1
|
Gao H, Wang Q, Qi Q, He W, Li W. Component analysis using UPLC-Q-TOF/MS and quality evaluation using fingerprinting and chemometrics for hops. Food Chem 2024; 457:140113. [PMID: 38901344 DOI: 10.1016/j.foodchem.2024.140113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Hops, extensively cultivated in China for their food and medicinal applications, currently lack well-defined chemical markers to evaluate variations in their quality. The study aimed to explore variations in the quality of Chinese hops by the chemical characteristics of hops, employing UPLC-Q-TOF/MS, integrated with chemical fingerprinting and chemometrics. The results indicated that Chinese hops are abundant in polyphenols and bitter acids. The integration of UPLC-Q-TOF/MS, Chemical fingerprinting, and chemometrics revealed to be an accurate and effective approach for assessing the quality of Chinese hops. In this study, ten important chemical markers were found to be useful in differentiating various hop varieties. Moreover, the support vector machine showed a prediction accuracy of 92.3077% in identifying Chinese hop varieties. The strategy of the study lays the groundwork for classifying Chinese hop varieties and serves as a prerequisite for future quality control studies, particularly focusing on chemical compositions.
Collapse
Affiliation(s)
- Huijuan Gao
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Qian Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qiangli Qi
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wenjing He
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| | - Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Sabbatini G, Mari E, Ortore MG, Di Gregorio A, Fattorini D, Di Carlo M, Galeazzi R, Vignaroli C, Simoni S, Giorgini G, Guarrasi V, Chiancone B, Leto L, Cirlini M, Del Vecchio L, Mangione MR, Vilasi S, Minnelli C, Mobbili G. Hop leaves: From waste to a valuable source of bioactive compounds - A multidisciplinary approach to investigating potential applications. Heliyon 2024; 10:e37593. [PMID: 39328568 PMCID: PMC11425108 DOI: 10.1016/j.heliyon.2024.e37593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
After harvesting of cones used for beer production, the remaining hop vegetative biomass requires disposal. The hop plant contains bioactive compounds in all its parts-cones, leaves, and roots-exhibiting interesting antioxidant, antiviral, and antibacterial properties. In this work, extracts obtained from hop leaves, a plant material often neglected in the hop cultivation, have been investigated; the qualitative UHPLC-MS/MS and GC-TOF-MS characterization revealed the presence of bioactive compounds such as polyphenols, α- and β-acids and terpenes are present. The extract retained antioxidant activity, as verified by Folin-Ciocalteu, DPPH, ABTS and FRAP assays, and demonstrated some antimicrobial activity when combined with antibiotics, particularly against Gram-positive bacterial strains. Additionally, the extracts showed an ability to interact with proteins as human insulin, amyloid beta peptide, mucin and bovine serum albumin (BSA), has been detected, indicating their potential to counteract inflammatory processes and protect against Alzheimer's disease. These findings suggest that hop vegetative biomass, typically considered waste, can be potentially transformed into a valuable resource with applications in various fields, from nutraceuticals to pharmaceuticals and cosmetics, aligning with a circular economy perspective.
Collapse
Affiliation(s)
- Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Eleonora Mari
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Alessandra Di Gregorio
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Daniele Fattorini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Marta Di Carlo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valeria Guarrasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Benedetta Chiancone
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | - Silvia Vilasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| |
Collapse
|
3
|
Leto L, Favari C, Agosti A, Del Vecchio L, Di Fazio A, Bresciani L, Mena P, Guarrasi V, Cirlini M, Chiancone B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants (Basel) 2024; 13:909. [PMID: 39199155 PMCID: PMC11351401 DOI: 10.3390/antiox13080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The demand for bioactive secondary metabolites of natural origin is increasing every day. Micropropagation could be a strategy to respond more quickly to market demands, regardless of seasonality. This research aims to evaluate in vitro-grown plants of two hop varieties, namely Columbus and Magnum, as a potential source of bioactive compounds. The extracts were characterized in terms of total phenolic content by a Folin-Ciocalteu assay and antioxidant capacity by DPPH•, ABTS+, and FRAP assays. The bioactive compound profile of the extracts from both varieties was determined by using UPLC-ESI-QqQ-MS/MS. The results confirmed richness in (poly)phenols and other secondary metabolites of the in vitro-grown hop plantlets. Thirty-two compounds belonging to the major families of phytochemicals characteristic of the species were identified, and twenty-six were quantified, mainly flavonoids, including xanthohumol and isoxanthohumol, phenolic acids, as well as α- and β-acids. This study confirms the validity of in vitro-derived hop plantlets as source of bioactive compounds to be used in the nutraceutical, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Claudia Favari
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Anna Agosti
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Andrea Di Fazio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Pedro Mena
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
4
|
Barnum CR, Paviani B, Couture G, Masarweh C, Chen Y, Huang YP, Markel K, Mills DA, Lebrilla CB, Barile D, Yang M, Shih PM. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides. NATURE FOOD 2024; 5:480-490. [PMID: 38872016 PMCID: PMC11199141 DOI: 10.1038/s43016-024-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates which support the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the approximately 200 structurally diverse HMOs at scale has proved difficult. Here we produce a diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high-value and complex HMOs, such as lacto-N-fucopentaose I. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement with potential applications in adult and infant health. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the low-cost and sustainable production of HMOs.
Collapse
Affiliation(s)
- Collin R Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Garret Couture
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Minliang Yang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Morya S, Menaa F, Lourenço-Lopes C, Jimenez-Lopez C, Khalid W, Moreno A, Ikram A, Khan KA, Ramniwas S, Mugabi R. An Overview on Flavor Extraction, Antimicrobial and Antioxidant Significance, and Production of Herbal Wines. ACS OMEGA 2024; 9:16893-16903. [PMID: 38645323 PMCID: PMC11024944 DOI: 10.1021/acsomega.3c09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Wine has been utilized as a source for medicinal preparations, combined with various herbs, to treat particular ailments and disorders. By utilizing herb extracts, regular but limited consumption of these herbal wines helps to decrease the need for prescription medications to treat a variety of ailments. The diversity and the composition of the yeast micropopulation significantly contribute to the sensory characteristics of wine. A particular metabolic activity characterizes the growth of each wine yeast species, which determines the concentrations of flavor compounds in the final wine. Numerous herbs, such as tulsi, ginger, aloe vera, tea, amla, lemongrass, and peppermint, are used in the preparation of herbal wines, where either the herb or herbal blends are primarily used as the substrate. The variants provided improved accuracy, increased acceptability, and broader uses for the novel product. Herbal wines pave the way to provide nutraceuticals to consumers and protection against pathogenic microorganisms and inflammation through their richness in antioxidants. The existing herbal wines and their health advantages are discussed in this Review, along with some new directions for the herbal wine business.
Collapse
Affiliation(s)
- Sonia Morya
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Farid Menaa
- Department
of Internal Medicine and Nanomedicine, California
Innovations Corporation, San Diego, California 92037, United States
| | - Catarina Lourenço-Lopes
- Nutrition
and Bromatology Group, Analytical and Food Chemistry Department, Faculty
of Food Science and Technology, University
of Vigo, 36310 Vigo, Pontevedra, Spain
| | | | - Waseem Khalid
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Andres Moreno
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Ali Ikram
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Khalid Ali Khan
- Applied College,
Center of Bee Research and its Products, Unit of Bee Research and
Honey Production, and Research Center for Advanced Materials Science
(RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali, Punjab 140413, India
| | - Robert Mugabi
- Department
of Food Technology and Nutrition, Makerere
University, Kampala, Uganda
| |
Collapse
|
6
|
Qian J, Zhu H, Zhang J, Zhao C, Li X, Guo H. Separation and Purification of Bamboo Leaf Flavones by Polyvinylpolypyrrolidone Adsorption. J Chromatogr Sci 2023; 61:885-891. [PMID: 37009711 DOI: 10.1093/chromsci/bmad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2023] [Indexed: 04/04/2023]
Abstract
In view of the adsorption performance of polyvinylpolypyrrolidone (PVPP) to flavones, the adsorption and purification of bamboo leaf flavones (BLFs) by PVPP were studied. The flavones solution was adsorbed by PVPP column chromatography, and then establish a relatively effective method for elution and purification of flavones from bamboo leaf. The optimal separation conditions of column chromatography were determined as the following: the feed concentration of 10 mg/mL, the ratio of diameter to height of 1:1.9, eluents of deionized water (21 mL) and 70% ethanol (800 mL) with a flow rate of 0.33 mL/min. The purity of flavones obtained from ethanol eluents (80-480 mL) was 96.2%. This showed that the PVPP had an ideal adsorption and purification effect on BLFs.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanxiao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangliu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changyan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinchen Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Barnum CR, Paviani B, Couture G, Masarweh C, Chen Y, Huang YP, Mills DA, Lebrilla CB, Barile D, Yang M, Shih PM. Plant-based production of diverse human milk oligosaccharides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558286. [PMID: 37786679 PMCID: PMC10541580 DOI: 10.1101/2023.09.18.558286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates that aid in the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the ∼130 structurally diverse HMOs at scale has proven difficult. Here, we produce a vast diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high value HMOs, such as lacto-N-fucopentaose I, that have not yet been commercially produced using state-of-the-art microbial fermentative processes. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the cheap and sustainable production of HMOs.
Collapse
|
8
|
Luna Quinto M, Khan S, Vega-Chacón J, Mortari B, Wong A, Taboada Sotomayor MDP, Picasso G. Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents. Polymers (Basel) 2023; 15:3709. [PMID: 37765563 PMCID: PMC10535355 DOI: 10.3390/polym15183709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, we present an alternative technique for the removal of Brilliant Green dye (BG) in aqueous solutions based on the application of molecularly imprinted polymer (MIP) as a selective adsorbent for BG. The MIP was prepared by bulk radical polymerization using BG as the template; methacrylic acid (MAA) as the functional monomer, selected via computer simulations; ethylene glycol dimethacrylate (EGDMA) as cross-linker; and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the radical initiator. Scanning electron microscopy (SEM) analyses of the MIP and non-molecularly imprinted polymer (NIP)-used as the control material-showed that the two polymers exhibited similar morphology in terms of shape and size; however, N2 sorption studies showed that the MIP displayed a much higher BET surface (three times bigger) compared to the NIP, which is clearly indicative of the adequate formation of porosity in the former. The data obtained from FTIR analysis indicated the successful formation of imprinted polymer based on the experimental procedure applied. Kinetic adsorption studies revealed that the data fitted quite well with a pseudo-second order kinetic model. The BG adsorption isotherm was effectively described by the Langmuir isotherm model. The proposed MIP exhibited high selectivity toward BG in the presence of other interfering dyes due to the presence of specific recognition sites (IF = 2.53) on its high specific surface area (112 m2/g). The imprinted polymer also displayed a great potential when applied for the selective removal of BG in real river water samples, with recovery ranging from 99 to 101%.
Collapse
Affiliation(s)
- Miguel Luna Quinto
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| | - Sabir Khan
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoro 59625-900, RN, Brazil
| | - Jaime Vega-Chacón
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| | - Bianca Mortari
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
| | - Ademar Wong
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Maria Del Pilar Taboada Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara 14800-900, SP, Brazil; (B.M.); (A.W.); (M.D.P.T.S.)
- National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Gino Picasso
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (M.L.Q.); (S.K.); (J.V.-C.)
| |
Collapse
|
9
|
Wang ST, Dan YQ, Zhang CX, Lv TT, Qin Z, Liu HM, Ma YX, He JR, Wang XD. Structures and biological activities of proanthocyanidins obtained from chinese quince by optimized subcritical water-ethanol extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Díaz N, Aqueveque PM, Vallejos-Almirall A, Radrigán R, Zúñiga-López MC, Folch-Cano C. Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants (Basel) 2022; 11:antiox11102017. [PMID: 36290740 PMCID: PMC9598612 DOI: 10.3390/antiox11102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Grape pomace (GP) is a by-product resulting from the winemaking process and its potential use as a source of bioactive compounds is well known. The GP bioactive compounds can be retained in the well-known polyvinylpolypyrrolidone (PVPP), industrially used in the clarification and stabilization of wine and other drinks. Thus, the polyphenolic compounds (PC) from the Chilean Carménère, Cabernet Sauvignon, and Merlot GP were extracted, and their compositions and antioxidant capacities (ORAC-FL) were determined. In addition, the retention capacity of the PC on PVPP (PC-PVPP) was evaluated. The bioactivities of GP extracts and PC-PVPP were estimated by the agar plate inhibition assay against pathogenic microorganisms. Results showed a high amount of TPC and antioxidant capacity in the three ethanolic GPs extracts. Anthocyanins, flavan-3-ol, and flavonols were the most abundant compounds in the GP extract, with retentions between 70 and 99% on PVPP. The GP extracts showed inhibition activity against B. cereus and P. syringae pv. actinidiae but the GP-PVPP had no antimicrobial activity. The high affinity of the identified PCs from GPs on PVPP polymer could allow the design of new processes and by-products for the food or cosmeceutical industry, promoting a circular economy by reducing and reusing wastes (GPs and PVPP) and organic solvents.
Collapse
Affiliation(s)
- Nelson Díaz
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Pedro M. Aqueveque
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Edmundo Larenas 64, Concepción 4070386, Chile
| | - Rudi Radrigán
- Centro de Desarrollo Tecnológico Agroindustrial (CDTA), Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
| | - María C. Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Folch-Cano
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3812120, Chile
- Correspondence: ; Tel.: +56-42-2207578
| |
Collapse
|
11
|
Sangsukiam T, Duangmal K. Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Res Int 2022; 157:111371. [DOI: 10.1016/j.foodres.2022.111371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
12
|
The Phenolic Composition of Hops (Humulus lupulus L.) Was Highly Influenced by Cultivar and Year and Little by Soil Liming or Foliar Spray Rich in Nutrients or Algae. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The interest in expanding the production of hops outside the traditional cultivation regions, mainly motivated by the growth of the craft brewery business, justifies the intensification of studies into its adaptation to local growing conditions. In this study, four field trials were undertaken on a twenty-year-old hop garden, over periods of up to three years to assess the effect of important agro-environmental variation factors on hop phenol and phenolic composition and to establish its relationship with the elemental composition of hop cones. All the field trials were arranged as factorial designs exploring the combined effect of: (1) plots of different vigour plants × year; (2) plots of different plant vigor × algae- and nutrient-rich foliar sprays × year; (3) plot × liming × year; and (4) cultivars (Nugget, Cascade, Columbus) × year. Total phenols in hops, were significantly influenced by most of the experimental factors. Foliar spraying and liming were the factors that least influenced the measured variables. The year had the greatest effect on the accumulation of total phenols in hop cones in the different trials and may have contributed to interactions that often occurred between the factors under study. The year average for total phenol concentrations in hop cones ranged from 11.9 mg g−1 to 21.2 mg g−1. Significant differences in quantity and composition of phenolic compounds in hop cones were also found between cultivars. The phenolic compounds identified were mainly flavonols (quercetin and kaempferol glycosides) and phenolic carboxylic acids (p-coumaric and caffeic acids).
Collapse
|
13
|
Carvalho DO, Guido LF. A review on the fate of phenolic compounds during malting and brewing: Technological strategies and beer styles. Food Chem 2022; 372:131093. [PMID: 34619521 DOI: 10.1016/j.foodchem.2021.131093] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023]
Abstract
This review provides an overview on the influence of malting and brewing on the overall phenolic content of barley malt and beer. Beer phenolics are mainly originated from barley malt and can be found in free and bound forms, in concentrations up to 50% lower comparing to sweet wort. The use of roasted malts, in combination with proper milling and high mashing temperatures at low pH can lead to a release of bound phenolic forms and increased extraction. New technological strategies such as special yeasts, manipulation of enzymatic activity and dry-hopping may be relevant to improve the phenolic profile of beer and attain phenolic levels with benefits both for beer stability and consumer's health. As the content of free ferulic acid in beer only accounts up to approximately 15% of total content, further studies should put emphasis on its bound forms in different beer styles and non-alcoholic beers.
Collapse
Affiliation(s)
- Daniel O Carvalho
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís F Guido
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
Mustafa F, Liebich S, Andreescu S. Nanoparticle-based amplification for sensitive detection of β-galactosidase activity in fruits. Anal Chim Acta 2021; 1186:339129. [PMID: 34756270 DOI: 10.1016/j.aca.2021.339129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Development of fast and sensitive assays for enzyme activity detection has received a great deal of attention because of the wide spread applications in measurements of numerous clinical, food and environmental processes. Herein, a novel amplification approach to enhance the sensitivity of colorimetric assays for detection of β-galactosidase (β-Gal) activity is proposed. β-Gal detection is important in biomedical applications and in food industry, where it is associated with the ripening process of fruits. The method is based on the use of multivalent cerium oxide nanoparticles (CeNPs) which catalyze the oxidation of 4-aminophenol (4-AP) produced in the hydrolysis process of the 4-aminophenyl-β-d-galactopyranoside substrate (4-APG) by β-Gal, thus enhancing detection sensitivity of β-Gal in the visible range. The developed assay is highly sensitive and easy to use. Using the optimized procedure, a limit of detection of 0.06 mU/mL was obtained with a linearity range up to 2.0 mU/mL. The feasibility of the method was demonstrated for detection of β-Gal activity in fruits and the results were compared with the conventional assay, providing over a 30-fold amplification as compared to a commercially available β-Gal protocol. The advantage of the presented assay is its biocatalytic event amplified by a secondary reaction, which enables much more sensitive detection of the enzymatic product. The sensing platform can be applied broadly to a variety of applications that rely on β-Gal activity measurements.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Steve Liebich
- Department of Chemistry and Biomolecular Science, Clarkson University, USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, USA.
| |
Collapse
|
15
|
DFT study of the radical scavenging activity of isoxanthohumol, humulones (α-acids), and iso-α-acids from beer. Struct Chem 2021. [DOI: 10.1007/s11224-021-01780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Macchioni V, Carbone K, Cataldo A, Fraschini R, Bellucci S. Lactic acid-based deep natural eutectic solvents for the extraction of bioactive metabolites of Humulus lupulus L.: Supramolecular organization, phytochemical profiling and biological activity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Tantratian S, Balmuang N. Enriched makiang (Cleistocalyx nervosum var. paniala) seed extract and citric acid to control pathogenic bacteria and color of fresh cut cantaloupe. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Mesa RL, Villa JEL, Khan S, Peixoto RRA, Morgano MA, Gonçalves LM, Sotomayor MDPT, Picasso G. Rational Design of an Ion-Imprinted Polymer for Aqueous Methylmercury Sorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2541. [PMID: 33348754 PMCID: PMC7766906 DOI: 10.3390/nano10122541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg+) is a mercury species that is very toxic for humans, and its monitoring and sorption from environmental samples of water are a public health concern. In this work, a combination of theory and experiment was used to rationally synthesize an ion-imprinted polymer (IIP) with the aim of the extraction of MeHg+ from samples of water. Interactions among MeHg+ and possible reaction components in the pre-polymerization stage were studied by computational simulation using density functional theory. Accordingly, 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and ethanol were predicted as excellent sulfhydryl ligands, a functional monomer and porogenic solvent, respectively. Characterization studies by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) revealed the obtention of porous materials with specific surface areas of 11 m2 g-1 (IIP-MBI-AA) and 5.3 m2 g-1 (IIP-MBT-AA). Under optimized conditions, the maximum adsorption capacities were 157 µg g-1 (for IIP-MBI-AA) and 457 µg g-1 (for IIP-MBT-AA). The IIP-MBT-AA was selected for further experiments and application, and the selectivity coefficients were MeHg+/Hg2+ (0.86), MeHg+/Cd2+ (260), MeHg+/Pb2+ (288) and MeHg+/Zn2+ (1510), highlighting the material's high affinity for MeHg+. The IIP was successfully applied to the sorption of MeHg+ in river and tap water samples at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Ruddy L. Mesa
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| | - Javier E. L. Villa
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Rafaella R. Alves Peixoto
- Department of Analytical Chemistry, Fluminense Federal University (UFF), Niterói, RJ 24020-150, Brazil;
| | | | | | - Maria D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| |
Collapse
|
19
|
Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers' spent grains. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102402] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Šibalić D, Planinić M, Jurić A, Bucić-Kojić A, Tišma M. Analysis of phenolic compounds in beer: from raw materials to the final product. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01276-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Rocha L, Neves D, Valentão P, Andrade PB, Videira RA. Adding value to polyvinylpolypyrrolidone winery residue: A resource of polyphenols with neuroprotective effects and ability to modulate type 2 diabetes-relevant enzymes. Food Chem 2020; 329:127168. [PMID: 32512395 DOI: 10.1016/j.foodchem.2020.127168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
A polyphenols-rich extract was obtained from polyvinylpolypyrrolidone (PVPP) winery residue, and its neuroprotective effects and ability to modulate the kinetics of type 2 diabetes-relevant enzymes were characterized. The PVPP-white wine extract is a mixture of polyphenols (840.08 ± 161.25 µg/mg, dry weight) dominated by proanthocyanidins and hydroxycinnamic acids, affording strong antioxidant activity, as detected by the protection of membrane lipids against oxidation and superoxide radical anion scavenging activity. Regarding type 2 diabetes framework, the extract inhibits α-glucosidase (Ki = 166.9 µg/mL) and aldose reductase (Ki = 127.5 µg/mL) through non-competitive mechanisms. Despite the modest ability to inhibit rat brain acetylcholinesterase, it protects neuronal SH-SY5Y cells against oxidative damage promoted by glutamate, decreasing reactive oxygen species generation and preserving cell redox state. Thus, PVPP-white wine extract has potential to support the development of functional foods and/or nutraceuticals aiming neuroprotection and glucose homeostasis regulation, with high relevance in Alzheimeŕs disease and type 2 diabetes interlink.
Collapse
Affiliation(s)
- Lídia Rocha
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Dina Neves
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
22
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
23
|
Wannenmacher J, Cotterchio C, Schlumberger M, Reuber V, Gastl M, Becker T. Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6628-6637. [PMID: 31393605 DOI: 10.1002/jsfa.9979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Many studies have confirmed a wide variation in the phenolic content and antioxidant activity of beers. However, when commercial beers are studied, there is usually no information available on the brewing technology applied. In this study, technological parameters were varied systematically to influence the antioxidant content of beer with a view to improving its flavor stability. High-throughput assays, ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) were investigated as fast analytical methods to evaluate the influence of brewing technology on antioxidant activity. RESULTS Beers (n = 12) were brewed with systematic technological variations (malt modification, hopping regime) to influence the antioxidant potential. A late hop addition resulted in significantly higher phenolic content (high-performance liquid chromatography with diode-array detection - HPLC-DAD) and antioxidant activity. Raw protein content and malt modification significantly influenced phenolic content and the antioxidant activity of beers hopped at the beginning of wort boiling. Samples were stored under forced and natural conditions and were evaluated by a sensory panel. The decline of bitter iso-α-acids as an analytical marker for oxidative aging was significantly lower in beers brewed from malts with high raw protein content. These samples also had higher antioxidant activity values. Panelists gave higher ratings for beer quality to aged beers with a late hop addition. However, late hopping resulted in enhanced hoppy aroma attributes and therefore an altered aroma profile. CONCLUSIONS Both antioxidant capacity methods were well suited as fast methods to evaluate brewing raw material and technological influence on antioxidant activity. The appropriate choice of barley malt and the malting regime could be promising tools to enhance the antioxidant activity of traditionally hopped beers. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Julia Wannenmacher
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Christina Cotterchio
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Maximilian Schlumberger
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Valentin Reuber
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Martina Gastl
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
24
|
|
25
|
Cosme F, Ferreira S, Alves A, Filipe-Ribeiro L, Nunes F. Recycling of PVPP used in the wine industry: An opportunity for obtaining reusable PVPP and bioactive phenolic compounds. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191502020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polyvinylpolypyrrolidone (PVPP) is a synthetic water insoluble polymer produced by cross-linking of polyvinylpyrrilidone. It is used as a fining agent in the wine industry for removing low molecular weight phenolic compounds. There are no available data on the worldwide use of PVPP in the wine industry; nevertheless, its estimated use in Portugal in 2016 for white wine fining was nearly 147 tons. Used PVPP ends up on the municipal wastewater treatment plants, and as it contains significant quantities of adsorbed polyphenols it has a detrimental environmental impact. Recycling of PVPP for obtaining fully reusable PVPP and phenolic compounds for the food, cosmetic and pharmaceutical industry would increase the sustainability of its industrial use. Therefore, the purpose of this work was to develop a simple, cheap and eco-friendly regeneration strategy for the re-use of PVPP and at the same time to obtain pure extracts of wine phenolic compounds in order to exploit new opportunities for recycling used PVPP. The performance of the recycled PVPP for white wine fining was the identical when compared to a new PVPP.
Collapse
|
26
|
Pupin RR, Foguel MV, Gonçalves LM, Sotomayor MDPT. Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. J Appl Polym Sci 2019. [DOI: 10.1002/app.48496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rafael Rovatti Pupin
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
| | - Marcos Vinicius Foguel
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
- Department of ChemistryUniversity of Central Florida Orlando Florida
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo (USP) São Paulo SP Brazil
| | - Maria del Pilar T. Sotomayor
- Department of Analytical Chemistry, Institute of ChemistryUNESP – Univ Estadual Paulista Araraquara SP Brazil
- UNESP, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‐DATREM)Institute of Chemistry Araraquara SP Brazil
| |
Collapse
|
27
|
Almeida ADR, Maciel MVDOB, Machado MH, Bazzo GC, Armas RD, Vitorino VB, Vitali L, Block JM, Barreto PLM. Bioactive compounds and antioxidant activities of Brazilian hop (
Humulus lupulus
L.) extracts. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aline da Rosa Almeida
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis SC 88034‐102 Brazil
| | | | - Michelle Heck Machado
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis SC 88034‐102 Brazil
| | - Giovana Carolina Bazzo
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis SC 88034‐102 Brazil
| | - Rafael Dutra Armas
- Department of Biomedicine Catholic University Center of Santa Catarina Joinville SC 89203‐005 Brazil
| | | | - Luciano Vitali
- Department of Chemistry Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Jane Mara Block
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis SC 88034‐102 Brazil
| | - Pedro Luiz Manique Barreto
- Department of Food Science and Technology Federal University of Santa Catarina Florianópolis SC 88034‐102 Brazil
| |
Collapse
|
28
|
Sangiovanni E, Fumagalli M, Santagostini L, Forino M, Piazza S, Colombo E, Taglialatela-Scafati O, Fico G, Dell'Agli M. A bio-guided assessment of the anti-inflammatory activity of hop extracts (Humulus lupulus L. cv. Cascade) in human gastric epithelial cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
29
|
Tantratian S, Balmuang N, Krusong W. Phenolic enrichment of Ma-Kieng seed extract using absorbent and this enriched extract application for safety control of fresh-cut cantaloupe. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Gil M, Louazil P, Iturmendi N, Moine V, Cheynier V, Saucier C. Effect of polyvinylpolypyrrolidone treatment on rosés wines during fermentation: Impact on color, polyphenols and thiol aromas. Food Chem 2019; 295:493-498. [PMID: 31174786 DOI: 10.1016/j.foodchem.2019.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Fining treatment with polyvinylpolypyrrolidone (PVPP) is often used during winemaking of rosé wines. It can modulate the intensity and hue of their pink color and prevent some organoleptic degradations. In this paper, the effect of PVPP treatments on rosé wine during fermentation was investigated by measuring color, polyphenol content and thiol aromas. As expected, colorimetry results showed a decrease in color, indicating some adsorption of anthocyanins and other pigments. This was confirmed by UPLC-ESI-MS/MS analyses. Specific adsorption of certain families of polyphenols was evidenced. Flavonols, flavanols and anthocyanins, especially coumaroylated anthocyanins were preferentially adsorbed by PVPP. The thiol content (3-sulfanylhexyl acetate (3SHA) and 3-sulfanylhexan-1-ol (3SH)) was usually higher after PVPP treatments, in a dose dependent manner. A possible explanation is that the partial adsorption of some polyphenols at an early stage of fermentation would later limit the amount of quinone compounds able to trap thiol aromas.
Collapse
Affiliation(s)
- Mélodie Gil
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | | | | | - Virginie Moine
- Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
| | | | - Cédric Saucier
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
31
|
Di Sotto A, Checconi P, Celestino I, Locatelli M, Carissimi S, De Angelis M, Rossi V, Limongi D, Toniolo C, Martinoli L, Di Giacomo S, Palamara AT, Nencioni L. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5919237. [PMID: 30140367 PMCID: PMC6081516 DOI: 10.1155/2018/5919237] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
A hydroalcoholic extract from female inflorescences of Humulus lupulus L. (HOP extract) was evaluated for its anti-influenza activity. The ability of the extract to interfere with different phases of viral replication was assessed, as well as its effect on the intracellular redox state, being unbalanced versus the oxidative state in infected cells. The radical scavenging power, inhibition of lipoperoxidation, and ferric reducing activity were assayed as antioxidant mechanisms. A phytochemical characterization of the extract was also performed. We found that HOP extract significantly inhibited replication of various viral strains, at different time from infection. Viral replication was partly inhibited when virus was incubated with extract before infection, suggesting a direct effect on the virions. Since HOP extract was able to restore the reducing conditions of infected cells, by increasing glutathione content, its antiviral activity might be also due to an interference with redox-sensitive pathways required for viral replication. Accordingly, the extract exerted radical scavenging and reducing effects and inhibited lipoperoxidation and the tBOOH-induced cytotoxicity. At phytochemical analysis, different phenolics were identified, which altogether might contribute to HOP antiviral effect. In conclusion, our results highlighted anti-influenza and antioxidant properties of HOP extract, which encourage further in vivo studies to evaluate its possible application.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola Checconi
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Ignacio Celestino
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University “G. D'Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefania Carissimi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Rossi
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Dolores Limongi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lucia Martinoli
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Wannenmacher J, Gastl M, Becker T. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr Rev Food Sci Food Saf 2018; 17:953-988. [PMID: 33350107 DOI: 10.1111/1541-4337.12352] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
For the past 100 years, polyphenol research has played a central role in brewing science. The class of phenolic substances comprises simple compounds built of 1 phenolic group as well as monomeric and oligomeric flavonoid compounds. As potential anti- or prooxidants, flavor precursors, flavoring agents and as interaction partners with other beer constituents, they influence important beer quality characteristics: flavor, color, colloidal, and flavor stability. The reactive potential of polyphenols is defined by their basic chemical structure, hydroxylation and substitution patterns and degree of polymerization. The quantitative and qualitative profile of phenolic substances in beer is determined by raw material choice. During the malting and brewing process, phenolic compounds undergo changes as they are extracted or enzymatically released, are subjected to heat-induced chemical reactions or are precipitated with or adsorbed to hot and cold trub, yeast cells and stabilization agents. This review presents the current state of knowledge of the composition of phenolic compounds in beer and brewing raw materials with a special focus on their fate from raw materials throughout the malting and brewing process to the final beer. Due to high-performance analytical techniques, new insights have been gained on the structure and function of phenolic substance groups, which have hitherto received little attention. This paper presents important information and current studies on the potential of phenolics to interact with other beer constituents and thus influence quality parameters. The structural features which determine the reactive potential of phenolic substances are discussed.
Collapse
Affiliation(s)
- Julia Wannenmacher
- Inst. of Brewing and Beverage Technology, Technical Univ. of Munich, Weihenstephaner Steig 20, 85354, Freising, Germany
| | - Martina Gastl
- Inst. of Brewing and Beverage Technology, Technical Univ. of Munich, Weihenstephaner Steig 20, 85354, Freising, Germany
| | - Thomas Becker
- Inst. of Brewing and Beverage Technology, Technical Univ. of Munich, Weihenstephaner Steig 20, 85354, Freising, Germany
| |
Collapse
|
33
|
Nawaz S, Khan S, Farooq U, Haider MS, Ranjha NM, Rasul A, Nawaz A, Arshad N, Hameed R. Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Des Monomers Polym 2018. [DOI: 10.1080/15685551.2018.1445416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Shahid Nawaz
- Faculty of Pharmacy, Bahauddin Zakariya University , Multan, Pakistan
| | - Samiullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur , Punjab, Pakistan
| | - Umar Farooq
- Faculty of Pharmacy, Bahauddin Zakariya University , Multan, Pakistan
| | | | | | - Akhtar Rasul
- Department of Pharmacy, Government College University Faisalabad , Faisalabad, Pakistan
| | - Ahmad Nawaz
- Department of Pharmacy, COMSATS Institute of Information Technology , Abbottabad, Pakistan
| | - Numera Arshad
- Faculty of Pharmacy, Punjab University Lahore , Lahore, Pakistan
| | - Rabia Hameed
- Department of Pharmacy, Government College University Faisalabad , Faisalabad, Pakistan
| |
Collapse
|
34
|
Abstract
The development of effective medicines to break or delay the progressive brain degeneration underlying cognitive decline and dementia that characterize Alzheimer's disease (AD) is one of the greatest challenges of our time. In the present work, a selective pool of polyphenols, obtained from the white wine by adsorption to polyvinylpyrrolidone polymer (PVPP), was used to prepare a polyphenols-enriched diet, supplementing the drinking water with 100 mg/L (expressed as gallic acid equivalent) of wine polyphenolic extract. The impact of the daily consumption of water supplemented with polyphenols for 2 months on brain of 10-month-old 3xTg-AD and NonTg mice was evaluated, considering effects on the redox state of cells, levels of amyloid-β peptides, mitochondrial bioenergetics and fatty acid profile of whole membrane phospholipids. The polyphenols-enriched diet promotes brain accumulation of catechin and hydroxybenzoic acid derivatives, and modulates the redox state of 3xTg-AD brain cells, increasing both glutathione/glutathione disulfide ratio and catalase activity and decreasing membrane lipids oxidation. Additionally, the functional diet decreases the 3xTg-AD brain levels of both amyloid-β peptides, Aβ1-40 and Aβ1-42. However, the brain mitochondrial bioenergetic dysfunction of 3xTg-AD animals was not attenuated by the polyphenols-enriched diet. Lipidomic studies showed that this functional diet modulates membrane lipid composition of brain cells, increasing C22:6n-3 (docosahexanoic acid) and decreasing C20:4n-6 (arachidonic acid) levels, which may have beneficial impact on the chronic inflammatory process associated with AD pathology. Altogether, these results indicate that the oral administration of this polyphenols-enriched diet promotes significant benefits in multiple aspects of the pathophysiological cascade associated with the neuropathology developed by 3xTg-AD mice.
Collapse
|
35
|
Bertelli D, Brighenti V, Marchetti L, Reik A, Pellati F. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop). Anal Bioanal Chem 2018; 410:3521-3531. [DOI: 10.1007/s00216-018-0851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022]
|
36
|
Khan S, Hussain S, Wong A, Foguel MV, Moreira Gonçalves L, Pividori Gurgo MI, Taboada Sotomayor MDP. Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Gil M, Avila-Salas F, Santos LS, Iturmendi N, Moine V, Cheynier V, Saucier C. Rosé Wine Fining Using Polyvinylpolypyrrolidone: Colorimetry, Targeted Polyphenomics, and Molecular Dynamics Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10591-10597. [PMID: 29115836 DOI: 10.1021/acs.jafc.7b04461] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyvinylpolypyrrolidone (PVPP) is a fining agent polymer used in winemaking to adjust rosé wine color and to prevent organoleptic degradations by reducing polyphenol content. The impact of this polymer on color parameters and polyphenols of rosé wines was investigated, and the binding specificity of polyphenols toward PVPP was determined. Color measured by colorimetry decreased after treatment, thus confirming the adsorption of anthocyanins and other pigments. Phenolic composition was determined before and after fining by targeted polyphenomics (Ultra Performance Liquid Chromatography (UPLC)-Electrospray Ionization(ESI)-Mass Spectrometry (MS/MS)). MS analysis showed adsorption differences among polyphenol families. Flavonols (42%) and flavanols (64%) were the most affected. Anthocyanins were not strongly adsorbed on average (12%), but a specific adsorption of coumaroylated anthocyanins was observed (37%). Intermolecular interactions were also studied using molecular dynamics simulations. Relative adsorptions of flavanols were correlated with the calculated interaction energies. The specific affinity of coumaroylated anthocyanins toward PVPP was also well explained by the molecular modeling.
Collapse
Affiliation(s)
- Mélodie Gil
- SPO, Univ Montpellier, INRA, Montpellier SupAgro , Montpellier, France
| | | | | | | | - Virginie Moine
- Biolaffort , 126 Quai de la Souys, 33100 Bordeaux, France
| | - Véronique Cheynier
- SPO, INRA, Montpellier SupAgro, Univ Montpellier , Plateforme Polyphénols, Montpellier, France
| | - Cédric Saucier
- SPO, Univ Montpellier, INRA, Montpellier SupAgro , Montpellier, France
| |
Collapse
|
38
|
Development of a Rapid and Simple Method to Remove Polyphenols from Plant Extracts. Int J Anal Chem 2017; 2017:7230145. [PMID: 29201056 PMCID: PMC5672122 DOI: 10.1155/2017/7230145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023] Open
Abstract
Polyphenols are secondary metabolites of plants, which are responsible for prevention of many diseases. Polyvinylpolypyrrolidone (PVPP) has a high affinity towards polyphenols. This method involves the use of PVPP column to remove polyphenols under centrifugal force. Standards of gallic acid, epigallocatechin gallate, vanillin, and tea extracts (Camellia sinensis) were used in this study. PVPP powder was packed in a syringe with different quantities. The test samples were layered over the PVPP column and subjected to centrifugation. Supernatant was tested for the total phenol content. The presence of phenolic compounds and caffeine was screened by HPLC and measuring the absorbance at 280. The antioxidant capacity of standards and tea extracts was compared with the polyphenol removed fractions using DPPH scavenging assay. No polyphenols were found in polyphenolic standards or tea extracts after PVPP treatment. The method described in the present study to remove polyphenols is simple, inexpensive, rapid, and efficient and can be employed to investigate the contribution of polyphenols present in natural products to their biological activity.
Collapse
|
39
|
Yugandhar P, Kumar KK, Neeraja P, Savithramma N. Isolation, characterization and in silico docking studies of synergistic estrogen receptor a anticancer polyphenols from Syzygium alternifolium (Wt.) Walp. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:296-310. [PMID: 28894629 PMCID: PMC5580956 DOI: 10.5455/jice.20170709031835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
Aim: This study aims to isolate, characterize, and in silico evaluate of anticancer polyphenols from different parts of Syzygium alternifolium. Materials and Methods: The polyphenols were isolated by standard protocol and characterized using Fourier-transform infrared (FT-IR), High performance liquid chromatography - Photodiode array detector coupled with Electrospray ionization - mass spectrometry (MS/MS). The compounds were elucidated based on retention time and molecular ions (m/z) either by [M+H]+/[M-H]− with the comparison of standard phenols as well as ReSpect software tool. Furthermore, absorption, distribution, metabolism, and excretion (ADME)/toxicity properties of selected phenolic scaffolds were screened using OSIRIS and SwissADME programs, which incorporate toxicity risk assessments, pharmacokinetics, and rule of five principles. Molecular docking studies were carried out for selected toxicity filtered compounds against breast cancer estrogen receptor a (ERa) structure (protein data bank-ID: 1A52) through AutoDock scoring functions by PyRx virtual screening program. Results: The obtained results showed two intensive peaks in each polyphenol fraction analyzed with FT-IR, confirms O-H/C-O stretch of the phenolic functional group. A total of 40 compounds were obtained, which categorized as 9 different classes. Among them, flavonol group represents more number of polyphenols. In silico studies suggest seven compounds have the possibility to use as future nontoxic inhibitors. Molecular docking studies with ERa revealed the lead molecules unequivocally interact with Leu346, Glu353, Leu391, Arg394, Gly521, Leu525 residues, and Phe404 formed atomic π-stacking with dihydrochromen-4-one ring of ligands as like estrodial, which stabilizes the receptor structure and complicated to generate a single mutation for drug resistance. Conclusion: Overall, these results significantly proposed that isolated phenolics could be served as potential ER mitigators for breast cancer therapy.
Collapse
Affiliation(s)
- Pulicherla Yugandhar
- Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Pabbaraju Neeraja
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Nataru Savithramma
- Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
40
|
Ravi S, Shanmugam B, Subbaiah GV, Prasad SH, Reddy KS. Identification of food preservative, stress relief compounds by GC-MS and HR-LC/Q-TOF/MS; evaluation of antioxidant activity of Acalypha indica leaves methanolic extract (in vitro) and polyphenolic fraction (in vivo). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:1585-1596. [PMID: 28559618 PMCID: PMC5430191 DOI: 10.1007/s13197-017-2590-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 01/24/2023]
Abstract
The present paper has been designed to evaluate phytochemical profile, in vitro free radical scavenging activity, cytotoxicity of methanolic extract and in vivo antioxidant activity of polyphenolic fraction of Acalypha indica leaves. Methanolic extract of A. indica leaves (MEAIL) contained rich amount of phenols, flavonoids and saponins. The GC-MS analysis of extract revealed 13 compounds, whereas HR-LC/Q-TOF/MS showed 87, and all were coincided with functional groups identified by FTIR. The extract showed good scavenging activity on DPPH, H2O2, hydroxyl radicals and metal ions. The Polyphenolic fraction induced the antioxidant enzymes in Diabetic rats. The extract also potentially showed cytotoxic (LC50: 140.02 µg/mL) activity against brine shrimp. Based on these analytical results, in vitro and in vivo experiments, it was concluded that the MEAIL has encompassed rich amount of polyphenols (antioxidants) and cytotoxic compounds for their respective activities. Polyphenolic fraction has the induction capacity to elevate cellular antioxidant enzymes in diabetic animals.
Collapse
Affiliation(s)
- Sahukari Ravi
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, 517 502 India
| | - Bhasha Shanmugam
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, 517 502 India
| | - Ganjikunta Venkata Subbaiah
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, 517 502 India
| | - Singamala Hari Prasad
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, 517 502 India
| | - Kesireddy Sathyavelu Reddy
- Division of Molecular Biology and Ethnopharmacology, Department of Zoology, Sri Venkateswara University, Tirupati, 517 502 India
| |
Collapse
|
41
|
Henriques J, Ribeiro MJ, Falé PL, Pacheco R, Ascensão L, Florêncio MH, Serralheiro MLM. Valorization of kiwifruit production: leaves of the pruning branches of Actinidia deliciosa as a promising source of polyphenols. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2845-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Robinson AL, Lee HJ, Ryu D. Polyvinylpolypyrrolidone reduces cross-reactions between antibodies and phenolic compounds in an enzyme-linked immunosorbent assay for the detection of ochratoxin A. Food Chem 2017; 214:47-52. [DOI: 10.1016/j.foodchem.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/23/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
43
|
Nishimura M, Okimasu Y, Miyake N, Tada M, Hida R, Negishi T, Arimoto-Kobayashi S. Inhibitory effect of Actinidia arguta on mutagenesis, inflammation and two-stage mouse skin tumorigenesis. Genes Environ 2016; 38:25. [PMID: 27822323 PMCID: PMC5088666 DOI: 10.1186/s41021-016-0053-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Actinidia arguta, known as sarunashi in Japan, is a vine tree native to east-Asia, including Japan, that produces small fruit rich in anthocyanins, catechins, vitamin C, chlorophyll, beta-carotene and other polyphenols. RESULTS Our study revealed the inhibitory effect of the juice of A. arguta (arguta-juice) toward the mutagenicity of food-derived carcinogens and polycyclic aromatic hydrocarbons using the Ames test, and antioxidant activity of arguta-juice as determined using a free radical scavenging assay. The formation of DNA adducts in liver of mice fed 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) decreased significantly following administration of arguta-juice. The preventive effect of arguta-juice on the induction of inflammation of mouse ear by 12-O-tetradecanoylphorbol-13-acetate (TPA) was revealed. The anti-carcinogenic effect of a topically applied partially purified fraction of A. arguta was revealed on skin tumorigenesis in mice induced by treatment with 7,12-dimethylbenz(a)anthracene and TPA. In an effort to reveal the mechanisms for antimutagenicity of arguta-juice, effects on the enzymes that metabolize xenobiotics were examined. Combined effects comprising i) inhibition of the metabolic activation of mutagens with phase I enzymes, but ii) no prevention on the activity of phase II detoxification enzyme, UGT, were observed. We also investigated the characterization and partial purification of the antimutagenic components in A. arguta, which suggested that the components in A. arguta responsible for the antimutagenicity were water-soluble, heat-labile phenolic compounds. CONCLUSIONS These results suggested that components in A. arguta are attractive candidates for potential use as chemopreventive agents.
Collapse
Affiliation(s)
- Mari Nishimura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Yuma Okimasu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Naoko Miyake
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Misako Tada
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Ryoko Hida
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530 Japan
| | - Tomoe Negishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| | - Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima, Okayama 700-8530 Japan
| |
Collapse
|
44
|
Methods for verifying the authenticity of hops - an effective tool against falsification. KVASNY PRUMYSL 2016. [DOI: 10.18832/kp2016030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Cejnar R, Hložková K, Jelínek L, Kotrba P, Dostálek P. Development of engineered yeast for biosorption of beer haze-active polyphenols. Appl Microbiol Biotechnol 2016; 101:1477-1485. [DOI: 10.1007/s00253-016-7923-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/01/2023]
|
46
|
Munekata P, Franco D, Trindade M, Lorenzo JM. Characterization of phenolic composition in chestnut leaves and beer residue by LC-DAD-ESI-MS. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur J Nutr 2016; 56:1245-1254. [PMID: 26873098 PMCID: PMC5346430 DOI: 10.1007/s00394-016-1173-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/02/2016] [Indexed: 02/05/2023]
Abstract
Purpose To evaluate the plasma bioavailability of betanin and nitric oxide (NOx) after consuming beetroot juice (BTJ) and whole beetroot (BF). BTJ and BF were also analysed for antioxidant capacity, polyphenol content (TPC) and betalain content. Methods Ten healthy males consumed either 250 ml of BTJ, 300 g of BF or a placebo drink, in a randomised, crossover design. Venous plasma samples were collected pre (baseline), 1, 2, 3, 5 and 8 h post-ingestion. Betanin content in BTJ, BF and plasma was analysed with reverse-phase high-performance liquid chromatography (HPLC) and mass spectrometry detection (LCMS). Antioxidant capacity was estimated using the Trolox equivalent antioxidant capacity (TEAC) and polyphenol content using Folin–Ciocalteu colorimetric methods [gallic acid equivalents (GAE)] and betalain content spectrophotometrically. Results TEAC was 11.4 ± 0.2 mmol/L for BTJ and 3.4 ± 0.4 μmol/g for BF. Both BTJ and BF contained a number of polyphenols (1606.9 ± 151 mg/GAE/L and 1.67 ± 0.1 mg/GAE/g, respectively), betacyanins (68.2 ± 0.4 mg/betanin equivalents/L and 19.6 ± 0.6 mg/betanin equivalents/100 g, respectively) and betaxanthins (41.7 ± 0.7 mg/indicaxanthin equivalents/L and 7.5 ± 0.2 mg/indicaxanthin equivalents/100 g, respectively). Despite high betanin contents in both BTJ (~194 mg) and BF (~66 mg), betanin could not be detected in the plasma at any time point post-ingestion. Plasma NOx was elevated above baseline for 8 h after consuming BTJ and 5 h after BF (P < 0.05). Conclusions These data reveal that BTJ and BF are rich in phytonutrients and may provide a useful means of increasing plasma NOx bioavailability. However, betanin, the major betalain in beetroot, showed poor bioavailability in plasma.
Collapse
|
49
|
Carvalho DO, Oliveira R, Johansson B, Guido LF. Dose-Dependent Protective and Inductive Effects
of Xanthohumol on Oxidative DNA Damage in
Saccharomyces cerevisiae. Food Technol Biotechnol 2016; 54:60-69. [PMID: 27904394 DOI: 10.17113/ftb.54.01.16.4256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of xanthohumol, a prenylflavonoid isolated from the hop plant (Humulus lupulus L.), on Saccharomyces cerevisiae DNA oxidative damage and viability was evaluated. Yeast cultures under oxidative stress, induced by H2O2, displayed stronger growth in the presence of 5 mg/L of xanthohumol than cultures with only H2O2. Likewise, DNA damage assessed by the comet assay was significantly lower in cells co-incubated with xanthohumol and H2O2. Accordingly, fluorescence of dichlorofluorescein in cells treated with H2O2 and xanthohumol was considerably lower than in cells exclusively treated with H2O2, indicative of a reactive oxygen species scavenging mechanism and consequent formation of oxidation products, as detected by mass spectrometry. However, at concentrations above 5 mg/L, xanthohumol elicited an opposite effect, leading to a slower growth rate and significant increase in DNA damage. A yeast yap1 deletion mutant strain sensitive to oxidative stress grew more slowly in the presence of at least 5 mg/L of xanthohumol than cultures of the wild type, suggesting that xanthohumol toxicity is mediated by oxidative stress. This evidence provides further insight into the impact of xanthohumol on yeast cells, supporting dose-dependent antioxidant/antigenotoxic and prooxidant/genotoxic effects.
Collapse
Affiliation(s)
- Daniel O Carvalho
- REQUIMTE/LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences,
University of Porto, Rua do Campo Alegre 687, PT-4169-007 Porto, Portugal
| | - Rui Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB),
Department of Biology, University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal
| | - Björn Johansson
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology,
University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal
| | - Luís F Guido
- REQUIMTE/LAQV - Department of Chemistry and Biochemistry, Faculty of Sciences,
University of Porto, Rua do Campo Alegre 687, PT-4169-007 Porto, Portugal
| |
Collapse
|
50
|
Moura-Nunes N, Brito TC, da Fonseca ND, de Aguiar PF, Monteiro M, Perrone D, Torres AG. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chem 2015; 199:105-13. [PMID: 26775950 DOI: 10.1016/j.foodchem.2015.11.133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 12/17/2022]
Abstract
In the present study we aimed at investigating, for the first time, phenolic compounds in Brazilian beers of different types and styles. We also aimed at applying chemometrics for modeling beer's antioxidant capacity as a function of their physicochemical attributes (density, refractive index, bitterness and ethanol content). Samples (n=29) were analyzed by PCA originating five groups, especially according to ethanol contents and bitterness. In general, Group V (alcoholic beers with very high bitterness) presented higher refractive index, bitterness, ethanol and phenolics contents than Groups I (non-alcoholic beers) and II (alcoholic beers with low bitterness). Brazilian beers phenolics profile was distinct from that of European beers, with high contents of gallic acid (0.5-14.7 mg/L) and low contents of ferulic acid (0.2-1.8 mg/L). Using PLS, beer's antioxidant capacity measured by FRAP assay could be predicted with acceptable precision by data of ethanol content and density, bitterness and refractive index values.
Collapse
Affiliation(s)
- Nathália Moura-Nunes
- Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier, 524 Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12002, 20559-900 Rio de Janeiro, Brazil.
| | - Thárcila Cazaroti Brito
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149 CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Nívea Dias da Fonseca
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149 CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Paula Fernandes de Aguiar
- Laboratório de Quimiometria, Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 517, 21949-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, sala J2-16, 21941-902 Rio de Janeiro, Brazil.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149 CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Alexandre Guedes Torres
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149 CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| |
Collapse
|