• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625215)   Today's Articles (800)   Subscriber (49474)
For: Dinh NP, Jonsson T, Irgum K. Probing the interaction mode in hydrophilic interaction chromatography. J Chromatogr A 2011;1218:5880-91. [DOI: 10.1016/j.chroma.2011.06.037] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Number Cited by Other Article(s)
1
Samuelsson J, Leśko M, Thunberg L, Weinmann AL, Limé F, Enmark M, Fornstedt T. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. J Chromatogr A 2024;1732:465203. [PMID: 39096781 DOI: 10.1016/j.chroma.2024.465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
2
Yeung D, Spicer V, Krokhin OV. Peptide retention time prediction for hydrophilic interaction liquid chromatography at acidic pH in formic-acid based eluents. J Chromatogr A 2024;1736:465355. [PMID: 39260150 DOI: 10.1016/j.chroma.2024.465355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
3
Guo Y, Baran D, Ryan L. Insights into the selectivity of polar stationary phases based on quantitative retention mechanism assessment in hydrophilic interaction chromatography. J Chromatogr A 2024;1726:464973. [PMID: 38729044 DOI: 10.1016/j.chroma.2024.464973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
4
McCalley DV. Practical examination of flow rate effects and influence of the stationary phase water layer on peak shape and retention in hydrophilic interaction liquid chromatography. J Chromatogr A 2024;1715:464608. [PMID: 38194863 DOI: 10.1016/j.chroma.2023.464608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
5
Redón L, Subirats X, Chapel S, Januarius T, Broeckhoven K, Rosés M, Cabooter D, Desmet G. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns. J Chromatogr A 2024;1713:464529. [PMID: 38029660 DOI: 10.1016/j.chroma.2023.464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
6
Yu J, Peng J, Peng H, Zhang Z, Fan K, Luo P, Wu J, Yang H, Zeng H, Wang X. Preparation of three structurally similar stationary phases with different ionizable terminal groups and evaluation of their retention performances under multiple modes in high performance liquid chromatography. J Chromatogr A 2023;1708:464340. [PMID: 37660561 DOI: 10.1016/j.chroma.2023.464340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
7
Cai T, Sun X, Chen J, Qiu H. Tetraethylenepentamine-derived carbon dots and tetraethylenepentamine co-immobilized silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2023;1707:464325. [PMID: 37639850 DOI: 10.1016/j.chroma.2023.464325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
8
Wang F, Yang F, Liu J, Bai Q. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory II. HILIC/RPLC dual-retention mechanism of solutes in hydrophilic interaction chromatography over the entire range of water concentration in mobile phase. Talanta 2023;265:124858. [PMID: 37385194 DOI: 10.1016/j.talanta.2023.124858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
9
Afolabi OB, Olasehinde OR, Olanipon DG, Mabayoje SO, Familua OM, Jaiyesimi KF, Agboola EK, Idowu TO, Obafemi OT, Olaoye OA, Oloyede OI. Antioxidant evaluation and computational prediction of prospective drug-like compounds from polyphenolic-rich extract of Hibiscus cannabinus L. seed as antidiabetic and neuroprotective targets: assessment through in vitro and in silico studies. BMC Complement Med Ther 2023;23:203. [PMID: 37337198 DOI: 10.1186/s12906-023-04023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]  Open
10
Prieto-Blanco MC, Planas-Franco A, Muniategui-Lorenzo S, González-Castro MJ. Mixed-mode chromatography of mixed functionalized analytes as the homologues of benzalkonium chloride. Application to pharmaceutical formulations. Talanta 2023;255:124228. [PMID: 36587429 DOI: 10.1016/j.talanta.2022.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
11
Hu Y, Kadotani J, Kuwahara Y, Ihara H, Takafuji M. Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. J Chromatogr A 2023;1693:463885. [PMID: 36848731 DOI: 10.1016/j.chroma.2023.463885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
12
Gilar M, Berthelette KD, Walter TH. Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography. J Sep Sci 2022;45:3264-3275. [PMID: 35347885 PMCID: PMC9545918 DOI: 10.1002/jssc.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
13
Popov AS, Maksimov GS, Shpigun OA, Chernobrovkina AV. Adsorbents with a Covalently Bonded Polymer Layer for Hydrophilic Interaction Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
14
Cortés S, Subirats X, Rosés M. Solute–Solvent Interactions in Hydrophilic Interaction Liquid Chromatography: Characterization of the Retention in a Silica Column by the Abraham Linear Free Energy Relationship Model. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
15
Geng H, Wang Z, Zhang F, Li Z, Yang B. A hyperbranched polyglycerol-functionalized polymer polar stationary phase. J Chromatogr A 2022;1670:462946. [PMID: 35325650 DOI: 10.1016/j.chroma.2022.462946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
16
Investigation of hydrophilic interaction liquid chromatography coupled with charged aerosol detector for the analysis of tromethamine. Talanta 2022;238:123050. [PMID: 34801907 DOI: 10.1016/j.talanta.2021.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
17
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022;36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
18
Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. J Chromatogr A 2021;1656:462543. [PMID: 34571282 DOI: 10.1016/j.chroma.2021.462543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
19
Li Z, Li S, Zhang F, Geng H, Yang B. A hydrolytically stable amide polar stationary phase for hydrophilic interaction chromatography. Talanta 2021;231:122340. [PMID: 33965018 DOI: 10.1016/j.talanta.2021.122340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
20
Yu J, Wey M, Firooz SK, Armstrong DW. Ionizable Cyclofructan 6-Based Stationary Phases for Hydrophilic Interaction Liquid Chromatography Using Superficially Porous Particles. Chromatographia 2021. [DOI: 10.1007/s10337-021-04063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Precursor Carboxy-silica for Functionalization With Interactive Ligands. II. Carbodiimide Assisted Preparation of Silica Bonded Stationary Phases with D-glucamine for Hydrophilic Interaction Liquid Chromatography. Chromatographia 2021. [DOI: 10.1007/s10337-021-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
22
Binh VN, Hue VTP, Ha PTT. Peak shape enhancement using diethylamine in hydrophilic liquid interaction chromatography: Application in simultaneous determination of methionine and paracetamol. J Pharm Biomed Anal 2021;203:114214. [PMID: 34153937 DOI: 10.1016/j.jpba.2021.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
23
Yan Y, Han R, Hou Y, Zhang H, Yu J, Gao W, Xu L, Tang K. Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides. Talanta 2021;233:122468. [PMID: 34215103 DOI: 10.1016/j.talanta.2021.122468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
24
Comparison of the steric selectivity on hydrophilic interaction chromatography columns modified with poly(acrylamide) possessing different morphology. J Chromatogr A 2021;1650:462207. [PMID: 34082188 DOI: 10.1016/j.chroma.2021.462207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
25
Evaluation of a linear free energy relationship for the determination of the column void volume in hydrophilic interaction chromatography. J Chromatogr A 2021;1638:461849. [PMID: 33472106 DOI: 10.1016/j.chroma.2020.461849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
26
Ikegami T, Taniguchi A, Okada T, Horie K, Arase S, Ikegami Y. Functionalization using polymer or silane? A practical test method to characterize hydrophilic interaction chromatography phases in terms of their functionalization method. J Chromatogr A 2020;1638:461850. [PMID: 33482613 DOI: 10.1016/j.chroma.2020.461850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022]
27
Iturrospe E, Da Silva KM, Talavera Andújar B, Cuykx M, Boeckmans J, Vanhaecke T, Covaci A, van Nuijs ALN. An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices. J Chromatogr A 2020;1637:461807. [PMID: 33360078 DOI: 10.1016/j.chroma.2020.461807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
28
Shamshir A, Dinh NP, Jonsson T, Sparrman T, Irgum K. Probing the retention mechanism of small hydrophilic molecules in hydrophilic interaction chromatography using saturation transfer difference nuclear magnetic resonance spectroscopy. J Chromatogr A 2020;1623:461130. [DOI: 10.1016/j.chroma.2020.461130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/16/2022]
29
Enhancing supercritical fluid chromatographic efficiency: Predicting effects of small aqueous additives. Anal Chim Acta 2020;1120:75-84. [DOI: 10.1016/j.aca.2020.04.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
30
Taniguchi A, Tamura S, Ikegami T. The relationship between polymer structures on silica particles and the separation characteristics of the corresponding columns for hydrophilic interaction chromatography. J Chromatogr A 2020;1618:460837. [DOI: 10.1016/j.chroma.2019.460837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022]
31
Wang Q, Zhang Q, Huang H, Zhao P, Sun L, Peng K, Liu X, Ruan M, Shao H, Crommen J, Yu P, Jiang Z. Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography. Anal Chim Acta 2020;1101:222-229. [DOI: 10.1016/j.aca.2019.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
32
Song L, Zhang H, Chen J, Li Z, Guan M, Qiu H. Imidazolium ionic liquids-derived carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta 2020;209:120518. [DOI: 10.1016/j.talanta.2019.120518] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
33
A polar stationary phase obtained by surface-initiated polymerization of hyperbranched polyglycerol onto silica. Talanta 2020;209:120525. [DOI: 10.1016/j.talanta.2019.120525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
34
Zahn D, Neuwald IJ, Knepper TP. Analysis of mobile chemicals in the aquatic environment-current capabilities, limitations and future perspectives. Anal Bioanal Chem 2020;412:4763-4784. [PMID: 32086538 DOI: 10.1007/s00216-020-02520-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
35
Li R, Sun W, Xiao X, Chen B, Wei Y. Retention of stevioside polar compounds on a sulfonic acid-functionalized stationary phase. J Chromatogr A 2020;1620:460978. [PMID: 32106966 DOI: 10.1016/j.chroma.2020.460978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/15/2022]
36
Khanal DD, Thakur N, Wahab MF, Armstrong DW. Enhancing the selectivity of polar hydrophilic analytes with a low concentration of barium ions in the mobile phase using geopolymers and silica supports. Talanta 2020;207:120339. [PMID: 31594594 DOI: 10.1016/j.talanta.2019.120339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022]
37
Subirats X, Abraham MH, Rosés M. Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions. Anal Chim Acta 2019;1092:132-143. [DOI: 10.1016/j.aca.2019.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
38
Sonnenberg RA, Naz S, Cougnaud L, Vuckovic D. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. J Chromatogr A 2019;1608:460419. [DOI: 10.1016/j.chroma.2019.460419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023]
39
Demelenne A, Gou MJ, Nys G, Parulski C, Crommen J, Servais AC, Fillet M. Evaluation of hydrophilic interaction liquid chromatography, capillary zone electrophoresis and drift tube ion-mobility quadrupole time of flight mass spectrometry for the characterization of phosphodiester and phosphorothioate oligonucleotides. J Chromatogr A 2019;1614:460716. [PMID: 31761437 DOI: 10.1016/j.chroma.2019.460716] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/09/2019] [Accepted: 11/14/2019] [Indexed: 01/23/2023]
40
Thakur N, Wahab MF, Khanal DD, Armstrong DW. Synthetic aluminosilicate based geopolymers – Second generation geopolymer HPLC stationary phases. Anal Chim Acta 2019;1081:209-217. [DOI: 10.1016/j.aca.2019.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
41
Roy D, Wahab MF, Berger TA, Armstrong DW. Ramifications and Insights on the Role of Water in Chiral Sub/Supercritical Fluid Chromatography. Anal Chem 2019;91:14672-14680. [PMID: 31657544 DOI: 10.1021/acs.analchem.9b03908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
42
Evaluating Relative Retention of Polar Stationary Phases in Hydrophilic Interaction Chromatography. SEPARATIONS 2019. [DOI: 10.3390/separations6030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
43
Cai T, Zhang H, Chen J, Li Z, Qiu H. Polyethyleneimine-functionalized carbon dots and their precursor co-immobilized on silica for hydrophilic interaction chromatography. J Chromatogr A 2019;1597:142-148. [DOI: 10.1016/j.chroma.2019.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 11/30/2022]
44
Shamshir A, Dinh NP, Jonsson T, Sparrman T, Ashiq MJ, Irgum K. Interaction of toluene with polar stationary phases under conditions typical of hydrophilic interaction chromatography probed by saturation transfer difference nuclear magnetic resonance spectroscopy. J Chromatogr A 2019;1588:58-67. [DOI: 10.1016/j.chroma.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
45
Mallik AK, Guragain S, Rahman MM, Takafuji M, Ihara H. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
46
Tanase M, Bacalum E, David V. Variability of temperature dependences of the retention of strongly polar compounds under ZIC-HILIC liquid chromatographic mechanism. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
47
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019;42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
48
Craven CB, Joyce CW, Lucy CA. Effect of nature of electrolytes on retention and selectivity in hydrophilic interaction liquid chromatography. J Chromatogr A 2019;1584:80-86. [DOI: 10.1016/j.chroma.2018.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
49
Hu Y, Cai T, Zhang H, Chen J, Li Z, Qiu H. Poly(itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 2019;191:265-271. [DOI: 10.1016/j.talanta.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023]
50
Sun N, Wu H, Chen H, Shen X, Deng C. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 2019;55:10359-10375. [PMID: 31414669 DOI: 10.1039/c9cc04124a] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA