1
|
Suliman MA, Olarewaju TA, Basheer C, Lee HK. Microextraction and its application for petroleum and crude oil samples. J Chromatogr A 2020; 1636:461795. [PMID: 33340743 DOI: 10.1016/j.chroma.2020.461795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Petroleum is an extremely heterogeneous material. It consists of a wide range of aliphatic, aromatic, and compounds containing heteroatoms such as metals, sulfur, and nitrogen. The American Society for Testing and Materials (ASTM) methods are used globally as accepted analytical methods for petroleum, petrochemicals, and fuels. A major drawback of ASTM methods is that they require multistep sample preparation that consumes substantial volumes of samples. Thus, the challenge in the petrochemical analysis is to develop rapid and simpler sample preparation procedures that can be automated. An assessment based on the current literature, specifically on the sample preparation of petroleum samples, leads to the authors' conclusion that microextraction provides an excellent complement to current methods. In this review, solvent and sorbent-based microextraction techniques in the context of the consideration of petroleum and crude oil, and samples related to the petrochemical industry, are discussed.
Collapse
Affiliation(s)
- Mohammed Altahir Suliman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | | - Chanbasha Basheer
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Castillo-Peinado LS, Luque de Castro MD. An overview on forensic analysis devoted to analytical chemists. Talanta 2017; 167:181-192. [PMID: 28340709 DOI: 10.1016/j.talanta.2017.01.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/28/2017] [Accepted: 01/29/2017] [Indexed: 12/01/2022]
Abstract
The present article has as main aim to show analytical chemists interested in forensic analysis the world they will face if decision in favor of being a forensic analytical chemist is adopted. With this purpose, the most outstanding aspects of forensic analysis in dealing with sampling (involving both bodily and no bodily samples), sample preparation, and analytical equipment used in detection, identification and quantitation of key sample components are critically discussed. The role of the great omics in forensic analysis, and the growing role of the youngest of the great omics -metabolomics- are also discussed. The foreseeable role of integrative omics is also outlined.
Collapse
Affiliation(s)
- L S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; University of Córdoba, Agrifood Excellence Campus, ceiA3, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, E-14071 Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; University of Córdoba, Agrifood Excellence Campus, ceiA3, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, E-14071 Córdoba, Spain.
| |
Collapse
|
3
|
Gonçalves LM, Valente IM, Rodrigues JA. Recent Advances in Membrane-Aided Extraction and Separation for Analytical Purposes. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1235050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Luís Moreira Gonçalves
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Inês Maria Valente
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - José António Rodrigues
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Yang B, Yu Z, Yao P, Jiang F, Chen J. Characterization of Oil by Micro-Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1038556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Moein MM, Javanbakht M, Karimi M, Akbari-adergani B, Abdel-Rehim M. Three-phase molecularly imprinted sol–gel based hollow fiber liquid-phase microextraction combined with liquid chromatography–tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 995-996:38-45. [DOI: 10.1016/j.jchromb.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/23/2015] [Accepted: 05/09/2015] [Indexed: 01/10/2023]
|
6
|
Radović JR, Rial D, Lyons BP, Harman C, Viñas L, Beiras R, Readman JW, Thomas KV, Bayona JM. Post-incident monitoring to evaluate environmental damage from shipping incidents: chemical and biological assessments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 109:136-153. [PMID: 22705812 DOI: 10.1016/j.jenvman.2012.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/16/2012] [Accepted: 04/28/2012] [Indexed: 06/01/2023]
Abstract
Oil and chemical spills in the marine environment are an issue of growing concern. Oil exploration and exploitation is moving from the continental shelf to deeper waters, and to northern latitudes where the risk of an oil spill is potentially greater and may affect pristine ecosystems. Moreover, a growing number of chemical products are transported by sea and maritime incidents of hazardous and noxious substances (HNS) are expected to increase. Consequently, it seems timely to review all of the experience gained from past spills to be able to cope with appropriate response and mitigation strategies to combat future incidents. Accordingly, this overview is focused on the dissemination of the most successful approaches to both detect and assess accidental releases using chemical as well as biological approaches for spills of either oil or HNS in the marine environment. Aerial surveillance, sampling techniques for water, suspended particles, sediments and biota are reviewed. Early warning bioassays and biomarkers to assess spills are also presented. Finally, research needs and gaps in knowledge are discussed.
Collapse
|
7
|
LI ZP, LI LW, TAO MX, CAO CH, DU L, WANG G, XU Y. Development of Combustion Reactor Furnace Applied to Compound Specific of Carbon Isotope Ratio Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60573-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Bello-López MÁ, Ramos-Payán M, Ocaña-González JA, Fernández-Torres R, Callejón-Mochón M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.655676] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Trends in liquid-phase microextraction, and its application to environmental and biological samples. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0678-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Affiliation(s)
- T. A. Brettell
- Department of Chemical and Physical Sciences, Cedar Crest College, 100 College Drive, Allentown, Pennsylvania 18104-6196, United States
| | - J. M. Butler
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8312, United States
| | - J. R. Almirall
- Department of Chemistry and Biochemistry and International Forensic Research Institute, Florida International University, University Park, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Sun X, Zhu F, Xi J, Lu T, Liu H, Tong Y, Ouyang G. Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry. MARINE POLLUTION BULLETIN 2011; 63:102-7. [PMID: 21497857 DOI: 10.1016/j.marpolbul.2011.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 05/23/2023]
Abstract
Hollow fiber liquid-phase microextraction (HF-LPME) technique was used as a clean-up procedure for the determination of organophosphorus pesticides (OPPs) in fish tissue. In this study, eight OPPs were first extracted with acetone from fish sample, the organic extract after rotatory evaporation was then redissolved with water-methanol (95:5, v/v) solution, followed by polyvinylidene difluoride (PVDF) HF-LPME. Experimental HF-LPME and other sample preparation conditions were carefully investigated and optimized. Under the optimum conditions, good linearity were observed in the range of 20-500 ng/g, limits of detections (LODs) were in the range of 2.1-4.5 ng/g. The repeatability and recovery of the method also showed satisfactory results. Compared with traditional sample preparation method for the determination of OPPs in fish tissue, the method developed in this study eliminated the solid phase extraction (SPE) step, simplified the sample preparation procedure and lowered the cost of analysis.
Collapse
Affiliation(s)
- Xiaojin Sun
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineer, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Kashtiaray A, Farahani H, Farhadi S, Rochat B, Sobhi HR. Trace Determination of Tamoxifen in Biological Fluids Using Hollow Fiber Liquid-Phase Microextraction Followed by High-Performance Liquid Chromatography-Ultraviolet Detection. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajac.2011.24052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|