1
|
Liu YM, Wang S, Dickenson A, Mao J, Bai X, Liao X. An on-line SPE-LC-MS/MS method for quantification of nucleobases and nucleosides present in biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2505-2512. [PMID: 38584507 PMCID: PMC11151739 DOI: 10.1039/d4ay00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Solid phase extraction (SPE) and liquid chromatographic (LC) separation of nucleobases and nucleosides are challenging due to the high hydrophilicity of these compounds. Herein we report a novel on-line SPE-LC-MS/MS method for their quantification after pre-column derivatization with chloroacetaldehyde (CAA). The method proposed is selective and sensitive with limits of detection at the nano-molar level. Analysis of urine and saliva samples by using this method is demonstrated. Adenine, guanine, cytosine, adenosine, guanosine, and cytidine were found in the range from 0.19 (guanosine) to 1.83 μM (cytidine) in urine and from 0.015 (guanosine) to 0.79 μM (adenine) in saliva. Interestingly, methylation of cytidine was found to be significantly different in urine from that in saliva. While 5-hydroxymethylcytidine was detected at a very low level (<0.05 μM) in saliva, it was found to be the most prominent methylated cytidine in urine at a high level of 3.33 μM. Since on-line SPE is deployed, the proposed LC-MS/MS quantitative assay is convenient to carry out and offers good assay accuracy and repeatability.
Collapse
Affiliation(s)
- Yi-Ming Liu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Shuguan Wang
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Amani Dickenson
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Jinghe Mao
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Ren X, Huang L, Wang C, Ge Y, Zhang K, Jiang D, Liu X, Zhang Q, Wang Y. Urinary analysis based on surface-enhanced Raman scattering for the noninvasive screening of lung cancer. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
BH +/MH +-matching method for discovery of cis-diol-containing modified nucleosides in urine by ribose-targeted solid phase extraction followed by dual-mass spectrometry platform identification. J Pharm Biomed Anal 2021; 210:114555. [PMID: 34974239 DOI: 10.1016/j.jpba.2021.114555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Profiling of new modified nucleosides from urine plays an important role in exploring biomarkers for cancer. However, limitations from the nature of the compound, bio-sample, instrumentation, and analytical method pose great challenges to achieving a comprehensive analysis of urinary nucleosides. Herein, a method of BH+/MH+-matching (BH+, protonated nucleobase ion; MH+, protonated precursor ion) was developed to discover novel modified nucleosides from human urine samples based on solid phase extraction targeted toward specific modified nucleosides combined with ultra-performance liquid chromatography coupled with dual-mass spectrometry platforms. Firstly, nucleosides containing 2,3-diol structure on ribose were effectively enriched by PBA (Phenylboronic Acid) cartridges. Secondly, a novel method, "BH+/MH+-matching" was established to achieve rapid screening of modified nucleosides. Based on the in-source fragmentation pattern of nucleosides, a series of putative modified nucleosides were rationally designed and characterized by matching the daughter ion BH+ and its parent ion MH+ in UPLC-MSE spectra. Finally, as a complement to UPLC Q-TOF/MS, UPLC Q-Trap/MS was employed to validate the structure of putative compounds by MRM-IDA-EPI mode. Using the strategy, 12 new cis-diol-containing nucleoside analogs were successfully characterized, which were formed by modified base (m1A, m6A, m2,2,7G, ac4C) and modified ribose containing C5'-O-formylation or C5'-O-methylation. Taken together, the results demonstrated our strategy could efficiently support the rapid discovery of cis-diol-containing nucleosides with modifications on either ribose or base moiety (or both), which exhibited a promising perspective in the future application of biochemical analysis and clinical diagnosis.
Collapse
|
4
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
5
|
Murakami H, Sugiyama T, Miki Y, Umemura T, Esaka Y, Inoue Y, Teshima N. Development and Evaluation of HILIC-type Sorbents Modified with Hydrophilic Copolymers for Solid-phase Extraction. ANAL SCI 2020; 36:1185-1190. [PMID: 32999136 DOI: 10.2116/analsci.20p084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrophilic interaction chromatography (HILIC) has attractive attention for the separation of water-soluble compounds via HPLC. There are, however, few studies on the pretreatment of the HILIC-type solid-phase extraction (SPE) due to the difficulty of obtaining the HILIC-type sorbent. Therefore, the development of HILIC-type sorbents for SPE is essential. In this study, four different hydrophilic copolymers, namely diallylamine-maleic acid copolymer (DAM), diallylamine-acrylamide copolymer (DAA), allylamine-maleic acid copolymer (MAM), and partly methylcarbonylated allylamine acetate copolymer (MAC), were immobilized on glycidyl methacrylate (GMA)-base resin, and their adsorptive properties were evaluated. The results of the physical and adsorptive properties indicated that a balance between the water content of the water-enriched layer on sorbent and the amount of hydrophilic copolymer immobilized on the GMA-base resin was vital for the adsorption in HILIC-type sorbent for SPE.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Takuya Sugiyama
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | | | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology
| |
Collapse
|
6
|
Murakami H, Omiya M, Miki Y, Umemura T, Esaka Y, Inoue Y, Teshima N. Evaluation of the adsorption properties of nucleobase-modified sorbents for a solid-phase extraction of water-soluble compounds. Talanta 2020; 217:121052. [PMID: 32498914 DOI: 10.1016/j.talanta.2020.121052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
We developed hydrophilic interaction chromatography (HILIC)-type sorbents modified with nucleobases for solid phase extraction (SPE). The synthesized hydrophilic base resins were modified by each nucleobase (adenine, guanine, and cytosine). The measurement of the amount of water content indicated that each nucleobase-modified sorbent had a water layer. To evaluate the adsorption properties in the HILIC mode, we chose two nucleobases (uracil and adenine) and four nucleosides (uridine, adenosine, cytidine, guanosine) as water-soluble analytes, which were loaded into an SPE cartridge packed with the nucleobase-modified sorbent. Firstly, 95% acetonitrile (ACN) solutions were used in the process of conditioning and sample loading of the above polar analytes. High recoveries of the analytes were observed in each nucleobase-modified sorbent, and the Diol-type sorbent (no modification with any of the nucleobases) did not adsorb each water-soluble analyte. On the basis of this result, a 98% ACN solution was used during the process of conditioning and sample loading to decrease the concentration of water in the sample, which potentially inhibited the formation of hydrogen bonding between each analyte and the modified nucleobase. Considerable improvements of recoveries were observed in Adenine- and Cytosine-modified sorbents. These results were possibly attributed to the effective expression of hydrogen bonding by decreasing water concentration in the sample solution. Although a non-aqueous (100% ACN) sample solution can be expected to obtain higher recoveries compared with the 98% ACN solution, a decrease in recoveries was observed in Adenine-modified sorbent. From these results, the highest adsorption property was observed in Adenine-modified sorbent using 98% ACN as a sample condition, and the combination of this sample condition and sorbent is effective for high adsorption under HILIC condition. Moreover, we also revealed that a balance between the thickness of water layer and the modification amount of nucleobase is important for retention in the HILIC-type sorbent.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Miho Omiya
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.
| |
Collapse
|
7
|
Deev V, Solovieva S, Andreev E, Protoshchak V, Karpushchenko E, Sleptsov A, Kartsova L, Bessonova E, Legin A, Kirsanov D. Prostate cancer screening using chemometric processing of GC-MS profiles obtained in the headspace above urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122298. [PMID: 32771969 DOI: 10.1016/j.jchromb.2020.122298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The development of screening methods for various types of cancer is of utmost importance as the early diagnostics of these diseases significantly increases the chances for patient's successful medical treatment and recovery. In this study we have developed the procedure for chromatographic profiling of urine samples based on solid-phase microextraction and GC-MS. 50 urine samples (20 from the patients with biopsy conformed prostate cancer and 30 from control group) were studied in the optimized experimental conditions. Application of chemometric classification algorithms such as k-nearest neighbors and partial least squares-discriminant analysis allowed construction of predictive models yielding very high sensitivity, specificity and accuracy values all close to 100%. This gives a good promise for further validation of this approach with a broader sample sets.
Collapse
Affiliation(s)
- Vladislav Deev
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Svetlana Solovieva
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Evgeny Andreev
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Vladimir Protoshchak
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Evgeny Karpushchenko
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Aleksander Sleptsov
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Liudmila Kartsova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Elena Bessonova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Andrey Legin
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Dmitry Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia.
| |
Collapse
|
8
|
Young B, Hendricks J, Foreman D, Pickens CA, Hovell C, De Jesús VR, Haynes C, Petritis K. Development of dried blood spot quality control materials for adenosine deaminase severe combined immunodeficiency and LC-MS/MS method for their characterization. CLINICAL MASS SPECTROMETRY 2020; 17:4-11. [PMID: 33851028 PMCID: PMC8040805 DOI: 10.1016/j.clinms.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adenosine deaminase severe combined immunodeficiency (ADA-SCID) is an autosomal recessive disorder in which a lack of ADA enzyme prevents the maturation of T- and B-cells; early intervention is crucial for restoring immune function in affected neonates. ADA is responsible for purine metabolism and-in its absence-adenosine, deoxyadenosine, and S-adenosylhomocysteine build up and can be detected in the blood. Preparing dried blood spot (DBS) quality control (QC) materials for these analytes is challenging because enrichments are quickly metabolized by the endogenous ADA in normal donor blood. Adding an inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), has been previously reported to minimize enzyme activity, although this adds additional cost and complexity. We describe an alternative method using unnatural L-enantiomer nucleosides (L-adenosine and 2'-deoxy-L-adenosine) which eliminates the need for enzyme inhibition. We also present a novel method for characterization of the materials using liquid chromatography mass spectrometry to quantify the analytes of interest.
Collapse
Affiliation(s)
- Brian Young
- Centers for Disease Control and Prevention, Atlanta, GA.,Present address: Texas A&M University, College Station, TX
| | | | - David Foreman
- Centers for Disease Control and Prevention, Atlanta, GA.,Present address: Medical College of Georgia, Augusta GA
| | | | | | | | | | | |
Collapse
|
9
|
Zhou S, Gan Y, Kong L, Sun J, Liang T, Wang X, Wan H, Wang P. A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. Anal Chim Acta 2020; 1120:43-49. [PMID: 32475390 DOI: 10.1016/j.aca.2020.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
Adenosine has received great attentions acting as a potential biomarker for monitoring lung cancer. Most of the reported studies for adenosine detection require large instruments and complicated procedures. Herein, a sensitive, rapid and in-situ colorimetric aptasensor was developed for adenosine detection. Moreover, a homemade biomimetic electronic-eye (E-eye) was established and utilized as a portable in-time detection equipment. The entire measurement can be completed within 20 min, including the combination of aptamer with adenosine or AuNPs and the detection of adenosine. Four different kinds of aptamer were compared and the results showed that the AuNPs-aptamer-biotin system was the most stable and with the widest detection range of 5.0 μM-60.0 μM and the lowest LOD of 0.17 μM. Moreover, the artificial urine samples were also tested with a linear range from 5.0 to 50.0 μM and a LOD of 0.48 μM. The results validated that the aptasensor together with the E-eye can be a promising platform for adenosine detection.
Collapse
Affiliation(s)
- Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiadi Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
10
|
Development and validation of a rapid LC–MS/MS method for determination of methylated nucleosides and nucleobases in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121775. [DOI: 10.1016/j.jchromb.2019.121775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
|
11
|
Preparation of a monolithic magnetic stir bar for the determination of sulfonylurea herbicides coupled with HPLC. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Rageh AH, Pyell U. “Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3570-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Patejko M, Struck-Lewicka W, Siluk D, Waszczuk-Jankowska M, Markuszewski MJ. Urinary Nucleosides and Deoxynucleosides. Adv Clin Chem 2018; 83:1-51. [PMID: 29304899 DOI: 10.1016/bs.acc.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urinary nucleosides and deoxynucleosides are mainly known as metabolites of RNA turnover and oxidative damage of DNA. For several decades these metabolites have been examined for their potential use in disease states including cancer and oxidative stress. Subsequent improvements in analytical sensitivity and specificity have provided a reliable means to measure these unique molecules to better assess their relationship to physiologic and pathophysiologic conditions. In fact, some are currently used as antiviral and antitumor agents. In this review we provide insight into their molecular characteristics, highlight current separation techniques and detection methods, and explore potential clinical usefulness.
Collapse
|
14
|
Medvedovici A, Bacalum E, David V. Sample preparation for large-scale bioanalytical studies based on liquid chromatographic techniques. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Andrei Medvedovici
- Faculty of Chemistry, Department of Analytical Chemistry; University of Bucharest; Bucharest Romania
| | - Elena Bacalum
- Research Institute; University of Bucharest; Bucharest Romania
| | - Victor David
- Faculty of Chemistry, Department of Analytical Chemistry; University of Bucharest; Bucharest Romania
| |
Collapse
|
15
|
Murakami H, Horiba R, Iwata T, Miki Y, Uno B, Sakai T, Kaneko K, Ishihama Y, Teshima N, Esaka Y. Progress in a selective method for the determination of the acetaldehyde-derived DNA adducts by using HILIC-ESI-MS/MS. Talanta 2017; 177:12-17. [PMID: 29108566 DOI: 10.1016/j.talanta.2017.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
Acetaldehyde (AA), which is present in tobacco smoke, automobile exhaust gases and alcohol beverage, is a mutagen and carcinogen. AA reacts with 2'-deoxyguanosine (dG) in DNA to form N2-ethyl-dG (EtdG) and cyclic, 1, N2-propano-dG (CPrdG), which are considered to have a critical role in carcinogenesis induced by AA. In this study, we have developed a highly sensitive method for the quantitation of the two AA-derived DNA adducts by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in which hydrophilic interaction chromatography (HILIC) employing mobile phases of high organic solvent concentration was selected to improve the ionization efficiency in the ESI process. Fourteen times and 11 times larger peak areas for EtdG and CPrdG, respectively, in HILIC-ESI-MS/MS were obtained compared with those in reversed phase (RP)-LC-ESI-MS/MS. Furthermore, 6.9 times (for EtdG) and 2.4 times (for CPrdG) larger peak areas were also obtained as additional enhancement by varying additive compounds in the HILIC mobile phases from ammonium acetate to ammonium bicarbonate. In total, the enhancements in detected MS signal intensities by exchanging from the RP-LC system to the HILIC system are 97 times for EtdG and 26 times for CPrdG, respectively. Three commercially available HILIC columns with different polar functional groups were examined and sufficient separation between normal 2'-deoxynucleosides and the AA-derived DNA adducts was achieved by a carbamoyl-bonded HILIC column. Finally, we applied the established method to quantify EtdG and CPrdG in the damaged calf thymus DNA.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Ruri Horiba
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomoko Iwata
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Bunji Uno
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan
| | - Tadao Sakai
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| | - Kazuhiro Kaneko
- National Cancer Center Hospital East, Kashiwanoha, Kashiwa 277-5877, Japan
| | - Yasushi Ishihama
- Graduate school of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
16
|
New materials for sample preparation techniques in bioanalysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1043:81-95. [DOI: 10.1016/j.jchromb.2016.10.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/29/2016] [Indexed: 11/23/2022]
|
17
|
Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst 2017; 142:3079-3100. [DOI: 10.1039/c7an00812k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Review of targeted metabolomics, with a focus on the description of analytical methods.
Collapse
Affiliation(s)
- O. Begou
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - H. G. Gika
- Department of Medicine
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - I. D. Wilson
- Division of Computational and Systems Medicine
- Department of Surgery and Cancer
- Imperial College
- London
- UK
| | - G. Theodoridis
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| |
Collapse
|
18
|
Du Y, Li YJ, Hu XX, Deng X, Qian ZT, Li Z, Guo MZ, Tang DQ. Development and evaluation of a hydrophilic interaction liquid chromatography-MS/MS method to quantify 19 nucleobases and nucleosides in rat plasma. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Yin-jie Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
- Department of Pharmacy; Jiangsu Provincial Xuzhou Pharmaceutical Vocational College; Xuzhou China
| | - Xun-xiu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Xu Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Zeng-ting Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Meng-zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical University; Xuzhou China
| | - Dao-quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical University; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
19
|
Guo C, Li X, Wang R, Yu J, Ye M, Mao L, Zhang S, Zheng S. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep 2016; 6:32581. [PMID: 27585556 PMCID: PMC5009303 DOI: 10.1038/srep32581] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
Oxidative DNA damage plays crucial roles in the pathogenesis of numerous diseases including cancer. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most representative product of oxidative modifications of DNA, and urinary 8-OHdG is potentially the best non-invasive biomarker of oxidative damage to DNA. Herein, we developed a sensitive, specific and accurate method for quantification of 8-OHdG in human urine. The urine samples were pretreated using off-line solid-phase extraction (SPE), followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. By the use of acetic acid as an additive to the mobile phase, we improved the UPLC-MS/MS detection of 8-OHdG by 2.7−5.3 times. Using the developed strategy, we measured the contents of 8-OHdG in urine samples from 142 healthy volunteers and 84 patients with colorectal cancer (CRC). We observed increased levels of urinary 8-OHdG in patients with CRC and patients with tumor metastasis, compared to healthy controls and patients without tumor metastasis, respectively. Additionally, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed. Our findings implicate that oxidative stress plays important roles in the development of CRC and the marked increase of urinary 8-OHdG may serve as a potential liquid biomarker for the risk estimation, early warning and detection of CRC.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Lingna Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,International Health Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
20
|
Tang DQ, Zou L, Yin XX, Ong CN. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. MASS SPECTROMETRY REVIEWS 2016; 35:574-600. [PMID: 25284160 DOI: 10.1002/mas.21445] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/28/2014] [Indexed: 05/14/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) is an emerging separation mode of liquid chromatography (LC). Using highly hydrophilic stationary phases capable of retaining polar/ionic metabolites, and accompany with high organic content mobile phase that offer readily compatibility with mass spectrometry (MS) has made HILIC an attractive complementary tool to the widely used reverse-phase (RP) chromatographic separations in metabolomic studies. The combination of HILIC and RPLC coupled with an MS detector expands the number of detected analytes and provides more comprehensive metabolite coverage than use of only RP chromatography. This review describes the recent applications of HILIC-MS/MS in metabolomic studies, ranging from amino acids, lipids, nucleotides, organic acids, pharmaceuticals, and metabolites of specific nature. The biological systems investigated include microbials, cultured cell line, plants, herbal medicine, urine, and serum as well as tissues from animals and humans. Owing to its unique capability to measure more-polar biomolecules, the HILIC separation technique would no doubt enhance the comprehensiveness of metabolite detection, and add significant value for metabolomic investigations. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:574-600, 2016.
Collapse
Affiliation(s)
- Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical College, Xuzhou, 221044, China
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
| | - Ll Zou
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| | - Xiao-Xing Yin
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
| | - Choon Nam Ong
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
21
|
Online solid phase extraction and liquid chromatography-mass spectrometric determination of nucleoside drugs in plasma. Talanta 2016; 161:278-287. [PMID: 27769407 DOI: 10.1016/j.talanta.2016.08.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/30/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
The bioanalysis and especially the sample preparation of nucleoside drugs in complex media, such as human plasma, has been challenging due to the high polarity and high solubility of these drugs in water. Online solid phase extraction (SPE) offers significant advantages, such as automation and timesaving. Thus, several types of SPE columns have been developed for compounds with different polarities. In this study, SPE was applied to overcome the issue of sample pretreatment of nucleoside drugs in human plasma, with the final aim of establishing a robust analytical platform for drugs with similar structures. A simple, easy-to-use, and efficient method is described for the simultaneous determination of lamivudine, zidovudine, didanosine and emtricitabine in human plasma via online SPE and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Following a simple centrifugation step, a 10μL plasma sample was injected directly onto the HPLC system. The Oasis MCX cartridge was washed, and the analytes were removed by back-flushing directly onto the analytical column. The analytes were quantified using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. Similarly, with the development and application of a Bond Elut phenylboronic acid (PBA) SPE cartridge, a fully automated online SPE-HPLC-MS/MS method was established for the simultaneous determination of ribavirin and taribavirin in human plasma. Linear calibration curves were obtained over the range of 0.5-2000ngmL-1, and the limit of quantification ranged from 0.5ngmL-1 to 10ngmL-1, which is sensitive enough for clinical drug monitoring. The intra- and inter-day precisions were in the range of 0.2-8.9%, and the trueness ranged between 88.9% and 113.1%. Excellent recoveries from plasma were achieved with a range between 86.7% and 105.1%. This procedure is easier to perform and requires less sample handling compared to methods previously described in the literature. This high-throughput method involving the direct injection of plasma samples may provide a practical solution for the analysis of multiple nucleoside drugs in clinical research. The method was tested in plasma samples from some patients and showed good performance.
Collapse
|
22
|
Li DQ, Zhang ZQ, Yang XL, Zhou CH, Qi JL. Online restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry for the simultaneous determination of vanillin and its vanillic acid metabolite in human plasma. J Sep Sci 2016; 39:3318-26. [PMID: 27384745 DOI: 10.1002/jssc.201600466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022]
Affiliation(s)
- De-qiang Li
- Department of Pharmacy; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Zhi-qing Zhang
- Department of Pharmacy; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Xiu-ling Yang
- Department of Pharmacy; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Chun-hua Zhou
- Department of Pharmacy; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Jin-long Qi
- Department of Pharmacology; Hebei Medical University; Shijiazhuang Hebei China
| |
Collapse
|
23
|
Fumes BH, Silva MR, Andrade FN, Nazario CED, Lanças FM. Recent advances and future trends in new materials for sample preparation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Glucaminium ionic liquid-functionalized stationary phase for the separation of nucleosides in hydrophilic interaction chromatography. Anal Bioanal Chem 2015; 407:7667-72. [PMID: 26231689 DOI: 10.1007/s00216-015-8927-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/02/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
A glucaminium-based ionic liquid stationary phase was prepared via facile epoxy-amine reaction and subsequent quaternization. Successful immobilization of glucaminium-based ionic liquid onto silica surface was validated by elemental analysis and infrared spectroscopy. The new stationary phase was evaluated for the separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC). Effects of various factors, such as acetonitrile concentration, salt concentration, pH value, as well as column temperature, on the chromatographic behavior toward nucleosides were studied in detail. The results indicated that this new stationary phase can be used for separation of water-soluble polar substances in HILIC mode. The retention of solutes on the stationary phase was influenced by a mixed-mode retention mechanism with a combination of adsorptive and partitioning interactions.
Collapse
|
25
|
Brewer AJ, Lunte C. Analysis of Nucleosides in Municipal Wastewater by Large-Volume Liquid Chromatography Tandem Mass Spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:5504-5510. [PMID: 26322136 PMCID: PMC4551110 DOI: 10.1039/c5ay00929d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleosides are components of both DNA and RNA, and contain either a ribose (RNA) or 2deoxyribose (DNA) sugar and a purine or pyrimidine base. In addition to DNA and RNA turnover, modified nucleosides found in urine have been correlated to a diminished health status associated with AIDS, cancers, oxidative stress and age. Nucleosides found in municipal wastewater influent are potentially useful markers of community health status, and as of now, remain uninvestigated. A method was developed to quantify nucleosides in municipal wastewater using large-volume injection, liquid chromatography, and mass spectrometry. Method accuracy ranged from 92 to 139% when quantified by using isotopically labeled internal standards. Precision ranged from 6.1 to 19% of the relative standard deviation. The method's utility was demonstrated by the analysis of twenty-four hour composite wastewater influent samples that were collected over a week to investigate community nucleoside excretion. Nucleosides originating from RNA were more abundant that DNA over the study period, with total loads of nucleosides ranging from 2 to 25 kg/day. Given this relatively high amount of nucleosides found over the study period they present an attractive analyte for the investigation of community health.
Collapse
Affiliation(s)
- Alex J. Brewer
- Department of Chemistry, University of Kansas, Lawrence, KS. 2030 Becker Drive Room 220, Lawrence, KS 66045
| | - Craig Lunte
- Department of Chemistry, University of Kansas, Lawrence, KS. 2030 Becker Drive Room 220, Lawrence, KS 66045
| |
Collapse
|
26
|
Struck-Lewicka W, Kordalewska M, Bujak R, Yumba Mpanga A, Markuszewski M, Jacyna J, Matuszewski M, Kaliszan R, Markuszewski MJ. Urine metabolic fingerprinting using LC–MS and GC–MS reveals metabolite changes in prostate cancer: A pilot study. J Pharm Biomed Anal 2015; 111:351-61. [DOI: 10.1016/j.jpba.2014.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 01/16/2023]
|
27
|
Daghir-Wojtkowiak E, Wiczling P, Bocian S, Kubik Ł, Kośliński P, Buszewski B, Kaliszan R, Markuszewski MJ. Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography. J Chromatogr A 2015; 1403:54-62. [DOI: 10.1016/j.chroma.2015.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
|
28
|
Villaño D, Vilaplana C, Medina S, Cejuela-Anta R, Martínez-Sanz JM, Gil P, Genieser HG, Ferreres F, Gil-Izquierdo A. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic Res 2015; 49:973-83. [PMID: 25786325 DOI: 10.3109/10715762.2015.1025388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxidized nucleoside 8-hydroxy-2'-deoxyguanosine has been widely studied as a marker of DNA oxidation; however, data on the occurrence of other metabolites in plasma that are related to DNA damage are scarce. We have applied an improved, sensitive, robust, and reliable method, involving solid phase extraction and ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS), to the precise quantitation of seven metabolites in the plasma of 15 elite triathletes after a 2-week training program. All compounds were eluted in the first 1.6 min, with limits of detection and quantification ranging between 0.001 and 0.3 ng.mL(-1) and 0.009 and 0.6 ng.mL(-1), respectively. Four compounds were detected in plasma: guanosine-3'-5'-cyclic monophosphate, 8-hydroxyguanine, 8-hydroxy-2'-deoxyguanosine, and 8-nitroguanosine. After two weeks of training, 8-hydroxyguanine exhibited the highest increase (from 0.031 ± 0.008 nM to 0.036 ± 0.012 nM) (p < 0.05), which could be related to the enhanced activity of DNA-repairing enzymes that excise this oxidized base. Increased levels of guanosine-3'-5'-cyclic monophosphate and 8-hydroxy-2'-deoxyguanosine were also observed. In contrast, levels of 8-nitroguanosine (p < 0.05) were significantly reduced, which might be a protective measure as this compound strongly stimulates the generation of superoxide radicals, and its excess is related to pathologies such as microbial (viral) infections and other inflammatory and degenerative disorders. The results obtained indicate an induced adaptive response to the increased oxidative stress related to elite training, and point to the benefits associated with regular exercise.
Collapse
Affiliation(s)
- D Villaño
- Department of Food Science and Technology, CEBAS-CSIC , Murcia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Design and development of a two-dimensional system based on hydrophilic and reversed-phase liquid chromatography with on-line sample treatment for the simultaneous separation of excreted xenobiotics and endogenous metabolites in urine. Biomed Chromatogr 2015; 29:1190-6. [DOI: 10.1002/bmc.3407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/22/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Diego García-Gómez
- Department of Analytical Chemistry; University of Salamanca; 37008 Salamanca Spain
| | | | | |
Collapse
|
30
|
Gao L, Du J, Wang C, Wei Y. Fabrication of a dendrimer-modified boronate affinity material for online selective enrichment of cis-diol-containing compounds and its application in determination of nucleosides in urine. RSC Adv 2015. [DOI: 10.1039/c5ra18443f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high binding capacity dendrimer-modified boronate affinity material (SiO2@dBA) was synthesized and coupled with large-volume injection/online column-switching solid phase extraction to facilitate the determination process of cis-diols.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Jin Du
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
31
|
Struck-Lewicka W, Kaliszan R, Markuszewski MJ. Analysis of urinary nucleosides as potential cancer markers determined using LC–MS technique. J Pharm Biomed Anal 2014; 101:50-7. [DOI: 10.1016/j.jpba.2014.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/05/2023]
|
32
|
Moravcová D, Haapala M, Planeta J, Hyötyläinen T, Kostiainen R, Wiedmer SK. Separation of nucleobases, nucleosides, and nucleotides using two zwitterionic silica-based monolithic capillary columns coupled with tandem mass spectrometry. J Chromatogr A 2014; 1373:90-6. [PMID: 25465366 DOI: 10.1016/j.chroma.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The capability of employing synthesized zwitterionic silica-based monolithic capillary columns (140 mm × 0.1mm) for separation of highly polar and hydrophilic nucleobases, nucleosides, and nucleotides in hydrophilic interaction chromatography is reported. The suitability of the columns for on-line conjunction with electrospray tandem mass spectrometry was explored. Our results show that the grafted layer of zwitterionic monomer ([2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide or 2-methacryloyloxyethyl phosphorylcholine) on the silica monolithic surface significantly improved the separation selectivity and reproducibility, as compared to the bare silica monolith. The stepwise elution from 90% to 70% of acetonitrile enabled separation of a complex sample mixture containing 21 compounds with a total analysis time less than 40 min.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic.
| | - Markus Haapala
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Josef Planeta
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 60200 Brno, Czech Republic
| | | | - Risto Kostiainen
- Faculty of Pharmacy, P.O. Box 56, 00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
33
|
Rageh AH, Pyell U. Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase. Electrophoresis 2014; 36:784-95. [DOI: 10.1002/elps.201400357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2014] [Accepted: 09/20/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Azza H. Rageh
- Department of Chemistry; University of Marburg; Marburg Germany
| | - Ute Pyell
- Department of Chemistry; University of Marburg; Marburg Germany
| |
Collapse
|
34
|
Li Y, Yu H, Zhao W, Xu X, Zhou J, Xu M, Gao W, Yuan G. Analysis of urinary methylated nucleosides of patients with coronary artery disease by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2054-2058. [PMID: 25156594 DOI: 10.1002/rcm.6986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 07/13/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE In recent years, methylated nucleosides have been considered to be potential biomarkers to human diseases. The early diagnosis of coronary artery disease (CAD) is an unsolved problem in clinical cardiology. The aim of our study is to evaluate whether urinary methylated nucleosides can serve as useful biomarkers for CAD. METHODS A solid-phase extraction (SPE) column was used for extraction and purification of methylated nucleosides in urine, and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) was employed for specific, sensitive and rapid determination of the urinary methylated nucleosides from patients with cardiac events. RESULTS We have analyzed six methylated nucleosides (N(3)-methylcytidine, N(1)-methyladenosine, N(6)-methyladenosine, N(2)-methylguanosine, N(1)-methylguanosine and N(2),N(2)-dimethylguanosine) in urine from 51 patients with CAD and 25 non-CAD controls by HPLC/ESI-MS/MS using selective reaction monitoring (SRM). Our results have shown that there were significant differences in the N(6)-methyladenosine levels from the patients and the non-CAD controls in the urine analyzed. CONCLUSIONS The results have indicated that HPLC/ESI-MS/MS is a highly specific and sensitive tool to measure urinary methylated nucleosides for analysis of CAD. Our result has revealed that the evaluation of urinary methylated nucleosides might be helpful in the analysis of CAD by liquid chromatography/mass spectrometry. Therefore, this N(6)-methyladenosine is worthy of further studies in the near future.
Collapse
Affiliation(s)
- Yanru Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu Q, Wu D, Guan Y. Hybrid Titania–Zirconia Nanoparticles Coated Adsorbent for Highly Selective Capture of Nucleosides from Human Urine in Physiological Condition. Anal Chem 2014; 86:10122-30. [DOI: 10.1021/ac502876u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qian Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- Dalian Institute of Chemical Physics, University of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Dapeng Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Yafeng Guan
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|
36
|
Ruiz-Angel M, García-Alvarez-Coque M, Berthod A, Carda-Broch S. Are analysts doing method validation in liquid chromatography? J Chromatogr A 2014; 1353:2-9. [DOI: 10.1016/j.chroma.2014.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/05/2023]
|
37
|
Determination of urinary nucleosides via borate complexation capillary electrophoresis combined with dynamic pH junction-sweeping-large volume sample stacking as three sequential steps for their on-line enrichment. Anal Bioanal Chem 2014; 406:5877-95. [DOI: 10.1007/s00216-014-8022-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
|
38
|
Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. MASS SPECTROMETRY REVIEWS 2014; 33:302-31. [PMID: 24285362 DOI: 10.1002/mas.21388] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry has been widely utilised in the study of nucleobases, nucleosides and nucleotides as components of nucleic acids and as bioactive metabolites in their own right. In this review, the application of mass spectrometry to such analysis is overviewed in relation to various aspects regarding the analytical mass spectrometric and chromatographic techniques applied and also the various applications of such analysis.
Collapse
Affiliation(s)
- Ed Dudley
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | |
Collapse
|
39
|
Zhao J, Xie J, Wang L, Li S. Advanced development in chemical analysis of Cordyceps. J Pharm Biomed Anal 2014; 87:271-89. [DOI: 10.1016/j.jpba.2013.04.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
|
40
|
Rodríguez-Gonzalo E, Hernández-Prieto R, García-Gómez D, Carabias-Martínez R. Development of a procedure for the isolation and enrichment of modified nucleosides and nucleobases from urine prior to their determination by capillary electrophoresis–mass spectrometry. J Pharm Biomed Anal 2014; 88:489-96. [DOI: 10.1016/j.jpba.2013.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/03/2013] [Accepted: 10/06/2013] [Indexed: 10/26/2022]
|
41
|
Hsu WY, Chen CJ, Huang YC, Tsai FJ, Jeng LB, Lai CC. Urinary nucleosides as biomarkers of breast, colon, lung, and gastric cancer in Taiwanese. PLoS One 2013; 8:e81701. [PMID: 24367489 PMCID: PMC3868621 DOI: 10.1371/journal.pone.0081701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/02/2013] [Indexed: 01/23/2023] Open
Abstract
Urinary nucleosides are associated with many types of cancer. In this study, six targeted urinary nucleosides, namely adenosine, cytidine, 3-methylcytidine, 1-methyladenosine, inosine, and 2-deoxyguanosine, were chosen to evaluate their role as biomarkers of four different types of cancer: lung cancer, gastric cancer, colon cancer, and breast cancer. Urine samples were purified using solid-phase extraction (SPE) and then analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The Mann-Whitney U test and Principal Component Analysis (PCA) were used to compare differences in urinary nucleosides between patients with one of four types of cancer and healthy controls. The diagnostic sensitivity of single nucleosides for different types of cancer ranged from 14% to 69%. In contrast, the diagnostic sensitivity of a set of six nucleosides ranged from 37% to 69%. The false-positive identification rate associated with the set of six nucleosides in urine was less than 2% compared with that of less than 5% for a single nucleoside. Furthermore, combining the set of six urinary nucleosides with carcinoembryonic antigen improved the diagnostic sensitivity for colon cancer. In summary, the study show that a set of six targeted nucleosides is a good diagnostic marker for breast and colon cancers but not for lung and gastric cancers.
Collapse
Affiliation(s)
- Wei-Yi Hsu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (CCL); (LBJ)
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CCL); (LBJ)
| |
Collapse
|
42
|
Capillary electrophoresis–mass spectrometry for direct determination of urinary modified nucleosides. Evaluation of synthetic urine as a surrogate matrix for quantitative analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:21-30. [DOI: 10.1016/j.jchromb.2013.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022]
|
43
|
Cui J, Zhang J, Zhu X, Bai F, Feng Y, Guan W, Cui Q. Separation and Quantification of Water-Soluble Cellular Metabolites inClostridium thermocellumusing Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.811680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Rageh AH, Pyell U. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 2013; 1316:135-46. [DOI: 10.1016/j.chroma.2013.09.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022]
|
45
|
García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Stationary phases for separation of nucleosides and nucleotides by hydrophilic interaction liquid chromatography. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Núñez O, Gallart-Ayala H, Martins CP, Lucci P, Busquets R. State-of-the-art in fast liquid chromatography–mass spectrometry for bio-analytical applications. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:3-21. [DOI: 10.1016/j.jchromb.2012.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 11/29/2022]
|
47
|
Struck W, Siluk D, Yumba-Mpanga A, Markuszewski M, Kaliszan R, Markuszewski MJ. Liquid chromatography tandem mass spectrometry study of urinary nucleosides as potential cancer markers. J Chromatogr A 2013; 1283:122-31. [DOI: 10.1016/j.chroma.2013.01.111] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
|
48
|
Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J Chromatogr A 2012. [DOI: 10.1016/j.chroma.2012.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Chester TL. Recent Developments in High-Performance Liquid Chromatography Stationary Phases. Anal Chem 2012; 85:579-89. [DOI: 10.1021/ac303180y] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas L. Chester
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati,
Ohio 45221-0172, United States
| |
Collapse
|
50
|
Abstract
New analytical platforms have been developed in response to the need for attaining increased peak capacity for multicomponent complex analysis with higher sensitivity and characterization of the analytes, and high-throughput capabilities. This review outlines the fundamental principles of target and comprehensive 2D LC method development and encompasses applications of LC–LC and LC × LC coupled to MS in bioanalysis using a variety of online analytical procedures. It also provides a rationale for the usage of the most employed mass analyzers and ionization sources on these platforms.
Collapse
|