1
|
Pezhhanfar S, Farajzadeh MA, Kheirkhah Ghaleh M, Hosseini-Yazdi SA, Afshar Mogaddam MR. MIL-68 (Ga) for the extraction of derivatized and non-derivatized parabens from healthcare products. Sci Rep 2023; 13:21304. [PMID: 38042936 PMCID: PMC10693546 DOI: 10.1038/s41598-023-48880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
This study was the first-ever attempt to apply MIL-68 (Ga) in developing an analytical method. The method extracts and preconcentrates some parabens from mouthwash and hydrating gel samples. The variable extraction parameters were optimized, and the figures of merit were documented. Avogadro software was used besides discussing intermolecular interactions to clarify the absorption process. ComplexGAPI software was also exploited to assess the greenness of the method. After the derivatization of the parabens using acetic anhydride in the presence of sodium carbonate, sodium chloride was added to the solution and vortexed to dissolve. A few milligrams of MIL-68 (Ga) were added into the solution and vortexed. Centrifugation separated the analyte-loaded absorbent, which was treated with mL volume of methanol through vortexing for desorption aim. A few microliters of 1,2-dibromoethane were merged with the methanolic phase and injected into a sodium chloride solution. One microliter of the extracted phase was injected into a gas chromatograph equipped with a flame ionization detector. High enrichment factors (200-330), reasonable extraction recoveries (40-66%), wide linear ranges (265-30,000 µg L-1), and appreciable coefficients of determination (0.996-0.999) were documented. The applicability of dispersive solid phase extraction for extracting polar analytes, imposing no additional step for performing derivatization, the capability of MIL-68 (Ga) for the absorption of both derivatized and non-derivatized parabens, the use of only 10 mg absorbent, and one-pot synthesis besides no high temperature or long reaction time in the sorbent provision are the highlights of the method.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey.
| | - Mahdi Kheirkhah Ghaleh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Psoras AW, McCoy SW, Reber KP, McCurry DL, Sivey JD. Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18801-18810. [PMID: 37096875 DOI: 10.1021/acs.est.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C-Br bonds into C-Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br-) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
Collapse
Affiliation(s)
- Andrew W Psoras
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
| | - Seth W McCoy
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - John D Sivey
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
3
|
KÖSEOĞLU YILMAZ P, KOLAK U. Ultrasound- and Vortex-Assisted Dispersive Liquid-Liquid Microextraction of Parabens from Personal Care Products and Urine, Followed by High-Performance Liquid Chromatography. Turk J Pharm Sci 2023; 20:328-334. [PMID: 37933823 PMCID: PMC10631361 DOI: 10.4274/tjps.galenos.2022.42387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Objectives Parabens, which are p-hydroxybenzoic acid esters, are used as preservatives in personal care products, pharmaceuticals, and food because of their antimicrobial activity. However, they are also classified as suspected endocrine disruptors and carcinogens. In the present study, we aimed to optimize an ultrasound and vortex-assisted dispersive liquid-liquid microextraction (DLLME) procedure for the simultaneous extraction of methyl, ethyl, isopropyl, propyl, isobutyl, and butyl parabens from personal care products and urine. Materials and Methods The extraction solvent type, extraction solvent volume, disperser solvent volume, sodium chloride concentration, ultrasonication time, and vortex application time were evaluated to obtain optimum recoveries by ultrasound and vortex-assisted DLLME. Parabens were detected using a validated high performanc-liquid chromatography (HPLC) method with fluorescence detection. Method validation was performed by examining linearity, the limit of detection, limit of quantification, accuracy, and precision. Results The limits of detection and quantification of the HPLC method were between 0.09-0.18 μg/mL and 0.28-0.54 μg/mL, respectively. Precision was examined as the relative standard deviation, which was 0.22-1.81% and 1.12-2.03% for intra- and interday studies. Recovery percentages were higher than 96.00%. Samples of two paraben-free personal care products and synthetic urine were spiked with the analyses at 0.02 μg/mL and were successfully analyzed using the developed procedure with recovery values higher than 82.00%. Conclusion The proposed procedure provided quantification of selected parabens at 20 ng/mL in analyzed personal care products and urine matrices with good precision and accuracy.
Collapse
Affiliation(s)
- Pelin KÖSEOĞLU YILMAZ
- İstanbul University Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul, Türkiye
| | - Ufuk KOLAK
- İstanbul University Faculty of Pharmacy, Department of Analytical Chemistry, İstanbul, Türkiye
| |
Collapse
|
4
|
Vuckovic D, MacDonald JA, Lin D, Mendez M, Miller E, Mitch WA. Pharmaceuticals, pesticides, and ultraviolet filters in wastewater discharges to San Francisco Bay as drivers of ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122432. [PMID: 37611792 DOI: 10.1016/j.envpol.2023.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Research in the United States evaluating ecotoxic risk to receiving waters posed by contaminants occurring in wastewater discharges typically has focused on measurements of pharmaceuticals and personal care products (PPCPs), with limited evaluations of UV filters and phenylpyrazole and neonicotinoid pesticides. In this study, concentrations of 5 representative pharmaceuticals, 11 pesticides or pesticide degradation products, and 5 ultraviolet filters were measured in 24 h composite samples of six wastewater discharges representing ∼70% of the total wastewater discharged to San Francisco Bay during the summer and fall of 2021. No significant difference was observed between concentrations measured on weekdays vs. weekends. A hydrodynamic model of San Francisco Bay was used to estimate annual average dilution factors associated with different subembayments. With and without considering dilution effects, Risk Quotients were calculated using the 90th percentile of measured concentrations in wastewater effluents and threshold concentrations associated with ecotoxicity. Risk Quotients were highest for the neonicotinoid pesticide, imidacloprid, and exceeded ecotoxicity thresholds in the lower South Bay by a factor of 2.4, even when considering dilution. Compared to commonly measured pharmaceuticals, Risk Quotients for imidacloprid were higher than those for carbamazepine, trimethoprim and diclofenac, and comparable to those for propranolol and metoprolol. Risk Quotients for the pesticide, fipronil, and the UV filter, oxybenzone, were higher than for carbamazepine. The results highlight the need to incorporate pesticides and UV filters with high Risk Quotients into studies in the United States evaluating ecotoxic risk associated with contaminants in municipal wastewater discharges.
Collapse
Affiliation(s)
- Djordje Vuckovic
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Jessica A MacDonald
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA, 94804, United States
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA, 94804, United States
| | - Ezra Miller
- San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA, 94804, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States.
| |
Collapse
|
5
|
Ocaña-Rios I, Thapa B, Anderson JL. Multi-residue method to determine selected personal care products from five classes in fish based on miniaturized matrix solid-phase dispersion and solid-phase microextraction coupled to gas chromatography-mass spectrometry. Food Chem 2023; 423:136247. [PMID: 37178601 DOI: 10.1016/j.foodchem.2023.136247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
A method featuring matrix solid-phase dispersion combined with solid-phase microextraction coupled to gas chromatography-mass spectrometry was developed to determine parabens, musks, antimicrobials, UV filters, and an insect repellent in fish. Optimization and validation of the method was carried out on tilapia and salmon samples. Acceptable linearity (R2 > 0.97), precision (relative standard deviations < 13 %) and accuracy (recovery > 80 %) at two concentration levels for all analytes were obtained using both matrices. The limits of detection ranged from 0.01 to 1.01 μg g-1 (wet weight) for all analytes except for methyl paraben. The SPME Arrow format was applied to increase the sensitivity of the method, and yielded detection limits more than ten times lower than those achieved with traditional SPME. The miniaturized method can be applied to various fish species, regardless of their lipid content, and represents a useful tool for quality control and food safety purposes.
Collapse
Affiliation(s)
- Iran Ocaña-Rios
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Bhawana Thapa
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Effect of Iron Complex Source on MWWTP Effluent Treatment by Solar Photo-Fenton: Micropollutant Degradation, Toxicity Removal and Operating Costs. Molecules 2022; 27:molecules27175521. [PMID: 36080290 PMCID: PMC9458207 DOI: 10.3390/molecules27175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Benzophenone-3, fipronil and propylparaben are micropollutants that are potential threats to ecosystems and have been detected in aquatic environments. However, studies involving the investigation of new technologies aiming at their elimination from these matrices, such as advanced oxidation processes, remain scarce. In this study, different iron complexes (FeCit, FeEDTA, FeEDDS and FeNTA) were evaluated for the degradation of a mixture of these micropollutants (100 µg L−1 each) spiked in municipal wastewater treatment plant (MWWTP) effluent at pH 6.9 by solar photo-Fenton. Operational parameters (iron and H2O2 concentration and Fe/L molar ratio) were optimized for each complex. Degradation efficiencies improved significantly by increasing the concentration of iron complexes (1:1 Fe/L) from 12.5 to 100 µmol L−1 for FeEDDS, FeEDTA and FeNTA. The maximum degradation reached with FeCit for all iron concentrations was limited to 30%. Different Fe/L molar ratios were required to maximize the degradation efficiency for each ligand: 1:1 for FeNTA and FeEDTA, 1:3 for FeEDDS and 1:5 for FeCit. Considering the best Fe/L molar ratios, higher degradation rates were reached using 5.9 mmol L−1 H2O2 for FeNTA and FeEDTA compared to 1.5 and 2.9 mmol L−1 H2O2 for FeEDDS and FeCit, respectively. Acute toxicity to Canton S. strain D. melanogaster flies reduced significantly after treatment for all iron complexes, indicating the formation of low-toxicity by-products. FeNTA was considered the best iron complex source in terms of the kinetic constant (0.10 > 0.063 > 0.051 > 0.036 min−1 for FeCit, FeNTA, FeEDTA and FeEDDS, respectively), organic carbon input and cost-benefit (USD 327 m−3 > USD 20 m−3 > USD 16 m−3 > USD 13 m−3 for FeEDDS, FeCit, FeEDTA and FeNTA, respectively) when compared to the other tested complexes.
Collapse
|
7
|
Adhikari S, Kumar R, Driver EM, Perleberg TD, Yanez A, Johnston B, Halden RU. Mass trends of parabens, triclocarban and triclosan in Arizona wastewater collected after the 2017 FDA ban on antimicrobials and during the COVID-19 pandemic. WATER RESEARCH 2022; 222:118894. [PMID: 35917669 DOI: 10.1016/j.watres.2022.118894] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobials like parabens, triclosan (TCS), and triclocarban (TCC) are of public health concern worldwide due to their endocrine-disrupting properties and ability to promote antimicrobial drug resistance in human pathogens. The overall use of antimicrobials presumably has increased during the COVID-19 pandemic, whereas TCS and TCC may have experienced reductions in use due to their recent ban from thousands of over-the-counter (OTC) personal care products by the U.S. Food and Drug Administration (FDA). No quantitative data are available on the use of parabens or the impact the FDA ban had on TCC and TCS. Here, we use wastewater samples (n = 1514) from 10 different communities in Arizona to measure the presence of the six different antimicrobial products (TCS, TCC, and four alkylated parabens [methylparaben (MePb), ethylparaben (EtPb), propylparaben (PrPb), butylparaben (BuPb)]) collected before and during the COVID-19 pandemic using a combination of solid-phase extraction, liquid chromatography/tandem mass spectrometry (LC-MS/MS), and isotope dilution for absolute quantitation. The average mass loadings of all antimicrobials combined (1,431 ± 22 mg/day per 1,000 people) after the onset of the local epidemic (March 2020 - October 2020) were significantly higher (945 ± 62 mg/day per 1,000 people; p < 0.05) than before the pandemic (January 2019 - February 2020). Overall, parabens (∑Pbs = 999 ± 16 mg/day per 1,000 people) were the most used antimicrobials, followed by TCS (117 ± 14 mg/day per 1,000 people) and TCC (117 ± 14 mg/day per 1,000 people). After the 2017 U.S. FDA ban, we found a statistically significant (p < 0.05) reduction in the mass loadings of TCS (-89%) and TCC (-80%) but a rise in paraben use (+72%). Mass flows of 3 of a total of 4 parabens (MePb, EtPb, and PrPb) in wastewater were significantly higher upon the onset of the epidemic locally (p < 0.05). This is the first longitudinal study investigating the use of antimicrobials during the COVID-19 pandemic by employing wastewater-based epidemiology. Whereas an overall increase in the use of antimicrobials was evident from analyzing Arizona wastewater, a notable reduction in the use of TCS and TCC was evident during the pandemic, triggered by the U.S. FDA ban.
Collapse
Affiliation(s)
- Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rahul Kumar
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M Driver
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler D Perleberg
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Bridger Johnston
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA; OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
8
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
9
|
Werner J, Zgoła-Grześkowiak A, Grześkowiak T. Development of novel thin-film solid-phase microextraction materials based on deep eutectic solvents for preconcentration of trace amounts of parabens in surface waters. J Sep Sci 2022; 45:1374-1384. [PMID: 35137554 DOI: 10.1002/jssc.202100917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
A green and sensitive thin-film solid-phase microextraction method based on deep eutectic solvent was developed that enables simultaneous isolation, preconcentration, and determination of parabens in surface waters. Six new deep eutectic solvents were synthesized and used directly to prepare thin-film coatings on a stainless steel mesh support. Among the compounds obtained, the highest efficiency in the extraction of parabens was found for a material consisting of trihexyltetradecylphosphonium chloride and n-docosanol in a molar ratio of 1:2. For the proposed method, parameters affecting the extraction efficiency of parabens, such as the coating material, the desorption solvent, the volume of the sample, the pH of the sample, the extraction and desorption time, and the salting-out effect, were optimized. Under optimal conditions, the proposed method allowed us to achieve good precision between 3.6 and 6.5% and recovery ranging from 68.1 to 91.4%. The limits of detection range from 0.018 to 0.055 ng mL-1 . This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Justyna Werner
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | | | | |
Collapse
|
10
|
Arachchige Chamila Samarasinghe SV, Krishnan K, Aitken RJ, Naidu R, Megharaj M. Persistence of the parabens in soil and their potential toxicity to earthworms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103574. [PMID: 33383196 DOI: 10.1016/j.etap.2020.103574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Due to their antimicrobial activity, parabens are commonly used as preservatives in a variety of consumer goods including cosmetics, pharmaceuticals, and personal care products. During the production, usage and disposal of these products, parabens are released into the environment. In this study, the persistence of three widely used parabens; methyl-, propyl-, and butyl paraben in soil and their toxic effects on the soil invertebrate, Eisenia fetida was investigated. The results of this study indicate that selected parabens do not negatively affect the survival, growth, and reproduction of Eisenia fetida up to 1000 mg Kg-1 concentration. Further, these parabens (0-1000 mg Kg-1) exhibited a low persistence in soil with more than 90 % disappearing within three days. In contrast, only 16-54 % degradation of parabens occurred in frozen soil suggesting a microbial role in parabens degradation. This study demonstrates that methyl-, propyl-, and butyl parabens degrade rapidly in the terrestrial environment and therefore, are unlikely to pose a threat to species such as Eisenia fetida. To our knowledge, this is the first report on the toxicity of parabens to earthworms.
Collapse
Affiliation(s)
- Samarasinghe Vidane Arachchige Chamila Samarasinghe
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), University of Newcastle, NSW, 2308, Australia; Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kannan Krishnan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), University of Newcastle, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
11
|
Werner J, Rębiś T, Frankowski R, Grześkowiak T, Zgoła-Grześkowiak A. Development of Poly(3,4-Ethylenedioxythiophene) (PEDOT) Electropolymerized Sorbent-Based Solid-Phase Microextraction (SPME) for the Determination of Parabens in Lake Waters by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1870232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | | |
Collapse
|
12
|
Özcan S, Levent S, Can NÖ, Kozanli M. A Novel HPLC Method for Simultaneous Determination of Methyl, Ethyl, n-propyl, Isopropyl, n-butyl, Isobutyl and Benzyl Paraben in Pharmaceuticals and Cosmetics. Comb Chem High Throughput Screen 2020; 24:352-365. [PMID: 32723231 DOI: 10.2174/1386207323999200728121657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The alkyl esters of p-hydroxybenzoic acid at the C-4 position, "the parabens," including methyl, ethyl, propyl, and butyl, are widely used as antimicrobial preservatives in foods, cosmetics, and pharmaceuticals. Official regulations on the use of these compounds make their analysis essential for the estimation of their exposure. METHODS On this basis, the presented study was realized to develop a simple, selective and cheap high-performance liquid chromatographic method for the quantitative determination of methylparaben, ethylparaben (EP), n-propyl paraben (NPP), isopropyl paraben (IPP), n-butyl paraben (NBP), isobutyl paraben (IBP) and benzyl paraben (BP) in pharmaceuticals and cosmetic products. RESULTS The chromatographic separation of the analytes was achieved under flow rate gradient elution conditions using a C18-bonded core-shell silica particle column (2.6 μm particle size, 150 × 3.0 mm from Phenomenex Co.). The samples were injected into the system as aliquots of 1.0 μL, and the compounds were detected by using a photodiode array detector set at 254 nm wavelength. With this technique, seven paraben derivatives can be determined in the concentration range of 250-2000 ng/mL. The recovery of the method is in the range of 99.95-13.84%, and the RSD is at a maximum value of 3.95%. CONCLUSION The proposed method was fully validated and successfully applied to different pharmaceutical and cosmetic samples (n=16), including syrups, suspensions, oral sprays, gels, etc. At least one paraben derivative was detected in six samples and was determined quantitatively. The maximum amount of a paraben derivative found in the analyzed samples was 321.7 ng/mL, which was MP. To the best of our knowledge, this is the first LC method, which is applicable both on pharmaceutical and cosmetic samples.
Collapse
Affiliation(s)
- Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Serkan Levent
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Murat Kozanli
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
13
|
Suchana S, Passeport E. Optimization of a solid-phase microextraction technique for chloro‑ and nitro- substituted aromatic compounds using design of experiments. J Chromatogr A 2020; 1621:461083. [PMID: 32317103 DOI: 10.1016/j.chroma.2020.461083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
A rapid and sensitive direct immersion solid-phase microextraction (SPME) technique for the analysis of seven chloro (Cl-) and nitro (NO2-) substituted anilines, toluenes, and nitrobenzenes from small volume (1.5 mL) aqueous samples was optimized for gas chromatography using Design of Experiments (DoE). Screening of the SPME factors was performed by a fractional factorial DoE, and the optimization of influential factors was achieved with a central composite multi-response surface DoE. Extraction time, pre-SPME agitation speed, extraction temperature, and desorption temperature were identified as significant factors and their values were set using a desirability function that maximized the extraction of the seven target analytes. Extraction time and agitation speed showed significant interactions for most analytes (α = 0.05). The relative standard deviations (RSDs) for within-day and between-day analyses were below 8%, suggesting that the method was repeatable and reproducible. The obtained limits of detection were in the low μg/L range (1-10) using a Flame Ionization Detector, far below what is needed for industrial contaminated sites (usually >1 mg/L). The optimized SPME method increased the analyte concentration up to 2-3 orders of magnitude compared with direct GC injection. The optimized SPME method was applied to two groundwater samples from a contaminated site in which the concentrations of three of the target analytes were ranged from 0.06 to 9.42 mg/L with RSDs <11%. When the concentrations of the target analytes in the sample matrix were higher than 0.5 mg/L, a competition for the SPME extraction sites was observed where analytes with higher affinity for the fiber material replaced the analytes with lower affinity. As a result, dilution of highly contaminated samples is recommended. This study provided for the first time an analytical method for the quantification of frequently co-occurring contaminants from the chloro‑ and nitro- substituted aniline, toluene, and nitrobenzene families.
Collapse
Affiliation(s)
- Shamsunnahar Suchana
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, M5S 1A4 Toronto, ON, Canada
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, M5S 1A4 Toronto, ON, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, ON, Canada.
| |
Collapse
|
14
|
Muckoya VA, Nomngongo PN, Ngila JC. Factorial Design Optimisation of Solid Phase Extraction for Preconcentration of Parabens in Wastewater Using Ultra-High Performance Liquid Chromatography Triple Quadrupole Mass Spectrometry. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180627150854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Parabens are synthetic esters used extensively as preservatives and/or
bactericides in personal care personal products.
Objective:
Development and validation of a novel robust chemometric assisted analytical technique
with superior analytical performances for the determination of ethylparaben, methylparaben and
propylparaben, using simulated wastewater matrix.
Methods:
An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass
spectrometry was applied in this study. A gradient elution programme comprising of 0.1%
formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x
2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with
response surface methodology was used for optimisation and investigation of SPE experimental
variables that had the most significant outcome of the analytical response.
Results:
According to the analysis of variance (ANOVA), sample pH and eluent volume were
statistically the most significant parameters. The method developed was validated for accuracy,
precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and
LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1
respectively. The use of matrix-matched external calibration provided extraction recoveries between
78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three
different water matrices (simulated wastewater, influent and effluent water).
Conclusion:
The newly developed method was applied successfully to the analyses of parabens in
wastewater samples at different sampling points of a wastewater treatment plant, revealing
concentrations of up to 3 μgL−1.
Collapse
Affiliation(s)
- Vallerie A. Muckoya
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa N. Nomngongo
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Jane C. Ngila
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
15
|
Kaur R, Heena, Kaur R, Grover A, Rani S, Malik AK, Kabir A, Furton KG. Trace determination of parabens in cosmetics and personal care products using fabric‐phase sorptive extraction and high‐performance liquid chromatography with UV detection. J Sep Sci 2020; 43:2626-2635. [DOI: 10.1002/jssc.201900978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Ramandeep Kaur
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Heena
- Department of ChemistryPunjabi University Patiala Punjab India
- Department of ChemistryGSSDGS Khalsa College Patiala Punjab India
| | - Ripneel Kaur
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Aman Grover
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Susheela Rani
- Department of ChemistryPunjabi University Patiala Punjab India
| | | | - Abuzar Kabir
- Department of Chemistry and BiochemistryInternational Forensic Research InstituteFlorida International University Miami FL
| | - Kenneth G. Furton
- Department of Chemistry and BiochemistryInternational Forensic Research InstituteFlorida International University Miami FL
| |
Collapse
|
16
|
Žnideršič L, Mlakar A, Prosen H. Development of a SPME-GC-MS/MS method for the determination of some contaminants from food contact material in beverages. Food Chem Toxicol 2019; 134:110829. [PMID: 31542431 DOI: 10.1016/j.fct.2019.110829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
The development and validation of a simple, low-cost, and sensitive method for the determination of nine compounds expected in beverages and vinegar as a result of migration from food contact material (parabens, phenolic antioxidants, sulfonamide plasticizer, and flame retardant) is presented. The analytes were preconcentrated using solid-phase microextraction and analyzed by gas chromatography - tandem mass spectrometry. The method required no derivatization procedure and an affordable chemical was used as internal standard. The LODs were in the range of 0.005-0.2 μg/L, the relative standard deviations 0.8-5.4%, and the mean recoveries 98-109%. Different alcoholic beverages and vinegars were analyzed. A crown cap migration study using several food simulants was conducted for 6 months. Moreover, migration from a home brewing plastic fermenter in a time span of 4 weeks was studied. Analyte concentrations up to 2220.99 μg/L were detected in real samples and up to 4.75 μg/L in migration experiments.
Collapse
Affiliation(s)
- Luka Žnideršič
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Anita Mlakar
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia
| | - Helena Prosen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Gao Y, Wang B, Yan Y. Self‐Assembling Bifunctional Hydrophilic Magnetic Nanomaterials for Highly Efficient Enrichment of Parabens in Beverages Sample. ChemistrySelect 2019. [DOI: 10.1002/slct.201902055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yiqian Gao
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Baichun Wang
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Yinghua Yan
- School of Materials Science and Chemical EngineeringInstitute of Mass SpectrometryNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
18
|
Yan X, Zhong D, Zhan Y, Li Y, Wu D. Porous polyimide particle-coated adsorptive microextraction bar combined with thermal desorption-gas chromatography for rapid determination of parabens in condiments. J Chromatogr A 2019; 1601:71-78. [DOI: 10.1016/j.chroma.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
|
19
|
Ariffin MM, Azmi AHM, Saleh NM, Mohamad S, Rozi SKM. Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Lee J, Bang SH, Kim YH, Min J. Toxicities of Four Parabens and Their Mixtures to Daphnia magna and Aliivibrio fischeri. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018018. [PMID: 30661339 PMCID: PMC6341168 DOI: 10.5620/eht.e2018018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/21/2018] [Indexed: 05/22/2023]
Abstract
The objective of this study was to determine toxicities of four parabens (methyl paraben, MP; ethyl paraben, EP; n-propyl paraben, PP; and n-butyl paraben; BP) and their mixtures to two aquatic microorganisms, Daphnia magna and Aliivibrio fischeri. Parabens are one of the widely used preservatives for personal care products, such as cosmetics, pharmaceuticals and food also. First, each paraben was treated to D. magna to measure the toxicity levels as LC20 and LC50. The results showed their value of MP (25.2 mg/L, 73.4 mg/L), EP (18.4 mg/L, 43.7 mg/L), PP (10.4 mg/L, 21.1 mg/L) and BP (3.3 mg/L, 11.2 mg/L). Then, each of the parabens was treated to A. fischeri and calculated their EC20 and EC50 by bioluminescence inhibition test. The results showed the values of MP (2.93 mg/L, 16.8 mg/L), EP (1.18 mg/L, 6.74 mg/L), PP (0.51 mg/L, 5.85 mg/L) and BP (0.21 mg/L, 2.34 mg/L). These four parabens belong to the group classified as being 'harmful to aquatic organisms' (above 10 mg/L, below 100 mg/L). After measuring the toxicity, EC20 values of two or more parabens were tested in order to investigate their toxicity. A total of ten combinations of four parabens were tested. As a result, the bioluminescence inhibition test of A. fischeri showed that the toxicity of mixture parabens was stronger than that of a single compound and combinations of three parabens showed the highest bioluminescence inhibition. These results showed that independent toxicity of paraben was maintained. Therefore, it can be predictable that the toxicity of paraben is getting stronger by the addition of other parabens.
Collapse
Affiliation(s)
- Jaewoong Lee
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Seung Hyuck Bang
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
- Corresponding author: Jiho Min Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea E-mail:
| |
Collapse
|
21
|
Coors A, Vollmar P, Sacher F, Polleichtner C, Hassold E, Gildemeister D, Kühnen U. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification. WATER RESEARCH 2018; 140:56-66. [PMID: 29684702 DOI: 10.1016/j.watres.2018.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The aquatic environment is continually exposed to a complex mixture of chemicals, whereby effluents of wastewater treatment plants (WWTPs) are one key source. The aim of the present study was to investigate whether environmental risk assessments (ERAs) addressing individual substances are sufficiently protective for such coincidental mixtures. Based on a literature review of chemicals reported to occur in municipal WWTP effluents and mode-of-action considerations, four different types of mixtures were composed containing human pharmaceuticals, pesticides, and chemicals regulated under REACH. The experimentally determined chronic aquatic toxicity of these mixtures towards primary producers and the invertebrate Daphnia magna could be adequately predicted by the concept of concentration addition, with up to 5-fold overestimation and less than 3-fold underestimation of mixture toxicity. Effluents of a municipal WWTP had no impact on the predictability of mixture toxicity and showed no adverse effects on the test organisms. Predictive ERAs for the individual mixture components based on here derived predicted no effect concentrations (PNECs) and median measured concentrations in WWTP effluents (MCeff) indicated no unacceptable risk for any of the individual chemicals, while MCeff/PNEC summation indicated a possible risk for multi-component mixtures. However, a refined mixture assessment based on the sum of toxic units at species level indicated no unacceptable risks, and allowed for a safety margin of more than factor 10, not taking into account any dilution of WWTP effluents by surface waters. Individual substances, namely climbazole, fenofibric acid and fluoxetine, were dominating the risks of the investigated mixtures, while added risk due to the mixture was found to be low with the risk quotient being increased by less than factor 2. Yet, uncertainty remains regarding chronic mixture toxicity in fish, which was not included in the present study. The number and identity of substances composing environmental mixtures such as WWTP effluents is typically unknown. Therefore, a mixture assessment factor is discussed as an option for a prospective ERA of mixtures of unknown composition.
Collapse
Affiliation(s)
- Anja Coors
- ECT Oekotoxikologie GmbH, Boettgerstrasse 2-14, 65439 Flörsheim/Main, Germany.
| | - Pia Vollmar
- ECT Oekotoxikologie GmbH, Boettgerstrasse 2-14, 65439 Flörsheim/Main, Germany
| | - Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | | | - Enken Hassold
- UBA - German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Daniela Gildemeister
- UBA - German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Ute Kühnen
- UBA - German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| |
Collapse
|
22
|
Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction. J Chromatogr A 2018; 1564:102-109. [DOI: 10.1016/j.chroma.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022]
|
23
|
Farajzadeh MA, Bakhshizadeh Aghdam M, Afshar Mogaddam MR, Alizadeh Nabil AA. Simultaneous derivatization and lighter-than-water air-assisted liquid-liquid microextraction using a homemade device for the extraction and preconcentration of some parabens in different samples. J Sep Sci 2018; 41:3105-3112. [PMID: 29873179 DOI: 10.1002/jssc.201701022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 01/30/2023]
Abstract
Simultaneous derivatization and air-assisted liquid-liquid microextraction using an organic that is solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p-xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90-2.7 and 3.0-6.1 ng/mL, respectively. The enrichment and enhancement factors were in the ranges of 370-430 and 489-660, respectively. The method precision, expressed as the relative standard deviation, was within the range of 4-6% (n = 6) and 4-9% (n = 4) for intra- and interday precisions, respectively. The proposed method was successfully used for the determination of methyl-, ethyl-, and propyl parabens in cosmetic, hygiene and food samples, and personal care products.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
24
|
Doná G, Dagostin JLA, Takashina TA, de Castilhos F, Igarashi-Mafra L. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations. ENVIRONMENTAL TECHNOLOGY 2018; 39:1238-1249. [PMID: 28464729 DOI: 10.1080/09593330.2017.1326528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/29/2017] [Indexed: 05/22/2023]
Abstract
Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO2. In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L-1 at pH 9 and 500 mg L-1 TiO2. The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (kapp) equal to 0.0505 min-1 and an initial reaction rate of 1.5641 mg (L min)-1. Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.
Collapse
Affiliation(s)
- Giovanna Doná
- a Department of Chemical Engineering , Federal University of Parana , Curitiba-PR , Brazil
| | | | | | - Fernanda de Castilhos
- b Department of Chemical Engineering , Santa Maria Federal University , Santa Maria-RS , Brazil
| | - Luciana Igarashi-Mafra
- a Department of Chemical Engineering , Federal University of Parana , Curitiba-PR , Brazil
| |
Collapse
|
25
|
Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta 2018; 176:551-557. [DOI: 10.1016/j.talanta.2017.08.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/23/2023]
|
26
|
Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS. Procedures of determining organic trace compounds in municipal sewage sludge-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4383-4412. [PMID: 27966086 DOI: 10.1007/s11356-016-8202-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Sewage sludge is the largest by-product generated during the wastewater treatment process. Since large amounts of sludge are being produced, different ways of disposal have been introduced. One tempting option is to use it as fertilizer in agricultural fields due to its high contents of inorganic nutrients. This, however, can be limited by the amount of trace contaminants in the sewage sludge, containing a variety of microbiological pollutants and pathogens but also inorganic and organic contaminants. The bioavailability and the effects of trace contaminants on the microorganisms of soil are still largely unknown as well as their mixture effects. Therefore, there is a need to analyze the sludge to test its suitability before further use. In this article, a variety of sampling, pretreatment, extraction, and analysis methods have been reviewed. Additionally, different organic trace compounds often found in the sewage sludge and their methods of analysis have been compiled. In addition to traditional Soxhlet extraction, the most common extraction methods of organic contaminants in sludge include ultrasonic extraction (USE), supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), and pressurized liquid extraction (PLE) followed by instrumental analysis based on gas or liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Petra C Lindholm-Lehto
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Heidi S J Ahkola
- Finnish Environment Institute (SYKE), Survontie 9 A, FI-40500, Jyväskylä, Finland
| | - Juha S Knuutinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
27
|
Detection of trans-fatty acids by high performance liquid chromatography coupled with in-tube solid-phase microextraction using hydrophobic polymeric monolith. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:214-221. [DOI: 10.1016/j.jchromb.2016.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022]
|
28
|
Anwer F, Chaurasia S, Khan AA. Hormonally active agents in the environment: a state-of-the-art review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:415-433. [PMID: 27487487 DOI: 10.1515/reveh-2016-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.
Collapse
|
29
|
Piri-Moghadam H, Ahmadi F, Pawliszyn J. A critical review of solid phase microextraction for analysis of water samples. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Djatmika R, Hsieh CC, Chen JM, Ding WH. Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography−mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:93-99. [DOI: 10.1016/j.jchromb.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
|
31
|
Cuerda-Correa EM, Domı́nguez-Vargas JR, Muñoz-Peña MJ, González T. Ultraviolet-Photoassisted Advanced Oxidation of Parabens Catalyzed by Hydrogen Peroxide and Titanium Dioxide. Improving the System. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo M. Cuerda-Correa
- Department of Organic and Inorganic Chemistry and ‡Department of
Chemical Engineering
and Physical Chemistry, Faculty
of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Joaquı́n R. Domı́nguez-Vargas
- Department of Organic and Inorganic Chemistry and ‡Department of
Chemical Engineering
and Physical Chemistry, Faculty
of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - María J. Muñoz-Peña
- Department of Organic and Inorganic Chemistry and ‡Department of
Chemical Engineering
and Physical Chemistry, Faculty
of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| | - Teresa González
- Department of Organic and Inorganic Chemistry and ‡Department of
Chemical Engineering
and Physical Chemistry, Faculty
of Sciences, University of Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
| |
Collapse
|
32
|
Zgoła-Grześkowiak A, Jeszka-Skowron M, Czarczyńska-Goślińska B, Grześkowiak T. Determination of Parabens in Polish River and Lake Water as a Function of Season. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1120739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:29-38. [PMID: 26151382 DOI: 10.1016/j.jhazmat.2015.06.060] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 05/06/2023]
Abstract
In the present study, parabens, p-hydroxybenzoic acid (PHBA) and chlorinated derivatives, were simultaneously determined in wastewater and sludge samples along the whole process in an advanced wastewater treatment plant (WWTP). Nine target compounds were detected in this WWTP, and methylparaben and PHBA were the dominant compounds in these samples. It is noteworthy that octylparaben with longer chain was firstly detected in this work. Mass balance results showed that 91.8% of the initial parabens mass loading was lost mainly due to degradation, while the contribution of sorption and output of primary and excess sludge was much less (7.5%), indicating that biodegradation played a significant role in the removal of parabens during the conventional treatment process. Specifically, parabens were mainly degraded in the anaerobic tank, and PHBA could be effectively removed at high rates after the advanced treatment. However, both biodegradation and adsorption accounted for minor contribution to the removal of chlorinated parabens during conventional treatment process, and they were only scantly removed by conventional treatment (33.9-40.7%) and partially removed by advanced treatment (59.2-82.8%). Risk assessment indicated that parabens and their chlorinated derivatives in second and tertiary effluent are not likely to produce biological effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, University of Science and Technology Beijing, Beijing 100083, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihong Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
34
|
Characterization of Aroma-Active Compounds of Pu-erh Tea by Headspace Solid-Phase Microextraction (HS-SPME) and Simultaneous Distillation-Extraction (SDE) Coupled with GC-Olfactometry and GC-MS. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0303-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Alshana U, Ertaş N, Göğer NG. Determination of parabens in human milk and other food samples by capillary electrophoresis after dispersive liquid–liquid microextraction with back-extraction. Food Chem 2015; 181:1-8. [DOI: 10.1016/j.foodchem.2015.02.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/04/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
|
36
|
Yılmazcan Ö, Kanakaki C, Izgi B, Rosenberg E. Fast determination of octinoxate and oxybenzone uv filters in swimming pool waters by gas chromatography/mass spectrometry after solid-phase microextraction. J Sep Sci 2015; 38:2286-97. [DOI: 10.1002/jssc.201401250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/15/2015] [Accepted: 04/12/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Ö Yılmazcan
- Uludag University, Faculty of Arts and Sciences; Department of Chemistry; Bursa Turkey
- Vienna University of Technology; Institute of Chemical Technologies and Analytics; Getreidemarkt 9/164 AC Vienna Austria
| | - C. Kanakaki
- Vienna University of Technology; Institute of Chemical Technologies and Analytics; Getreidemarkt 9/164 AC Vienna Austria
| | - B. Izgi
- Uludag University, Faculty of Arts and Sciences; Department of Chemistry; Bursa Turkey
| | - E. Rosenberg
- Vienna University of Technology; Institute of Chemical Technologies and Analytics; Getreidemarkt 9/164 AC Vienna Austria
| |
Collapse
|
37
|
Asiabi H, Yamini Y, Seidi S, Esrafili A, Rezaei F. Electroplating of nanostructured polyaniline–polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction. J Chromatogr A 2015; 1397:19-26. [DOI: 10.1016/j.chroma.2015.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
38
|
Liu WL, Lirio S, Yang Y, Wu LT, Hsiao SY, Huang HY. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction. J Chromatogr A 2015; 1395:32-40. [DOI: 10.1016/j.chroma.2015.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
39
|
Abstract
The literature concerning the issue of canine sex pheromones includes reports presenting completely conflicting opinions about the chemical composition of the canine urine in the context of semiochemical communication. At present, the predominant report cited by many different authors is the article published in Science in 1979 by Goodwin at al., presenting methyl p-hydroxybenzoate (methyl paraben) as the main canine sex pheromone. While it has been proved that pure methyl paraben lacks semiochemical activity as do commercially available products containing this substance (Eau D'Estrus, Synbiotics, USA), in view of the conflicting published reports the aim of this study was to revaluate using modern techniques the presence of methyl p-hydroxybenzoate in canine urine during different phases of the ovarian cycle. Ten female dogs of different breeds were used. Urine samples from bitches collected during various stages of the ovarian cycle were examined with using the SPME and GC/MS methods. Methyl paraben was not detected in any of the samples. In conclusion, because of the lack of methyl-p-hydroxybenzoate in the samples examined, the present study confirmed negative opinions on the possibility of this substance playing a crucial role in semiochemical communication during reproduction in dogs (Canis familiaris).
Collapse
|
40
|
Hashemi B, Shamsipur M, Fattahi N. Solid-Phase Extraction Followed by Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Drop for the Determination of Parabens. J Chromatogr Sci 2015; 53:1414-9. [DOI: 10.1093/chromsci/bmv011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Indexed: 11/12/2022]
|
41
|
Ocaña-González JA, Villar-Navarro M, Ramos-Payán M, Fernández-Torres R, Bello-López MA. New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Anal Chim Acta 2015; 858:1-15. [DOI: 10.1016/j.aca.2014.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 11/25/2022]
|
42
|
Haman C, Dauchy X, Rosin C, Munoz JF. Occurrence, fate and behavior of parabens in aquatic environments: a review. WATER RESEARCH 2015; 68:1-11. [PMID: 25462712 DOI: 10.1016/j.watres.2014.09.030] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 05/24/2023]
Abstract
Parabens are esters of para-hydroxybenzoic acid, with an alkyl (methyl, ethyl, propyl, butyl or heptyl) or benzyl group. They are mainly used as preservatives in foodstuffs, cosmetics and pharmaceutical drugs. Parabens may act as weak endocrine disrupter chemicals, but controversy still surrounds the health effects of these compounds. Despite being used since the mid-1920s, it was only in 1996 that the first analytical results of their occurrence in water were published. Considered as emerging contaminants, it is useful to review the knowledge acquired over the last decade regarding their occurrence, fate and behavior in aquatic environments. Despite treatments that eliminate them relatively well from wastewater, parabens are always present at low concentration levels in effluents of wastewater treatment plants. Although they are biodegradable, they are ubiquitous in surface water and sediments, due to consumption of paraben-based products and continuous introduction into the environment. Methylparaben and propylparaben predominate, reflecting the composition of paraben mixtures in common consumer products. Being compounds containing phenolic hydroxyl groups, parabens can react readily with free chlorine, yielding halogenated by-products. Chlorinated parabens have been detected in wastewater, swimming pools and rivers, but not yet in drinking water. These chlorinated by-products are more stable and persistent than the parent species and further studies are needed to improve knowledge regarding their toxicity.
Collapse
Affiliation(s)
- Camille Haman
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 rue Lionnois, 54000 Nancy, France
| | | | | | | |
Collapse
|
43
|
Piao C, Chen L, Wang Y. A review of the extraction and chromatographic determination methods for the analysis of parabens. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969:139-48. [DOI: 10.1016/j.jchromb.2014.08.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
|
44
|
Błędzka D, Gromadzińska J, Wąsowicz W. Parabens. From environmental studies to human health. ENVIRONMENT INTERNATIONAL 2014; 67:27-42. [PMID: 24657492 DOI: 10.1016/j.envint.2014.02.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 05/22/2023]
Abstract
Parabens are a group of substances commonly employed as preservatives, mainly in personal care products, pharmaceuticals and food. Scientific reports concerning their endocrine disrupting potential and the possible link with breast cancer raised wide discussion about parabens' impact and safety. This paper provides holistic overview of paraben usage, occurrence in the environment, methods of their degradation and removal from aqueous solution, as well as hazards related to their endocrine disrupting potential and possible involvement in carcinogenesis.
Collapse
Affiliation(s)
- Dorota Błędzka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, ul. św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland.
| | - Jolanta Gromadzińska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, ul. św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
| | - Wojciech Wąsowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, ul. św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
| |
Collapse
|
45
|
Khani R, Ghasemi JB, Shemirani F. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:295-303. [PMID: 24317257 DOI: 10.1016/j.saa.2013.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples.
Collapse
Affiliation(s)
- Rouhollah Khani
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Jahan B Ghasemi
- Department of Chemistry, Faculty of Sciences, K.N. Toosi University of Technology, Tehran 16617, Iran
| | - Farzaneh Shemirani
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
46
|
Gholivand MB, Shamsipur M, Dehdashtian S, Rajabi HR. Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer–carbon paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:102-7. [DOI: 10.1016/j.msec.2013.11.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/15/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
47
|
Zhang L, Er JC, Xu W, Qin X, Samanta A, Jana S, Lee CLK, Chang YT. “Orange alert”: A fluorescent detector for bisphenol A in water environments. Anal Chim Acta 2014; 815:51-6. [DOI: 10.1016/j.aca.2014.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/18/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022]
|
48
|
González-Doncel M, García-Mauriño JE, San Segundo L, Beltrán EM, Sastre S, Fernández Torija C. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: effects on early development and post-hatching growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:360-369. [PMID: 24095706 DOI: 10.1016/j.envpol.2013.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Here we proposed a battery of non-invasive biomarkers and a histological survey to examine physiological/anatomical features in embryos, eleutheroembryos (13 days post-fertilization, dpf), and larvae (28-42 dpf) of medaka to investigate the effects of embryonic exposure to propylparaben (PrP). Concentrations <1000 μg PrP/L didn't exert early or late toxic effects. However, survivorship was affected at 4000 μg/L in eleutheroembryos and at ≥1000 μg/L in larvae. Histological alterations were found in 37.5% of eleutheroembryos exposed to 4000 μg PrP/L. Morphometric analysis of the gallbladder revealed significant dilation at ≥400 μg/L throughout embryo development. Ethoxyresorufin-O-deethylase (EROD), as indicator of cytochrome P4501A activity, didn't reveal induction/inhibition although its combination with a P4501A agonist (i.e. β-naphthoflavone) resulted in a synergic EROD response. Results suggest a low toxicity of PrP for fish and support the use of fish embryos and eleutheroembryos as alternatives of in vivo biomarkers indicative of exposure/toxicity.
Collapse
Affiliation(s)
- Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of the Environment, National Institute for Agricultural and Food Research and Technology, A-6, Km. 7.5, E-28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Hou F, Deng X, Jiang X, Yu J. Determination of Parabens in Beverage Samples by Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet. J Chromatogr Sci 2013; 52:1332-8. [DOI: 10.1093/chromsci/bmt175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Zhang J, Sun B, Guan X, Wang H, Bao H, Huang Y, Qiao J, Zhou G. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13011-13019. [PMID: 24138607 DOI: 10.1021/es402118v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , 200092 Shanghai, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|