1
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Factors affecting product association as a mechanism of host-cell protein persistence in bioprocessing. Biotechnol Bioeng 2024; 121:1284-1297. [PMID: 38240126 DOI: 10.1002/bit.28658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Biologics PR&D, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 27606, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Wang H, Stehr AM, Singh J, Zlatar L, Hartmann A, Evert K, Naschberger E, von Stillfried S, Boor P, Muñoz LE, Knopf J, Stürzl M, Herrmann M. Anti-DNA-IgM Favors the Detection of NET-Associated Extracellular DNA. Int J Mol Sci 2023; 24:ijms24044101. [PMID: 36835515 PMCID: PMC9958910 DOI: 10.3390/ijms24044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei. This is easily detected in cultured cells by staining of DNA with specific dyes. However, in tissues sections the very high fluorescence signals emitted from the condensed nuclear DNA hamper the detection of the widespread, extranuclear DNA of the NETs. In contrast, when we employ anti-DNA-IgM antibodies, they are unable to penetrate deep into the tightly packed DNA of the nucleus, and we observe a robust signal for the extended DNA patches of the NETs. To validate anti-DNA-IgM, we additionally stained the sections for the NET-markers histone H2B, myeloperoxidase, citrullinated histone H3, and neutrophil elastase. Altogether, we have described a fast one-step procedure for the detection of NETs in tissue sections, which provides new perspectives to characterize neutrophil-associated immune reactions in disease.
Collapse
Affiliation(s)
- Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Katja Evert
- Institut für Pathologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic of the RWTH Aachen, 52074 Aachen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
3
|
Verstraete MM, Heinkel F, Li J, Cao S, Tran A, Halverson EC, Gene R, Stangle E, Silva-Moreno B, Arrafi S, Bavananthasivam J, Fung M, Eji-Lasisi M, Masterman S, Xanthoudakis S, Dixit S, Babcook J, Clavette B, Fogg M, Escobar-Cabrera E. Multivalent IgM scaffold enhances the therapeutic potential of variant-agnostic ACE2 decoys against SARS-CoV-2. MAbs 2023; 15:2212415. [PMID: 37229608 DOI: 10.1080/19420862.2023.2212415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
As immunological selection for escape mutants continues to give rise to future SARS-CoV-2 variants, novel universal therapeutic strategies against ACE2-dependent viruses are needed. Here we present an IgM-based decavalent ACE2 decoy that has variant-agnostic efficacy. In immuno-, pseudovirus, and live virus assays, IgM ACE2 decoy had potency comparable or superior to leading SARS-CoV-2 IgG-based mAb therapeutics evaluated in the clinic, which were variant-sensitive in their potency. We found that increased ACE2 valency translated into increased apparent affinity for spike protein and superior potency in biological assays when decavalent IgM ACE2 was compared to tetravalent, bivalent, and monovalent ACE2 decoys. Furthermore, a single intranasal dose of IgM ACE2 decoy at 1 mg/kg conferred therapeutic benefit against SARS-CoV-2 Delta variant infection in a hamster model. Taken together, this engineered IgM ACE2 decoy represents a SARS-CoV-2 variant-agnostic therapeutic that leverages avidity to drive enhanced target binding, viral neutralization, and in vivo respiratory protection against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Anh Tran
- Department of Human Health Therapeutics, National Research Council Canada, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dhandapani G, Wachtel E, Das I, Sheves M, Patchornik G. Conjugated Detergent Micelles as a Platform for IgM Purification. Biotechnol Bioeng 2022; 119:1997-2003. [PMID: 35324016 PMCID: PMC9325453 DOI: 10.1002/bit.28089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/31/2022] [Accepted: 03/20/2022] [Indexed: 12/02/2022]
Abstract
Immunoglobulin M (IgM) antibodies hold promise as anticancer drugs and as agents for promoting immune homeostasis. This promise has not been realized due to low expression levels in mammalian cells producing IgM class antibodies, and the failure of protein A chromatography for IgM purification. Here, we describe a nonchromatographic platform for quantitatively capturing IgMs at neutral pH, which is then recovered with 86%–94% yield and >95% purity at pH 3. The platform contains micelles conjugated with the [(bathophenanthroline)3:Fe2+] amphiphilic complex. Inclusion of amino acid monomers, for example, phenylalanine or tyrosine, during conjugation of detergent micelles, allows subsequent extraction of IgMs at close to neutral pH. With the successful implementation of this purification platform for both polyclonal humans and bovine IgMs, we anticipate similar results for monoclonal IgMs, most relevant for the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ishita Das
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mordechai Sheves
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, 70400, Ariel, Israel
| |
Collapse
|
5
|
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies (Basel) 2020; 9:E53. [PMID: 33066119 PMCID: PMC7709107 DOI: 10.3390/antib9040053] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.
Collapse
Affiliation(s)
- Bruce A. Keyt
- IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; (R.B.); (A.M.S.); (S.F.C.); (M.S.P.)
| | | | | | | | | |
Collapse
|
6
|
Analysis of Product Quality of Complex Polymeric IgM Produced by CHO Cells. Methods Mol Biol 2019. [PMID: 31858475 DOI: 10.1007/978-1-0716-0191-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunoglobulin M (IgM) antibodies are considered as promising biopharmaceutical drugs in the future despite recombinant production is quite challenging as incomplete polymer formation or nucleic acid adherence can decrease the quality of the IgM preparation. Therefore, we defined densitometric and chromatographic methods as suitable tools to analyze the polymer distribution and the remaining nucleic acid content after initial IgM purification. Additionally, the quality of the glycosylation pattern is an important parameter for biological safety and efficacy.
Collapse
|
7
|
He XM, Voß C, Li J. Exploring the Unique Selectivity of Hydrophobic Cation Exchanger Nuvia cPrime for the Removal of a Major Process Impurity: A Case Study with IgM. Curr Protein Pept Sci 2018; 20:65-74. [PMID: 29046148 DOI: 10.2174/1389203718666171017130506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/03/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mixed-mode chromatography is becoming an important tool for downstream process purification, as it provides the selectivity and robustness unmatched by conventional singlemode chromatographic methods. The joint action of multiple functionalities present on the ligands of mixed-mode chromatography matrices effectively enhances the separation of target molecules from impurities. MATERIAL AND METHODS Using Nuvia cPrime as an example, we elucidate the separation principles of hydrophobic cation exchange mixed-mode chromatography and its difference from traditional strong cation exchangers. We have developed a Nuvia cPrime based polish purification step specifically for the removal of a major process contaminant, which has an isoelectric point similar to that of the target monoclonal IgM molecule. Additional purification was accomplished using a second mixed-mode chromatography column packed with Ceramic Hydroxyapatite. CONCLUSION The monoclonal IgM prepared with this new process fully retained its biological activity and was free of high molecular weight aggregates, a product quality that was not achievable in previous attempts using traditional ion exchange or hydrophobic interaction chromatography.
Collapse
Affiliation(s)
- Xuemei M He
- Bio-Rad Laboratories Inc., Life Science Group, 6000 James Watson Drive, Hercules, CA 94547, United States
| | - Carsten Voß
- Bio-Rad Laboratories GmbH, Life Science Group, Heidemannstr. 164, 80939 Munich, Germany
| | - Jidong Li
- Bio-Rad Laboratories (Shanghai) Ltd., 1302/F GIE Tower 403, Huanshi Road East, Guangzhou 510095, China
| |
Collapse
|
8
|
|
9
|
Guryanov I, Fiorucci S, Tennikova T. Receptor-ligand interactions: Advanced biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:890-903. [PMID: 27524092 DOI: 10.1016/j.msec.2016.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022]
Abstract
Receptor-ligand interactions (RLIs) are at the base of all biological events occurring in living cells. The understanding of interactions between complementary macromolecules in biological systems represents a high-priority research area in bionanotechnology to design the artificial systems mimicking natural processes. This review summarizes and analyzes RLIs in some cutting-edge biomedical fields, in particular, for the preparation of novel stationary phases to separate complex biological mixtures in medical diagnostics, for the design of ultrasensitive biosensors for identification of biomarkers of various diseases at early stages, as well as in the development of innovative biomaterials and approaches for regenerative medicine. All these biotechnological fields are closely related, because their success depends on a proper choice, combination and spatial disposition of the single components of ligand-receptor pairs on the surface of appropriately designed support.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy.
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| |
Collapse
|
10
|
Nian R, Gagnon P. Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies. J Chromatogr A 2016; 1453:54-61. [DOI: 10.1016/j.chroma.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 04/03/2016] [Accepted: 05/06/2016] [Indexed: 12/28/2022]
|
11
|
Gagnon P, Nian R, Yang Y, Yang Q, Lim CL. Non-immunospecific association of immunoglobulin G with chromatin during elution from protein A inflates host contamination, aggregate content, and antibody loss. J Chromatogr A 2015; 1408:151-60. [DOI: 10.1016/j.chroma.2015.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 11/24/2022]
|
12
|
Tan L, Yeo V, Yang Y, Gagnon P. Characterization of DNA in cell culture supernatant by fluorescence-detection size-exclusion chromatography. Anal Bioanal Chem 2015; 407:4173-81. [DOI: 10.1007/s00216-015-8639-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
|
13
|
Gagnon P, Nian R, Tan L, Cheong J, Yeo V, Yang Y, Gan HT. Chromatin-mediated depression of fractionation performance on electronegative multimodal chromatography media, its prevention, and ramifications for purification of immunoglobulin G. J Chromatogr A 2014; 1374:145-155. [DOI: 10.1016/j.chroma.2014.11.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
|
14
|
Zhu-Shimoni J, Yu C, Nishihara J, Wong RM, Gunawan F, Lin M, Krawitz D, Liu P, Sandoval W, Vanderlaan M. Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol Bioeng 2014; 111:2367-79. [PMID: 24995961 DOI: 10.1002/bit.25327] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023]
Abstract
Host cell proteins (HCPs) are among the process-related impurities monitored during recombinant protein pharmaceutical process development. The challenges of HCP detection include (1) low levels of residual HCPs present in large excess of product protein, (2) the assay must measure a large number of different protein analytes, and (3) the population of HCP species may change during process development. Suitable methods for measuring process-related impurities are needed to support process development, process validation, and control system testing. A multi-analyte enzyme-linked immunosorbent assay (ELISA) is the workhorse method for HCP testing due to its high throughput, sensitivity and selectivity. However, as the anti-HCP antibodies, the critical reagents for HCP ELISA, do not comprehensively recognize all the HCP species, it is especially important to ensure that weak and non-immunoreactive HCPs are not overlooked by the ELISA. In some cases limited amount of antibodies to HCP species or antigen excess causes dilution-dependent non-linearity with multi-product HCP ELISA. In our experience, correct interpretation of assay data can lead to isolation and identification of co-purifying HCP with the product in some cases. Moreover, even if the antibodies for a particular HCP are present in the reagent, the corresponding HCP may not be readily detected in the ELISA due to antibody/antigen binding conditions and availability of HCP epitopes. This report reviews the use of the HCP ELISA, discusses its limitations, and demonstrates the importance of orthogonal methods, including mass spectrometry, to complement the platform HCP ELISA for support of process development. In addition, risk and impact assessment for low-level HCPs is also outlined, with consideration of clinical information.
Collapse
Affiliation(s)
- Judith Zhu-Shimoni
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gagnon P, Nian R, Lee J, Tan L, Latiff SMA, Lim CL, Chuah C, Bi X, Yang Y, Zhang W, Gan HT. Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. J Chromatogr A 2014; 1340:68-78. [DOI: 10.1016/j.chroma.2014.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
|
16
|
Maksimova E, Vlakh E, Sinitsyna E, Tennikova T. HPLC analysis of synthetic polymers on short monolithic columns. J Sep Sci 2013; 36:3741-9. [DOI: 10.1002/jssc.201300852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Maksimova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
| | - Evgenia Vlakh
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Ekaterina Sinitsyna
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana Tennikova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
17
|
Allantoin as a solid phase adsorbent for removing endotoxins. J Chromatogr A 2013; 1310:15-20. [DOI: 10.1016/j.chroma.2013.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
|
18
|
Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A. Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnol J 2013; 8:671-81. [DOI: 10.1002/biot.201200328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
|
19
|
Podgornik A, Yamamoto S, Peterka M, Krajnc NL. Fast separation of large biomolecules using short monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:80-9. [DOI: 10.1016/j.jchromb.2013.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
20
|
Gan HT, Lee J, Latiff SMA, Chuah C, Toh P, Lee WY, Gagnon P. Characterization and removal of aggregates formed by nonspecific interaction of IgM monoclonal antibodies with chromatin catabolites during cell culture production. J Chromatogr A 2013; 1291:33-40. [DOI: 10.1016/j.chroma.2013.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
21
|
Mueller M, Wan C, Hoi KM, Kim DY, Gan HT, Bardor M, Gagnon P. Immunoglobulins M Survive Low-pH Conditions Used for Virus Inactivation and for Elution from Bioaffinity Columns. J Pharm Sci 2013; 102:1125-32. [DOI: 10.1002/jps.23428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 11/08/2022]
|
22
|
Lee J, Gan HT, Latiff SMA, Chuah C, Lee WY, Yang YS, Loo B, Ng SK, Gagnon P. Principles and applications of steric exclusion chromatography. J Chromatogr A 2012. [PMID: 23182281 DOI: 10.1016/j.chroma.2012.10.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We introduce a chromatography method for purification of large proteins and viruses that works by capturing them at a non-reactive hydrophilic surface by their mutual steric exclusion of polyethylene glycol (PEG). No direct chemical interaction between the surface and the target species is required. We refer to the technique as steric exclusion chromatography. Hydroxyl-substituted polymethacrylate monoliths provide a hydrophilic surface and support convective mass transport that is unaffected by the viscosity of the PEG. Elution is achieved by reducing PEG concentration. Selectivity correlates with molecular size, with larger species retained more strongly than smaller species. Retention increases with PEG size and concentration. Salts weaken retention in proportion to their concentration and Hofmeister ranking. Retention is enhanced near the isoelectric point of the target species. Virus binding capacity was measured at 9.9×10(12) plaque forming units per mL of monolith. 99.8% of host cell proteins and 93% of DNA were eliminated. Mass recovery exceeded 90%. IgM capacity was greater than 60 mg/mL. 95% of host cell proteins were eliminated from IgM produced in protein-free media, and mass recovery was up to 90%. Bioactivity was fully conserved by both viruses and antibodies. Process time ranged from less than 30 min to 2 h depending on the product concentration in the feed stream.
Collapse
Affiliation(s)
- Jeremy Lee
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|
24
|
Mechetner L, Sood R, Nguyen V, Gagnon P, Parseghian MH. The effects of hitchhiker antigens co-eluting with affinity-purified research antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2583-94. [DOI: 10.1016/j.jchromb.2011.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 06/30/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
|