monoliths. Convective interaction media (epoxy CIM disks) are currently the most used format in monolithic bioaffinity chromatography.
Collapse
Affiliation(s)
- Kishore K R Tetala
- Laboratory of Organic Chemistry, Natural Products Chemistry Group, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
24
|
Preparation of macroporous monoliths based on epoxy-bearing hydrophilic terpolymers and applied for affinity separations. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2010.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Han Y, You G, Pattenden LK, Forde GM. The harnessing of peptide–monolith constructs for single step plasmid DNA purification. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Gomez CG, Strumia MC. Study of amino ligands fixation to macroporous supports and their influence on albumin adsorption. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium. J Chromatogr A 2009; 1216:2671-5. [DOI: 10.1016/j.chroma.2008.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 11/20/2022]
|
28
|
Affiliation(s)
- Frantisek Svec
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 2008; 1216:2637-50. [PMID: 18929365 DOI: 10.1016/j.chroma.2008.09.090] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022]
Abstract
Monolithic columns were introduced in the early 1990s and have become increasingly popular as efficient stationary phases for most of the important chromatographic separation modes. Monoliths are functionally distinct from porous particle-based media in their reliance on convective mass transport. This makes resolution and capacity independent of flow rate. Monoliths also lack a void volume. This eliminates eddy dispersion and permits high-resolution separations with extremely short flow paths. The analytical value of these features is the subject of recent reviews. Nowadays, among other types of rigid macroporous monoliths, the polymethacrylate-based materials are the largest and most examined class of these sorbents. In this review, the applications of polymethacrylate-based monolithic columns are summarized for the separation, purification and analysis of low and high molecular mass compounds in the different HPLC formats, including micro- and large-scale HPLC modes.
Collapse
|
30
|
Kalashnikova IV, Ivanova ND, Tennikova TB. The use of monolithic polymeric sorbents to simulate virus-cell interactions. RUSS J APPL CHEM+ 2008. [DOI: 10.1134/s1070427208050285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Potter OG, Hilder EF. Porous polymer monoliths for extraction: Diverse applications and platforms. J Sep Sci 2008; 31:1881-906. [DOI: 10.1002/jssc.200800116] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Mallik R, Hage DS. Development of an affinity silica monolith containing human serum albumin for chiral separations. J Pharm Biomed Anal 2008; 46:820-30. [PMID: 17475436 PMCID: PMC2361093 DOI: 10.1016/j.jpba.2007.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/09/2007] [Accepted: 03/19/2007] [Indexed: 11/15/2022]
Abstract
An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3-2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: d/l-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase.
Collapse
Affiliation(s)
- Rangan Mallik
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|
33
|
HOSOYA K, SAKAMOTO M, AKAI K, MORI T, KUBO T, KAYA K, OKADA K, TSUJIOKA N, TANAKA N. A Novel Chip Device Based on Wired Capillary Packed with High Performance Polymer-based Monolith for HPLC: Reproducibility in Preparation Processes to Obtain Long Columns. ANAL SCI 2008; 24:149-54. [DOI: 10.2116/analsci.24.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ken HOSOYA
- Graduate School of Environmental Studies, Tohoku University
| | - Mari SAKAMOTO
- Graduate School of Environmental Studies, Tohoku University
| | | | - Tomoko MORI
- Graduate School of Environmental Studies, Tohoku University
| | - Takuya KUBO
- Graduate School of Environmental Studies, Tohoku University
| | - Kunimitsu KAYA
- Graduate School of Environmental Studies, Tohoku University
| | - Kazuma OKADA
- Graduate School of Science & Technology, Kyoto Institute of Technology
| | - Norio TSUJIOKA
- Graduate School of Science & Technology, Kyoto Institute of Technology
| | - Nobuo TANAKA
- Graduate School of Science & Technology, Kyoto Institute of Technology
| |
Collapse
|
34
|
Slabospitskaya MY, Vlakh EG, Saprykina NN, Tennikova TB. Synthesis and investigation of a new macroporous monolithic material based on an N-hydroxyphthalimide ester of acrylic acid- co-glycidyl methacrylate- co-ethylene dimethacrylate terpolymer. J Appl Polym Sci 2008. [DOI: 10.1002/app.29130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Tetala KKR, Chen B, Visser GM, van Beek TA. Single step synthesis of carbohydrate monolithic capillary columns for affinity chromatography of lectins. J Sep Sci 2007; 30:2828-35. [DOI: 10.1002/jssc.200700356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Mallik R, Xuan H, Hage DS. Development of an affinity silica monolith containing alpha1-acid glycoprotein for chiral separations. J Chromatogr A 2007; 1149:294-304. [PMID: 17408678 PMCID: PMC2043356 DOI: 10.1016/j.chroma.2007.03.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 11/16/2022]
Abstract
An affinity monolith based on silica and containing immobilized alpha(1)-acid glycoprotein (AGP) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or monoliths based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of AGP in the silica monolith was 18% higher than that obtained with silica particles and 61% higher than that measured for a GMA/EDMA monolith. The higher surface area of the silica monolith gave materials that contained 1.5- to 3.6-times more immobilized protein per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the AGP silica monolith were evaluated by injecting two chiral analytes onto this column (i.e., R/S-warfarin and R/S-propranolol). In each case, the AGP silica monolith gave higher retention plus better resolution and efficiency than AGP columns containing silica particles or a GMA/EDMA monolith. The AGP silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with AGP as a chiral stationary phase.
Collapse
Affiliation(s)
- Rangan Mallik
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304 (USA)
| | - Hai Xuan
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
37
|
Affiliation(s)
- Akira SANO
- Analytical Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hiroshi NAKAMURA
- Analytical Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
38
|
Wei Y, Huang X, Liu R, Shen Y, Geng X. Preparation of a monolithic column for weak cation exchange chromatography and its application in the separation of biopolymers. J Sep Sci 2006; 29:5-13. [PMID: 16485704 DOI: 10.1002/jssc.200500210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A procedure for the preparation of a monolithic column for weak cation exchange chromatography was presented. The structure of the monolithic column was evaluated by mercury intrusion. The hydrodynamic and chromatographic properties of the monolithic column--such as back pressures at different flow rates, effects of pH on protein retention, dynamic loading capacity, recovery, and stability--were determined under conditions typical for ion-exchange chromatography. The prepared monolithic column might be used in a relatively broad pH range from 4.0 to 12.0 and exhibited an excellent separation to five proteins at the flow rates of both 1.0 and 8.0 mL/min, respectively. In addition, the prepared column was first used in the purification and simultaneous renaturation of recombinant human interferon gamma (rhIFN-gamma) in the extract solution with 7.0 mol/L guanidine hydrochloride. The purity and specific bioactivity of the purified rhIFN-gamma in only one chromatographic step were obtained to be 93% and 7.8 x 10(7) IU/mg, respectively.
Collapse
Affiliation(s)
- Yinmao Wei
- Institute of Modern Separation Science, Northwest University, Xi'an, China.
| | | | | | | | | |
Collapse
|
39
|
Sáfrány Á, Beiler B, László K, Svec F. Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross-linking. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|