1
|
Plavchak CL, Liu J, Wang Y, Xu X, Faustino PJ, Qu H, Smith WC. Utilization of AF4 for characterizing complex nanomaterial drug products: Reexamining sample recovery and its impact on particle size distribution as a quality attribute. J Chromatogr A 2025; 1743:465703. [PMID: 39874741 DOI: 10.1016/j.chroma.2025.465703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Asymmetrical flow field-flow fractionation (AF4) with multi-detection has continued to gain wider acceptance for characterizing complex drug products. An important quality attribute for these products is the measurement of the particle size distribution (PSD). Current limitations of established procedures (e.g., dynamic light scattering) for accurately determining PSD can be overcome by AF4. However, while gaining acceptance this technique has not been fully adopted within the pharmaceutical industry. A technical understanding of fundamental operational factors is necessary for the successful application of utilizing any emerging technology. For example, recovery (R% = AS/AD*100, where AS and AD are the peak areas from the concentration detector with and without the crossflow field, respectively) is one factor that is used to assess the robustness during AF4 method development, but currently little is known about the interplay between analyte recovery and PSD. This work highlights factors that impact calculated AF4 recovery, and how differences in analyte and absolute recovery ultimately influence the PSD of nanoparticle size standards and complex drug product formulations such as emulsions and liposomes. Factors like ionic strength, buffer composition, and analyte chemistries, which are the most common factors associated with changes to R% in AF4, contributed to changes in AS. While AD is not typically examined in detail, the selection of the concentration detector (UV or dRI) along with their instrumental parameters (e.g., wavelength, attenuation value, linear range) and sample preparation was shown to under- or over-estimate AD thus changing R%. Examining both components of R% and their contributions to analyte and absolute recovery show that decreases in analyte recovery may not be exclusively due to sample loss but could be influenced by changes in analyte-membrane interactions or analyte instability. Because of this, four relationships between recovery and PSD were defined. While R% is used as a tool for assessing AF4 methodology, the factors investigated through this work warrant further considerations when establishing an appropriate R% threshold.
Collapse
Affiliation(s)
- Christine L Plavchak
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Joanne Liu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Xiaoming Xu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Patrick J Faustino
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Haiou Qu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| | - William C Smith
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
2
|
Marassi V, La Rocca G, Placci A, Muntiu A, Vincenzoni F, Vitali A, Desiderio C, Maraldi T, Beretti F, Russo E, Miceli V, Conaldi PG, Papait A, Romele P, Cargnoni A, Silini AR, Alviano F, Parolini O, Giordani S, Zattoni A, Reschiglian P, Roda B. Native characterization and QC profiling of human amniotic mesenchymal stromal cell vesicular fractions for secretome-based therapy. Talanta 2024; 276:126216. [PMID: 38761653 DOI: 10.1016/j.talanta.2024.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Anna Placci
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Alexandra Muntiu
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy.
| |
Collapse
|
3
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
4
|
Geißler F, Martínez-Cabanas M, Lodeiro P, Achterberg EP. Optimization of hyphenated asymmetric flow field-flow fractionation for the analysis of silver nanoparticles in aqueous solutions. Anal Bioanal Chem 2021; 413:6889-6904. [PMID: 34537865 PMCID: PMC8449749 DOI: 10.1007/s00216-021-03647-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The extensive use of silver nanoparticles (AgNPs) in consumer products, medicine, and industry leads to their release into the environment. Thus, a characterization of the concentration, size, fate, and toxicity of AgNPs under environmental conditions is required. In this study, we present the characterization and optimization of an asymmetric flow field-flow fractionation (AF4) system coupled with UV/Vis spectrophotometer and dynamic light scattering (DLS) detector as a powerful tool for the size separation and multi-parameter characterization of AgNPs in complex matrices. The hyphenated AF4-UV/Vis-DLS system was first characterized using individual injections of the different size fractions. We used electrostatically stabilized AgNPs of 20-, 50-, and 80-nm nominal diameters coated with lipoic acid. We investigated the effect of applied cross-flows, carrier solutions, focus times, and quantity of injected particles on the nature of the AF4 fractograms and on the integrity of the AgNPs. Best size separation of a 1:1 mixture of 20- and 80-nm AgNPs was achieved using cross-flows of 0.5 and 0.7 mL/min with 1 mM NaCl and 0.05% v/v Mucasol as carrier solutions. We also researched the behavior of AgNPs in natural waters using the hyphenated AF4-UV/Vis-DLS system, under determined optimal conditions. Schematic and photograph of the AF4 setup with numbered hardware devices. Dashed lines represent electrical connections; continuous lines represent fluidic connections. For a better overview, not all fluidic connections between pump/6-way valve (2) and the Eclipse AF4 device (3) are shown in the schematic. The fluorescence detector (FL (7)) was not used in the study presented herein.
Collapse
Affiliation(s)
- Felix Geißler
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - María Martínez-Cabanas
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Pablo Lodeiro
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Chemistry, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198, Lleida, Spain
| | - Eric P Achterberg
- Chemical Oceanography, Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
5
|
Centrifugal ultrafiltration preconcentration for studying the colloidal phase of a uranium-containing soil suspension. J Chromatogr A 2021; 1640:461957. [PMID: 33582516 DOI: 10.1016/j.chroma.2021.461957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
The objective of this work was to explore centrifugal ultrafiltration (UF) to separate and / or preconcentrate natural colloidal particles for their characterization. A soil suspension obtained by batch leaching was used as a laboratory reference sample. It was preconcentrated with concentration factors (CF) varying from 10 to 450. The dimensional analysis of the colloidal phase was carried out by Asymmetric Flow Field-Flow Fractionation (AF4)-multidetection. The colloidal masses were estimated by mass balance of the initial suspension, its concentrates and filtrates. The size-dependent distribution (expressed in gyration radius) and total colloidal mass (especially recovery), as well as chemical composition and concentration (including species partitioning between dissolved and colloidal phases) were determined to assess the effects of UF preconcentration on colloidal particles. The gyration radius of the colloidal particles recovered in these concentrated suspensions ranged from about 20 nm to over 150 nm. Neither de-agglomeration nor agglomeration was observed. However, only (64 ± 4) % (CF = 10) of the colloidal particles initially in the soil suspension were found in the recovered concentrated suspensions, and this percentage decreased as CF increased. The filter membrane trapped all other particles, mainly the larger ones. Whatever the CF, the centrifugal UF did not appear to change the dissolved-colloidal partitioning of certain species (Al, organic carbon); whereas it led to an enrichment of the colloidal phase for others (Fe, U). The enrichment rate was specific to each species (15% for Fe; 100% for U). By fitting the observed trends (i.e. conservation, depletion or enrichment of the colloidal phase in the concentrate) as a function of CF, the colloidal concentrations (total and species) were assessed without bias. This methodology offers a new perspective for determining physicochemical speciation in natural waters, with a methodology applicable for environmental survey or site remediation studies.
Collapse
|
6
|
Ojeda D, Sánchez P, Bolea E, Laborda F, Castillo JR. How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation. J Chromatogr A 2020; 1635:461759. [PMID: 33278672 DOI: 10.1016/j.chroma.2020.461759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
The use of a commercially available short length channel (14 cm length) is proposed to improve the efficiency associated to the separation by asymmetrical flow field-flow fractionation of particles in the nanometer range respect to a standard channel (27 cm length). The effect of channel length on elution times, separation efficiency and resolution have been studied. Polystyrene particles between 50 and 500 nm in size have been used to compare the behavior of both channels. Theoretical aspects based on the different contributions on particle diffusion inside the channel during the separation process have been considered to justify the results obtained. Non-equilibrium diffusion contribution to the efficiency has shown to be the most relevant aspect to be controlled during the separation. The increment of the field strength applied through the cross-flow velocityallows the reduction of diffusion while keep elution times constant. The use of the same cross-flow in a channel with a smaller area is the key factor that justifies the better efficiencies observed along the whole size range studied (improvements that reach factors up to 4.7 in experimental efficiency respect to the standard channel were achieved). The separation of polystyrene particles of 100 and 200 nm was achieved with a resolution of 1.20, whereas a 0.66 value was obtained with the standard channel at the same elution times. Channel recoveries have been also compared under optimized conditions to ensure that no side effects are produced, including the separation of mixtures of TiO2 nanoparticles. Similar or even better values were obtained with the short length channel, with recoveries higher than 85% for all the polystyrene particles tested and 75% recovery for the TiO2 nanoparticle mixture, which justifies its use for the separation of nanoparticles, providing better resolutions without compromise elution times or recoveries.
Collapse
Affiliation(s)
- David Ojeda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Pablo Sánchez
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Eduardo Bolea
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain.
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Juan R Castillo
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| |
Collapse
|
7
|
Comprehensive characterization of gold nanoparticles and their protein conjugates used as a label by hollow fiber flow field flow fractionation with photodiode array and fluorescence detectors and multiangle light scattering. J Chromatogr A 2020; 1636:461739. [PMID: 33316566 DOI: 10.1016/j.chroma.2020.461739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Most of lateral flow immunoassay (LFIA) devices rely on gold nanoparticles (GNP) labeled antibodies or other biospecific proteins, to achieve reagent-less color-based detection. GNP size, GNP-protein conjugation level and its stability are crucial points for the development of precise and accurate methods. In addition, the purification of the GNP-protein conjugates from unreacted protein and GNP, is necessary for adequate analytical performance of the assay. To assist the synthesis and production process of GNP and their protein conjugates, we use for the first time a non-destructive, particle separation-multi-detection approach based on miniaturized flow field flow fractionation (HF5). A separation method was developed to baseline size-separate GNP, GNP-protein, protein and GNP including BSA used as a surface coater in less than 30 minutes. Freshly synthesized GNP were first characterized and then conjugated with two different model antibodies: a mouse immunoglobulin (IgG) and a fluorescein-labeled mouse immunoglobulin (FITC-IgG). The IgG-GNP complexes were fractionated using the HF5 apparatus, able to separate IgG-GNP from free proteins by their hydrodynamic size, allowing purification of the conjugation product. Both IgG-GNPs and GNPs were characterized according to their size by the MALS detector, and according to their Surface Plasmon Resonance and spectrum by UV-Vis detection, improving the results obtained via batch characterization. This simple non-invasive approach is very useful for the LFIA development and optimization: the use of HF5-mutidetection offers a unique tool for this purpose facilitating the industrialization of the process and the relate optimization and standardization.
Collapse
|
8
|
Wang Y, Cuss C, Shotyk W. Application of asymmetric flow field-flow fractionation to the study of aquatic systems: Coupled methods, challenges, and future needs. J Chromatogr A 2020; 1632:461600. [DOI: 10.1016/j.chroma.2020.461600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
|
9
|
Campos DA, Schaumann GE, Philippe A. Natural TiO 2-Nanoparticles in Soils: A Review on Current and Potential Extraction Methods. Crit Rev Anal Chem 2020; 52:1-21. [PMID: 33054361 DOI: 10.1080/10408347.2020.1823812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The monitoring of anthropogenic TiO2-nanoparticles in soils is challenged by the knowledge gap on their characteristics of the large natural TiO2-nanoparticle pool. Currently, no efficient method is available for characterizing natural TiO2-nanoparticles in soils without an extraction procedure. Considering the reported diversity of extraction methods, the following article reviews and discusses their potential for TiO2 from soils, focusing on the selectivity and the applicability to complex samples. It is imperative to develop a preparative step reducing analytical interferences and producing a stable colloidal dispersion. It is suggested that an oxidative treatment, followed by alkaline conditioning and the application of dispersive agents, achieve such task. This enables the further separation and characterization through size or surface-based separation (i.e., hydrodynamic fractionation methods, filtration or sequential centrifugation). Meanwhile, cloud point extraction, gel electrophoresis, and electrophoretic deposition have been studied on various nanoparticles but not on TiO2-nanoparticles. Furthermore, industrially applied methods in, for example, kaolin processing (flotation and flocculation) are interesting but require further improvements on terms of selectivity and applicability to soil samples. Overall, none of the current extraction methods is sufficient toward TiO2; however, further optimization or combination of orthogonal techniques could help reaching a fair selectivity toward TiO2.
Collapse
Affiliation(s)
- Daniel Armando Campos
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Gabriele Ellen Schaumann
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Allan Philippe
- iES, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
10
|
Tan Z, Bai Q, Yin Y, Zhang Y, Chen Q, Moon MH, Liu J. On-line determination of soluble Zn content and size of the residual fraction in PM 2.5 incubated in various aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138309. [PMID: 32272413 DOI: 10.1016/j.scitotenv.2020.138309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Transition metals in airborne particulate matter, especially those with aerodynamic diameters no more than 2.5 μm (PM2.5), have attracted considerable attention due to their potential environmental and human health risks. However, determination of these potential risks requires comprehensive knowledge of their dissolution behavior and residual size in aqueous media. Herein, we describe an analytical method for on-line determination of the soluble fraction of Zn as a model transition metal and the size of residual PM2.5 using hollow fiber flow field-flow fractionation (HF5) coupled with UV-vis absorption spectroscopy and inductively coupled plasma optical emission spectroscopy. HF5 was directly applied on the incubated samples in pure water (PW), simulated natural water (SNW), and simulated lung fluid (SLF) due to its efficient in-line filtration and excellent fractionation resolution. Firstly, the potential of the proposed method (under optimized conditions) for size characterization was assessed against commercial silica microparticles, and results in good agreement with manufacturer and scanning electron microscopy values were obtained. The accuracy of quantification of soluble Zn in various media was then validated using a standard reference material in terms of satisfactory recoveries compared with the reference values. For the real PM2.5 samples collected from different sites in Beijing, China, the soluble Zn percentages in PW, SNW, and SLF were within 15.4-16.7%, 10.6-12.7%, and 43.1-46.9%, respectively, with the amount of particles smaller than ~10 nm released from PM2.5 increasing in the order of SNW < PW < SLF. The proposed HF5-based method provides a powerful and efficient tool for the quantification of soluble transition metal fractions and size characterization of residual particles with reduced analysis times, thus possessing great promise in real-time tracking of the transformation of PM2.5 in environmental and physiological media and in risk assessment.
Collapse
Affiliation(s)
- Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qingsheng Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Maknun L, Sumranjit J, Siripinyanond A. Use of flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry for size determination of selenium nanoparticles in a mixture. RSC Adv 2020; 10:6423-6435. [PMID: 35495991 PMCID: PMC9049635 DOI: 10.1039/c9ra07120b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Various analytical techniques have been used for size analysis of selenium nanoparticles (SeNPs). These include flow field-flow fractionation (FlFFF), single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), dynamic light scattering (DLS) and transmission electron microscopy (TEM). For hydrodynamic diameter estimation, the FlFFF technique was used and the results were compared with those analyzed by DLS. For core diameter estimation, the results obtained from SP-ICP-MS were compared with those from TEM. Two types of FlFFF channel were employed, i.e., symmetrical FlFFF (Sy-FlFFF) and asymmetrical FlFFF (Asy-FlFFF). Considering the use of FlFFF, optimization was performed on a Sy-FlFFF channel to select the most appropriate carrier liquid and membrane in order to minimize problems due to particle membrane interaction. The use of FL-70 and 10 kDa RC provided an acceptable compromise peak quality and size accuracy for all samples of SeNPs which were coated by proteins (positively charged SeNPs) and sodium dodecyl sulfate (negatively charged SeNPs). FlFFF always yielded the lower estimate of the hydrodynamic size than DLS as a reference method. The results obtained by SP-ICP-MS were consistent with the TEM method for the core diameter estimation. The results from FlFFF and the DLS reference method were significantly different as confirmed by paired t-test analysis, while the results provided by SP-ICP-MS and the TEM reference method were not significantly different. Furthermore, consecutive size analysis by SP-ICP-MS for the fractions collected from FlFFF was proposed for sizing of SeNP mixtures. The combined technique helps to improve the size analysis in the complex samples and shows more advantages than using only SP-ICP-MS.
Collapse
Affiliation(s)
- Luluil Maknun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5195
| | - Jitapa Sumranjit
- National Nanotechnology Center, National Science and Technology Development Agency 111 Phahonyothin Rd., Klongluang Pathumthani 12120 Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5195
| |
Collapse
|
12
|
Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2020; 412:1563-1572. [PMID: 31938845 DOI: 10.1007/s00216-019-02383-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 01/14/2023]
Abstract
Virus-like particles (VLPs) are widely used in medicine, but can be difficult to characterize and isolate from aggregates. In this research, primarily cyclical electrical field-flow fractionation (CyElFFF) coupled with multi-angle light scattering (MALS), and dynamic light scattering (DLS) detectors, was used for the first time to perform size and electrical characterization of three different types of Q beta bacteriophage virus-like particles (VLPs): a blank Q beta bacteriophage which is denoted as VLP and two conjugated ones with different peptides. The CyElFFF results were verified with transmission electron microscopy (TEM). Asymmetrical flow field-flow fractionation (AF4) coupled with MALS was also applied using conditions similar to those used in the CyElFFF experiments, and the results of the two techniques were compared to each other. Using these techniques, the size and electrophoretic characteristics of the fractionated VLPs in CyElFFF were obtained. The results indicate that CyElFFF can be used to obtain a clear distribution of electrophoretic mobilities for each type of VLP. Accordingly, CyElFFF was able to differentially retain and isolate VLPs with high surface electric charge/electrophoretic mobility from the ones with low electric charge/electrophoretic mobility. Regarding the size characterization, the size distribution of the eluted VLPs was obtained using both techniques. CyElFFF was able to identify subpopulations that did not appear in the AF4 results by generating a shoulder peak, whereas AF4 produced a single peak. Different size characteristics of the VLPs appearing in the shoulder peak and the main peak indicate that CyElFFF was able to isolate aggregated VLPs from the monomers partially. Graphical abstract.
Collapse
|
13
|
Loosli F, Yi Z, Wang J, Baalousha M. Dispersion of natural nanomaterials in surface waters for better characterization of their physicochemical properties by AF4-ICP-MS-TEM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:663-672. [PMID: 31129548 DOI: 10.1016/j.scitotenv.2019.05.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Characterization and understanding of natural nanomaterials (NNMs) properties is essential to differentiate engineered nanomaterials (ENMs) from NNMs. However, NNMs in environmental samples typically occur as heteroaggregates with other particles, e.g., NNMs, ENMs, and larger particles. Therefore, there is a need to isolate NNMs into their primary particles to better characterize their physicochemical properties. Here, we evaluated the efficiency of sodium hydroxide, sodium oxalate, and sodium pyrophosphate to extract NNMs from surface waters. The extracted NNMs were characterized for total metal concentration by inductively coupled plasma-mass spectrometry (ICP-MS) following full digestion; size distribution, elemental composition and ratios by flow-field flow fractionation (AF4)-ICP-MS; and morphology by transmission electron microscopy (TEM). Sodium pyrophosphate extraction resulted in the highest NNM concentration and the smallest NNM size distribution. Sodium hydroxide and sodium oxalate extraction generated heteroaggregates with a broad size distribution. The NNM extraction efficiency increased with extractant (sodium oxalate and sodium pyrophosphate) concentration. The concentration of metals in the sodium pyrophosphate-extracted NNMs compared to the total metal concentration was element-dependent and varied from as high as >80% for Cu, Zn, and Sr to as low as <5% for Al, Ti, and Nb. This study provides a simple protocol for NNM extraction from complex environmental samples and provides a better understanding of NNM physicochemical properties. The presented NNM extraction protocol forms the basis for ENM extraction from natural waters.
Collapse
Affiliation(s)
- Frédéric Loosli
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, USA.
| | - Zybang Yi
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, USA; School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, USA
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, USA.
| |
Collapse
|
14
|
Characterization of TiO2 Nanoparticles in Food Additives by Asymmetric-Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry—a Pilot Study. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01543-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Yu K, Sun C, Zhang B, Hassan M, He Y. Size-dependent adsorption of antibiotics onto nanoparticles in a field-scale wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1079-1087. [PMID: 31091640 DOI: 10.1016/j.envpol.2019.02.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
This work present aims to evaluate the effect of a conventional wastewater treatment process on the number of nanoparticles, and the role of nanoparticles as a carrier of antibiotics. A set of methods based on asymmetrical flow field flow fractionation coupled with multi-angle light scattering to separate and quantify nanoparticles in real wastewater was established. The characterization of nanoparticles was conducted by transmission electron microscopy, energy dispersive spectrometer, UV-visible spectrophotometer and three-dimensional excitation-emission matrix fluorescence spectroscopy. The adsorption of different sizes of nanoparticles separated from the real wastewater for four targeted antibiotics (sulfadiazine, ofloxacin, tylosin and tetracycline) was studied. The results show that the number of nanoparticles were increased in the wastewater treatment process and the size range between 60 and 80 nm was predominant in wastewater samples. The nanoparticles were mainly composed of O, Si, Al and Ca elements and organic components were in the size range of 0-10 nm. Targeted antibiotics were dominantly adsorbed onto nanoparticles with 60-80 nm size range at each stage. The concentrations of tetracycline adsorbed on nanoparticles were surprisingly increased in the end of the treatment process, while ofloxacin and tylosin had the completely opposite phenomenon to tetracycline. The pH and ionic strength definitely affected the aggregation of nanoparticles and interaction with the antibiotics. It is of great significance to give insights into nanoparticle-antibiotic assemblages for the effective treatment and avoiding the water risks due to nanoparticles' ubiquitous and their risks of carrying antibiotics.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chi Sun
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Muhammad Hassan
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
16
|
Particle Size Characterization of Sepia Ink Eumelanin Biopolymers by SEM, DLS, and AF4-MALLS: a Comparative Study. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01448-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Hollow-fiber flow field-flow fractionation and multi-angle light scattering as a new analytical solution for quality control in pharmaceutical nanotechnology. Microchem J 2018. [DOI: 10.1016/j.microc.2016.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Hetzer B, Burcza A, Gräf V, Walz E, Greiner R. Online-coupling of AF4 and single particle-ICP-MS as an analytical approach for the selective detection of nanosilver release from model food packaging films into food simulants. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Choi S, Johnston MV, Wang GS, Huang CP. Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:809-817. [PMID: 28292607 DOI: 10.1016/j.scitotenv.2017.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The current study developed a rationalized method for the quantification and identification of engineered nanoparticles (ENPs) in wastewaters. A review of current literature revealed that overall, presently available methods focused on single ENP mostly and were applicable mainly to samples of low organic loadings or under well-controlled laboratory conditions. In the present research, procedures including dialysis for desalting and low-temperature oxidation for organic removal were used to pretreat samples of high organic loadings, specifically, municipal wastewater and sludge. SEM mapping technique identified the presence of nanoparticles, which was followed by ICP-OES quantification of different engineering nanoparticles in wastewater and sludge samples collected from two major regional municipal wastewater treatment plants. Results showed successful identification and quantification of nano-size titanium and zinc oxides from wastewater treatment plants studied. Concentration profile was mapped out for the wastewater treatment plants (WWTPs) using the method developed in this research. Results also showed an overall 80% and 68% removal of titanium and zinc by primary and secondary sludge particulates, respectively. Mass flux of engineered nanoparticles (ENPs) was also calculated to estimate the daily flow of engineered nanoparticles in the system.
Collapse
Affiliation(s)
- Soohoon Choi
- Department of Civil and Environmental engineering, University of Delaware, Newark, DE 19711, United States
| | - Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19711, United States
| | - Gen-Suh Wang
- Institute of Environmental Health, National Taiwan University, Taipei 100, Taiwan
| | - C P Huang
- Department of Civil and Environmental engineering, University of Delaware, Newark, DE 19711, United States.
| |
Collapse
|
20
|
la Calle ID, Pérez-Rodríguez P, Soto-Gómez D, López-Periago JE. Detection and characterization of Cu-bearing particles in throughfall samples from vine leaves by DLS, AF4-MALLS (-ICP-MS) and SP-ICP-MS. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4) Channels for Nanoparticle Separations. SEPARATIONS 2017. [DOI: 10.3390/separations4010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Hadri HE, Hackley VA. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. ENVIRONMENTAL SCIENCE. NANO 2017; 4:105-116. [PMID: 28507763 PMCID: PMC5427641 DOI: 10.1039/c6en00322b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg-1 level. The objective of this study was to explore cloud point extraction (CPE) as a viable method to pre-concentrate gold nanoparticles (AuNPs), as a model MNP, spiked into a soil extract matrix. To that end, different extraction conditions and surface coatings were evaluated in a simple matrix. The CPE method was then applied to soil extract samples spiked with AuNPs. Total gold, determined by inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion, yielded a recovery greater than 90 %. The first known application of single particle ICP-MS and asymmetric flow field-flow fractionation to evaluate the preservation of the AuNP physical state following CPE extraction is demonstrated.
Collapse
Affiliation(s)
- Hind El Hadri
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| |
Collapse
|
23
|
Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. LAB ON A CHIP 2016; 17:11-33. [PMID: 27830852 DOI: 10.1039/c6lc01045h] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume. Microfluidics has offered a relatively simple, low-cost, and continuous particle separation approach, and has been well-established for micron-sized particle sorting. Here, we review the recent advances in nanoparticle separation using microfluidic devices, focusing on its techniques, its advantages over conventional methods, and its potential applications, as well as foreseeable challenges in the separation of synthetic nanoparticles and biological molecules, especially DNA, proteins, viruses, and exosomes.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Kerwin Kwek Zeming
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| |
Collapse
|
24
|
Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. J Chromatogr A 2016; 1440:150-159. [DOI: 10.1016/j.chroma.2016.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
|
25
|
Han S, Choi J, Yoo Y, Jung EC, Lee S. Size Monitoring in the Synthesis of Silica Nanoparticles Using Asymmetrical Flow Field-Flow Fractionation (AF4). B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sujeong Han
- Department of Chemistry; Hannam University; Daejeon Korea
| | - Jaeyeong Choi
- Department of Chemistry; Hannam University; Daejeon Korea
| | - Yeongsuk Yoo
- Department of Chemistry; Hannam University; Daejeon Korea
| | - Eui Chang Jung
- Nuclear Chemistry Research Center; Korea Atomic energy Research Institute; Daejeon Korea
| | - Seungho Lee
- Department of Chemistry; Hannam University; Daejeon Korea
| |
Collapse
|
26
|
Barahona F, Ojea-Jimenez I, Geiss O, Gilliland D, Barrero-Moreno J. Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A 2016; 1432:92-100. [DOI: 10.1016/j.chroma.2015.12.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
27
|
Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15756-68. [PMID: 26690460 PMCID: PMC4690956 DOI: 10.3390/ijerph121215020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
Regulatory efforts rely on nanometrology for the development and implementation of laws regarding the incorporation of engineered nanomaterials (ENMs) into industrial and consumer products. Copper is currently one of the most common metals used in the constantly developing and expanding sector of nanotechnology. The use of copper nanoparticles in products, such as agricultural biocides, cosmetics and paints, is increasing. Copper based ENMs will eventually be released to the environment through the use and disposal of nano-enabled products, however, the detection of copper ENMs in environmental samples is a challenging task. Single particle inductively coupled plasma mass spectroscopy (spICP-MS) has been suggested as a powerful tool for routine nanometrology efforts. In this work, we apply a spICP-MS method for the detection of engineered copper nanomaterials in colloidal extracts from natural soil samples. Overall, copper nanoparticles were successfully detected in the soil colloidal extracts and the importance of dwell time, background removal, and sample dilution for method optimization and recovery maximization is highlighted.
Collapse
|
28
|
Zhou Z, Guo L. A critical evaluation of an asymmetrical flow field-flow fractionation system for colloidal size characterization of natural organic matter. J Chromatogr A 2015; 1399:53-64. [DOI: 10.1016/j.chroma.2015.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
|
29
|
Herrero P, Bäuerlein PS, Emke E, Marcé RM, Voogt PD. Size and concentration determination of (functionalised) fullerenes in surface and sewage water matrices using field flow fractionation coupled to an online accurate mass spectrometer: Method development and validation. Anal Chim Acta 2015; 871:77-84. [DOI: 10.1016/j.aca.2015.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/21/2023]
|
30
|
Barahona F, Geiss O, Urbán P, Ojea-Jimenez I, Gilliland D, Barrero-Moreno J. Simultaneous Determination of Size and Quantification of Silica Nanoparticles by Asymmetric Flow Field-Flow Fractionation Coupled to ICPMS Using Silica Nanoparticles Standards. Anal Chem 2015; 87:3039-47. [DOI: 10.1021/ac504698j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Francisco Barahona
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| | - Otmar Geiss
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| | - Patricia Urbán
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| | - Isaac Ojea-Jimenez
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| | - Douglas Gilliland
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| | - Josefa Barrero-Moreno
- European Commission, Joint Research Centre,
Institute for Health and Consumer
Protection, Via E. Fermi
2749, 21027 Ispra, Varese Italy
| |
Collapse
|
31
|
Mudalige TK, Qu H, Sánchez-Pomales G, Sisco PN, Linder SW. Simple Functionalization Strategies for Enhancing Nanoparticle Separation and Recovery with Asymmetric Flow Field Flow Fractionation. Anal Chem 2015; 87:1764-72. [DOI: 10.1021/ac503683n] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Thilak K. Mudalige
- Office
of Regulatory Affairs, Arkansas
Regional Laboratory, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Haiou Qu
- Office
of Regulatory Affairs, Arkansas
Regional Laboratory, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Germarie Sánchez-Pomales
- Office
of Regulatory Affairs, Arkansas
Regional Laboratory, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Patrick N. Sisco
- Office
of Regulatory Affairs, Arkansas
Regional Laboratory, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Sean W. Linder
- Office
of Regulatory Affairs, Arkansas
Regional Laboratory, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
32
|
Meisterjahn B, Neubauer E, Von der Kammer F, Hennecke D, Hofmann T. Asymmetrical Flow-Field-Flow Fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J Chromatogr A 2014; 1372C:204-211. [PMID: 25465017 DOI: 10.1016/j.chroma.2014.10.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/06/2014] [Accepted: 10/25/2014] [Indexed: 01/15/2023]
Abstract
Flow-Field-Flow Fractionation (Flow-FFF), coupled with online detection systems, is one of the most promising tools available for the analysis and characterization of engineered nanoparticles (ENPs) in complex matrices. In order to demonstrate the applicability of Flow-FFF for the detection, quantification, and characterization of engineered gold nanoparticles (AuNPs), model dispersions were prepared containing AuNPs with diameters of 30 or 100nm, natural nanoparticles (NNPs) extracted from a soil sample, and different concentrations of natural organic matter (NOM), which were then used to investigate interactions between the AuNPs and the NNPs. It could be shown that light scattering detection can be used to evaluate the fractionation performance of the pure NNPs, but not the fractionation performance of the mixed samples that also contained AuNPs because of specific interactions between the AuNPs and the laser light. A combination of detectors (i.e. light absorbance and inductively coupled plasma mass spectrometry (ICP-MS)) was found to be useful for differentiating between heteroaggregation and homoaggregation of the nanoparticles (NPs). The addition of NOM to samples containing 30nm AuNPs stabilized the AuNPs without affecting the NP size distribution. However, fractograms for samples with no added NOM showed a change in the size distribution, suggesting interactions between the AuNPs and NNPs. This interpretation was supported by unchanged light absorption wavelengths for the AuNPs. In contrast, results for samples containing 100nm AuNPs were inconclusive with respect to recovery and size distributions because of problems with the separation system that probably related to the size and high density of these nanoparticles, highlighting the need for extensive method optimization strategies, even for nanoparticles of the same material but different sizes.
Collapse
Affiliation(s)
- Boris Meisterjahn
- Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Elisabeth Neubauer
- Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria
| | - Frank Von der Kammer
- Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria.
| | - Dieter Hennecke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstr. 14 UZA II, 1090 Vienna, Austria.
| |
Collapse
|
33
|
Bendixen N, Losert S, Adlhart C, Lattuada M, Ulrich A. Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A 2014; 1334:92-100. [DOI: 10.1016/j.chroma.2014.01.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/21/2023]
|
34
|
Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: A tutorial. Anal Chim Acta 2014; 809:9-24. [DOI: 10.1016/j.aca.2013.11.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
|
35
|
Optimization of flow field-flow fractionation for the characterization of natural colloids. Anal Bioanal Chem 2013; 406:1639-49. [DOI: 10.1007/s00216-013-7369-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/08/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
36
|
Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Shon HK. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. WATER RESEARCH 2013; 47:4585-99. [PMID: 23764608 DOI: 10.1016/j.watres.2013.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/06/2013] [Accepted: 04/07/2013] [Indexed: 05/26/2023]
Abstract
Iron nanoparticles are becoming increasingly popular for the treatment of contaminated soil and groundwater; however, their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Assessing their stability under environmental conditions is crucial for determining their environmental fate. A multi-method approach (including different size-measurement techniques and the DLVO theory) was used to thoroughly characterise the behaviour of iron oxide nanoparticles (Fe2O3NPs) under environmentally relevant conditions. Although recent studies have demonstrated the importance of using a multi-method approach when characterising nanoparticles, the majority of current studies continue to use a single-method approach. Under some soil conditions (i.e. pH 7, 10 mM NaCl and 2 mM CaCl2) and increasing particle concentration, Fe2O3NPs underwent extensive aggregation to form large aggregates (>1 μm). Coating the nanoparticles with dissolved organic matter (DOM) was investigated as an alternative "green" solution to overcoming the aggregation issue instead of using the more commonly proposed polyelectrolytes. At high concentrations, DOM effectively covered the surface of the Fe2O3NPs, thereby conferring negative surface charge on the particles across a wide range of pH values. This provided electrostatic stabilisation and considerably reduced the particle aggregation effect. DOM-coated Fe2O3NPs also proved to be more stable under high ionic strength conditions. The presence of CaCl2, however, even at low concentrations, induced the aggregation of DOM-coated Fe2O3NPs, mainly via charge neutralisation and bridging. This has significant implications in regards to the reactivity and fate of these materials in the environment.
Collapse
Affiliation(s)
- Laura Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Dou H, Lee YJ, Jung EC, Lee BC, Lee S. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material. J Chromatogr A 2013; 1304:211-9. [DOI: 10.1016/j.chroma.2013.06.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/24/2022]
|
38
|
Asymmetric flow-field flow fractionation-multidetection coupling for assessing colloidal copper in drain waters from a Bordeaux wine-growing area. Anal Bioanal Chem 2013; 406:1111-9. [DOI: 10.1007/s00216-013-7104-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
|
39
|
Dou H, Kim KH, Lee BC, Choe J, Kim HS, Lee S. Preparation and characterization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) powder: Comparison of microscopy, dynamic light scattering and field-flow fractionation for size characterization. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Henderson R, Kabengi N, Mantripragada N, Cabrera M, Hassan S, Thompson A. Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11727-11734. [PMID: 23017121 DOI: 10.1021/es302395r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Particle-facilitated transport is a key mechanism of phosphorus (P) loss in agroecosystems. We assessed contributions of colloid- and nanoparticle-bound P (nPP; 1-415 nm) to total P released from grassland soils receiving biannual poultry litter applications since 1995. In laboratory incubations, soils were subjected to 7 days of anoxic conditions or equilibrated at pH 6 and 8 under oxic conditions and then the extract was size fractionated by differential centrifugation/ultrafiltration for analysis of P, Al, Fe, Si, Ti, and Ca. Selected samples were characterized by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS) and field flow fractionation (FFF-ICP-MS). Particles released were present as nanoaggregates with a mean diameter of 200-250 nm, composed of ~50-nm aluminosilicate flakes studded with Fe and Ti-rich clusters (<10 nm) that contained most of the P detected by EDS. Anoxic incubation of stimulated nPP release with seasonally saturated soils released more nPP and Fe(2+)(aq) than well-drained soils; whereas, nonreductive particle dispersion, accomplished by raising the pH, yielded no increase in nPP release. This suggests Fe acts as a cementing agent, binding to the bulk soil P-bearing colloids that can be released during reducing conditions. Furthermore, it suggests prior periodic exposure to anoxic conditions increases susceptibility to redox-induced P mobilization.
Collapse
Affiliation(s)
- R Henderson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
41
|
Makan AC, Otte T, Pasch H. Analysis of High Molar Mass Branched Polybutadienes by SEC-MALLS and AF4-MALLS. Macromolecules 2012. [DOI: 10.1021/ma3007812] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashwell C. Makan
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Tino Otte
- Postnova Analytics GmbH, Max-Planck-Strasse 14, 86899 Landsberg, Germany
| | - Harald Pasch
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
42
|
Dubascoux S, Thepchalerm C, Dubreucq E, Wisunthorn S, Vaysse L, Kiatkamjornwong S, Nakason C, Bonfils F. Comparative study of the mesostructure of natural and synthetic polyisoprene by size exclusion chromatography-multi-angle light scattering and asymmetrical flow field flow fractionation-multi-angle light scattering. J Chromatogr A 2012; 1224:27-34. [DOI: 10.1016/j.chroma.2011.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/18/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
|
43
|
Gigault J, Grassl B, Lespes G. Multi-wall carbon nanotube aqueous dispersion monitoring by using A4F-UV-MALS. Anal Bioanal Chem 2011; 401:3345-53. [PMID: 21947030 DOI: 10.1007/s00216-011-5413-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/10/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
In this work, the potentiality of asymmetrical flow field-flow fractionation (A4F) hyphenated to UV detector and multi-angle light scattering (MALS) was investigated for accurately determining multi-walled carbon nanotube (MWCNT) length and its corresponding dispersion state in aqueous medium. Fractionation key parameters were studied to obtain a method robust enough for heterogeneous sample characterization. The main A4F conditions were 10(-5) mL min(-1) NH(4)NO(3), elution flow of 1 mL min(-1), and cross flow of 2 mL min(-1). The recovery was found to be (94 ± 2)%. Online MALS analysis of eluted MWCNT suspension was performed to obtain length distribution. The length measurements were performed with a 4% relative standard deviation, and the length values were shown to be in accordance with expected ones. The capabilities of A4F-UV-MALS to size characterize various MWCNT samples and differentiate them according to their manufacturing process were evaluated by monitoring ball-milled MWCNT and MWCNT dispersions. The corresponding length distributions were found to be over 150-650 and 150-1,156 nm, respectively. A4F-UV-MALS was also used to evaluate MWCNT dispersion state in aqueous medium according to the surfactant concentration and sonication energy involved in the preparation of the dispersions. More especially, the presence or absence of aggregates, number and size of different populations, as well as size distributions were determined. A sodium dodecyl sulfate concentration of 15 to 30 mmol L(-1) and a sonication energy ranged over 20-30 kJ allow obtaining an optimal MWCNT dispersion. It is especially valuable for studying nanomaterials and checking their manufacturing processes, size characterization being always of high importance.
Collapse
Affiliation(s)
- Julien Gigault
- Laboratoire de Chimie Analytique BioInorganique et Environnement, UMR IPREM 5254 UPPA/CNRS-Technopôle Hélioparc, Université de Pau et des Pays de l'Adour (UPPA), Pau cedex, France
| | | | | |
Collapse
|
44
|
Gigault J, Gale BK, Le Hecho I, Lespes G. Nanoparticle Characterization by Cyclical Electrical Field-Flow Fractionation. Anal Chem 2011; 83:6565-72. [DOI: 10.1021/ac2008948] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Gigault
- Université de Pau et des Pays de l’Adour (UPPA)/CNRS Laboratoire de Chimie analytique Bio-Inorganique et Environnement, UMR IPREM 5254—Technopôle Hélioparc, Av. du Président Angot, 64053 Pau Cedex, France
| | - Bruce K. Gale
- Department of Mechanical Engineering, University of Utah, 50 S. Central Campus Drive Room 2110, Salt Lake City, Utah 84112-9202, United States
| | - Isabelle Le Hecho
- Université de Pau et des Pays de l’Adour (UPPA)/CNRS Laboratoire de Chimie analytique Bio-Inorganique et Environnement, UMR IPREM 5254—Technopôle Hélioparc, Av. du Président Angot, 64053 Pau Cedex, France
| | - Gaëtane Lespes
- Université de Pau et des Pays de l’Adour (UPPA)/CNRS Laboratoire de Chimie analytique Bio-Inorganique et Environnement, UMR IPREM 5254—Technopôle Hélioparc, Av. du Président Angot, 64053 Pau Cedex, France
| |
Collapse
|
45
|
Pifer AD, Miskin DR, Cousins SL, Fairey JL. Coupling asymmetric flow-field flow fractionation and fluorescence parallel factor analysis reveals stratification of dissolved organic matter in a drinking water reservoir. J Chromatogr A 2011; 1218:4167-78. [DOI: 10.1016/j.chroma.2010.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/05/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
46
|
Laborda F, Ruiz-Beguería S, Bolea E, Castillo J. Study of the size-based environmental availability of metals associated to natural organic matter by stable isotope exchange and quadrupole inductively coupled plasma mass spectrometry coupled to asymmetrical flow field flow fractionation. J Chromatogr A 2011; 1218:4199-205. [DOI: 10.1016/j.chroma.2011.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
|
47
|
Huang W, Fernandez D, Rudd A, Johnson WP, Deubner D, Sabey P, Storrs J, Larsen R. Dissolution and nanoparticle generation behavior of Be-associated materials in synthetic lung fluid using inductively coupled plasma mass spectroscopy and flow field-flow fractionation. J Chromatogr A 2011; 1218:4149-59. [DOI: 10.1016/j.chroma.2010.11.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/21/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
48
|
Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review. J Chromatogr A 2011; 1218:4078-103. [DOI: 10.1016/j.chroma.2011.04.063] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 01/23/2023]
|
49
|
Lespes G, Gigault J. Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review. Anal Chim Acta 2011; 692:26-41. [DOI: 10.1016/j.aca.2011.02.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022]
|
50
|
Kammer FVD, Legros S, Hofmann T, Larsen EH, Loeschner K. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.11.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|