• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619882)   Today's Articles (0)   Subscriber (49404)
For: Neue UD, Kuss HJ. Improved reversed-phase gradient retention modeling. J Chromatogr A 2010;1217:3794-803. [DOI: 10.1016/j.chroma.2010.04.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Peiró-Vila P, Torres-Lapasió JR, García-Alvarez-Coque MC. Performance of global retention models in the optimisation of the liquid chromatographic separation (II): Complex multi-analyte samples. Anal Chim Acta 2024;1320:343019. [PMID: 39142788 DOI: 10.1016/j.aca.2024.343019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
2
Bosten E, Pardon M, Chen K, Koppen V, Van Herck G, Hellings M, Cabooter D. Assisted Active Learning for Model-Based Method Development in Liquid Chromatography. Anal Chem 2024;96:13699-13709. [PMID: 38979746 DOI: 10.1021/acs.analchem.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
3
Peiró-Vila P, Pérez-Gracia C, Baeza-Baeza JJ, García-Alvarez-Coque MC, Torres-Lapasió JR. Analysis and classification of tea varieties using high-performance liquid chromatography and global retention models. J Chromatogr A 2024;1730:465128. [PMID: 38964161 DOI: 10.1016/j.chroma.2024.465128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
4
Niezen LE, Desmet G. A new chromatographic response function with automatically adapting weight factor for automated method development. J Chromatogr A 2024;1727:465008. [PMID: 38788402 DOI: 10.1016/j.chroma.2024.465008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
5
Mahmood A, Uzair M, Perveen S, Rehman N, Qamar S. Numerical Approximation of a Nonequilibrium Model of Gradient Elution Chromatography Considering Different Functional Relationships between Model Parameters and Solvent Composition. ACS OMEGA 2024;9:20601-20615. [PMID: 38737028 PMCID: PMC11079890 DOI: 10.1021/acsomega.4c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
6
Kensert A, Libin P, Desmet G, Cabooter D. Deep reinforcement learning for the direct optimization of gradient separations in liquid chromatography. J Chromatogr A 2024;1720:464768. [PMID: 38442496 DOI: 10.1016/j.chroma.2024.464768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
7
Bosten E, Kensert A, Desmet G, Cabooter D. Automated method development in high-pressure liquid chromatography. J Chromatogr A 2024;1714:464577. [PMID: 38104507 DOI: 10.1016/j.chroma.2023.464577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
8
Kensert A, Desmet G, Cabooter D. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. J Chromatogr A 2024;1713:464570. [PMID: 38101304 DOI: 10.1016/j.chroma.2023.464570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
9
Rutan SC, Cash K, Stoll DR. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. J Chromatogr A 2023;1711:464443. [PMID: 37890376 DOI: 10.1016/j.chroma.2023.464443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
10
Molenaar SRA, Bos TS, Boelrijk J, Dahlseid TA, Stoll DR, Pirok BWJ. Computer-driven optimization of complex gradients in comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023;1707:464306. [PMID: 37639847 DOI: 10.1016/j.chroma.2023.464306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
11
Kempen T, Dahlseid T, Lauer T, Florea AC, Aase I, Cole-Dai N, Kaur S, Southworth C, Grube K, Bhandari J, Sylvester M, Schimek R, Pirok B, Rutan S, Stoll D. Characterization of a high throughput approach for large scale retention measurement in liquid chromatography. J Chromatogr A 2023;1705:464182. [PMID: 37442072 DOI: 10.1016/j.chroma.2023.464182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
12
Moldoveanu SC, Bacalum E, Galaon T, David V. Revisiting the dependence of retention factor on the content of organic component in the mobile phase in reversed-phase HPLC. J Sep Sci 2023;46:e2300274. [PMID: 37330648 DOI: 10.1002/jssc.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
13
Lardeux H, Fekete S, Lauber M, D'Atri V, Guillarme D. High-Throughput Chromatographic Separation of Oligonucleotides: A Proof of Concept Using Ultra-Short Columns. Anal Chem 2023. [PMID: 37384898 DOI: 10.1021/acs.analchem.3c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
14
Performance of global retention models in the optimisation of the chromatographic separation (I): Simple multi-analyte samples. J Chromatogr A 2023;1689:463756. [PMID: 36610184 DOI: 10.1016/j.chroma.2022.463756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
15
Kensert A, Desmet G, Cabooter D. Graph Neural Networks for Improved Retention Time Predictions. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.qt5667e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
16
Blumberg LM. Chromatographic parameters: Characteristic parameters of solute retention – an insightful description of column properties. J Chromatogr A 2022;1685:463594. [DOI: 10.1016/j.chroma.2022.463594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
17
Van Laethem T, Kumari P, Boulanger B, Hubert P, Fillet M, Sacré PY, Hubert C. User-Driven Strategy for In Silico Screening of Reversed-Phase Liquid Chromatography Conditions for Known Pharmaceutical-Related Small Molecules. MOLECULES (BASEL, SWITZERLAND) 2022;27:molecules27238306. [PMID: 36500399 PMCID: PMC9735675 DOI: 10.3390/molecules27238306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
18
Gisbert-Alonso A, Navarro-Martínez A, Navarro-Huerta J, Torres-Lapasió J, García-Alvarez-Coque M. Chromatographic fingerprint-based analysis of extracts of green tea, lemon balm and linden: II. Simulation of chromatograms using global models. J Chromatogr A 2022;1684:463561. [DOI: 10.1016/j.chroma.2022.463561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
19
Bos TS, Boelrijk J, Molenaar SRA, van ’t Veer B, Niezen LE, van Herwerden D, Samanipour S, Stoll DR, Forré P, Ensing B, Somsen GW, Pirok BWJ. Chemometric Strategies for Fully Automated Interpretive Method Development in Liquid Chromatography. Anal Chem 2022;94:16060-16068. [DOI: 10.1021/acs.analchem.2c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
20
Rehman N, Qamar S. Numerical Approximation of the Nonequilibrium Model of Gradient Elution Chromatography Considering Linear and Nonlinear Solvent Strength Models. ACS OMEGA 2022;7:31905-31915. [PMID: 36120058 PMCID: PMC9476203 DOI: 10.1021/acsomega.2c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
21
Solvent strength of organic phase for two biphasic solvent systems in high speed countercurrent chromatography. J Chromatogr A 2022;1680:463422. [PMID: 36037578 DOI: 10.1016/j.chroma.2022.463422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
22
Broeckhoven K, Desmet G. Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial. Anal Chim Acta 2022;1218:339962. [PMID: 35701036 DOI: 10.1016/j.aca.2022.339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
23
Urban J, Nechvátalová M, Hekerle L. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography. J Sep Sci 2022;45:3319-3327. [PMID: 35855653 DOI: 10.1002/jssc.202200201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022]
24
Stoll DR, Kainz G, Dahlseid TA, Kempen TJ, Brau T, Pirok BWJ. An approach to high throughput measurement of accurate retention data in liquid chromatography. J Chromatogr A 2022;1678:463350. [PMID: 35896047 DOI: 10.1016/j.chroma.2022.463350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
25
Recycling gradient-elution liquid chromatography for the analysis of chemical-composition distributions of polymers. J Chromatogr A 2022;1679:463386. [DOI: 10.1016/j.chroma.2022.463386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
26
Guillarme D, Bouvarel T, Rouvière F, Heinisch S. A simple mathematical treatment for predicting linear solvent strength behaviour in gradient elution: application to biomolecules. J Sep Sci 2022;45:3276-3285. [PMID: 35562641 PMCID: PMC9543774 DOI: 10.1002/jssc.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
27
Ribar D, Rijavec T, Kralj Cigić I. An exploration into the use of Hansen solubility parameters for modelling reversed-phase chromatographic separations. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]  Open
28
Chromatographic fingerprint-based analysis of extracts of green tea, lemon balm and linden: I. Development of global retention models without the use of standards. J Chromatogr A 2022;1672:463060. [DOI: 10.1016/j.chroma.2022.463060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
29
Brau T, Pirok B, Rutan S, Stoll D. Accuracy of retention model parameters obtained from retention data in liquid chromatography. J Sep Sci 2022;45:3241-3255. [PMID: 35304809 DOI: 10.1002/jssc.202100911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
30
Kitamura R, Kawabe T, Masuda Y, Kajiro T, Nonaka K, Yonemochi E. Development of a retention prediction model in ion-pair reversed-phase HPLC for nucleoside triphosphates used as mRNA vaccine raw materials. J Chromatogr B Analyt Technol Biomed Life Sci 2022;1193:123168. [PMID: 35183952 DOI: 10.1016/j.jchromb.2022.123168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
31
Vanova J, Malinak D, Andrys R, Kubat M, Mikysek T, Rousarova E, Musilek K, Rousar T, Cesla P. Optimization of Gradient Reversed Phase High Performance Liquid Chromatography Analysis of Acetaminophen Oxidation Metabolites using Linear and Non-linear Retention Model. J Chromatogr A 2022;1669:462956. [DOI: 10.1016/j.chroma.2022.462956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 11/15/2022]
32
Molenaar SR, Savova MV, Cross R, Ferguson PD, Schoenmakers PJ, Pirok BW. Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling. J Chromatogr A 2022;1668:462909. [DOI: 10.1016/j.chroma.2022.462909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
33
Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography. J Chromatogr A 2021;1662:462736. [PMID: 34923304 DOI: 10.1016/j.chroma.2021.462736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
34
Bayesian optimization of comprehensive two-dimensional liquid chromatography separations. J Chromatogr A 2021;1659:462628. [PMID: 34731752 DOI: 10.1016/j.chroma.2021.462628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
35
Kaczmarski K, Chutkowski M. Impact of changes in physicochemical parameters of the mobile phase along the column on the retention time in gradient liquid chromatography. Part A - temperature gradient. J Chromatogr A 2021;1655:462509. [PMID: 34500223 DOI: 10.1016/j.chroma.2021.462509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
36
Gisbert-Alonso A, Navarro-Huerta JA, Torres-Lapasió JR, García-Alvarez-Coque MC. Testing experimental designs in liquid chromatography (II): Influence of the design geometry on the prediction performance of retention models. J Chromatogr A 2021;1654:462458. [PMID: 34399141 DOI: 10.1016/j.chroma.2021.462458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
37
Rebirth of recycling liquid chromatography with modern chromatographic columns : Extension to gradient elution. J Chromatogr A 2021;1653:462424. [PMID: 34340057 DOI: 10.1016/j.chroma.2021.462424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
38
[Effects of peak compression in gradient elution of liquid chromatography]. Se Pu 2021;39:10-14. [PMID: 34227354 PMCID: PMC9274839 DOI: 10.3724/sp.j.1123.2020.07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
39
Rutan SC, Jeong LN, Carr PW, Stoll DR, Weber SG. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. J Chromatogr A 2021;1653:462376. [PMID: 34293516 DOI: 10.1016/j.chroma.2021.462376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
40
Gritti F. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Anal Chem 2021;93:5653-5664. [PMID: 33797872 DOI: 10.1021/acs.analchem.0c05078] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
41
Kitamura R, Kawabe T, Kajiro T, Yonemochi E. The development of retention time prediction model using multilinear gradient profiles of seven pharmaceuticals. J Pharm Biomed Anal 2021;198:114024. [PMID: 33765510 DOI: 10.1016/j.jpba.2021.114024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
42
Gisbert-Alonso A, Navarro-Huerta JA, Torres-Lapasió JR, García-Alvarez-Coque MC. Global retention models and their application to the prediction of chromatographic fingerprints. J Chromatogr A 2020;1637:461845. [PMID: 33388442 DOI: 10.1016/j.chroma.2020.461845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022]
43
den Uijl MJ, Schoenmakers PJ, Schulte GK, Stoll DR, van Bommel MR, Pirok BWJ. Measuring and using scanning-gradient data for use in method optimization for liquid chromatography. J Chromatogr A 2020;1636:461780. [PMID: 33360860 DOI: 10.1016/j.chroma.2020.461780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
44
den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Recent applications of retention modelling in liquid chromatography. J Sep Sci 2020;44:88-114. [PMID: 33058527 PMCID: PMC7821232 DOI: 10.1002/jssc.202000905] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
45
Haddad PR, Taraji M, Szücs R. Prediction of Analyte Retention Time in Liquid Chromatography. Anal Chem 2020;93:228-256. [DOI: 10.1021/acs.analchem.0c04190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
46
Kaczmarski K, Chutkowski M. Note of solving Equilibrium Dispersive model with the Craig scheme for gradient chromatography case. J Chromatogr A 2020;1629:461504. [DOI: 10.1016/j.chroma.2020.461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
47
Huygens B, Efthymiadis K, Nowé A, Desmet G. Application of evolutionary algorithms to optimise one- and two-dimensional gradient chromatographic separations. J Chromatogr A 2020;1628:461435. [PMID: 32822975 DOI: 10.1016/j.chroma.2020.461435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022]
48
Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs. J Chromatogr A 2020;1624:461180. [DOI: 10.1016/j.chroma.2020.461180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
49
Simulation of elution profiles in liquid chromatography – IV: Experimental characterization and modeling of solute injection profiles from a modulation valve used in two-dimensional liquid chromatography. J Chromatogr A 2020;1626:461373. [DOI: 10.1016/j.chroma.2020.461373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
50
Gao W, Liu XL, Wang Y, Liang C, Lian HZ, Qiao JQ. Insight into the hydrophilic interaction liquid chromatographic retention behaviors of hydrophilic compounds on different stationary phases. Talanta 2020;219:121363. [PMID: 32887085 DOI: 10.1016/j.talanta.2020.121363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/01/2023]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA