1
|
Terzi M, Manousi N, Tzanavaras PD, Zacharis CK. Utilization of a pH-switchable hydrophilicity solvent for the microextraction of clomipramine from human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124060. [PMID: 38417274 DOI: 10.1016/j.jchromb.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Clomipramine (CLP) is a tricyclic antidepressant drug, and its determination in biological samples is of high importance in clinical and forensic evaluations to assure appropriate drug concentrations. In the present study, benzoic acid was employed as a pH-switchable hydrophilicity solvent (SHS) for the microextraction of CLP from authentic human urine samples prior to its determination by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The microextraction protocol was based on the phase transition of the SHS through pH alteration that resulted in its rapid dispersion and simultaneous phase separation. The obtained solid was collected in a syringe filter, dissolved in methanol, and analyzed. The main parameters that affected the efficiency of the microextraction procedure were studied and optimized to ensure high extraction efficiency for CLP and the analytical method was validated. Under optimum conditions, good linearity was observed between 0.05 and 5.0 μg mL-1. The limit of detection and limit of quantification were found to be 0.015 and 0.05 μg mL-1, respectively. The RSD values for intra-day repeatability and inter-day precision were 2.4-8.9 % and 1.7-9.1 %, respectively. The relative recovery values were within 90.0 and 110.0 % in all cases, demonstrating good method accuracy. The proposed SHS microextraction showed cost-efficiency, handling simplicity, and rapidity resulting in enhanced sample throughput. Moreover, the proposed method exhibited a green character and good applicability based on its evaluation by Green Analytical Procedure Index and Blue Applicability Grade Index.
Collapse
Affiliation(s)
- Maria Terzi
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Ilbeigi V, Valadbeigi Y, Moravsky L, Matejčík Š. Formic Acid as a Dopant for Atmospheric Pressure Chemical Ionization for Negative Polarity of Ion Mobility Spectrometry and Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2051-2060. [PMID: 37498108 DOI: 10.1021/jasms.3c00225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formic acid (FA) is introduced as a potent dopant for atmospheric pressure chemical ionization (APCI) for ion mobility spectrometry (IMS) and mass spectrometry (MS). The mechanism of chemical ionization with the FA dopant was studied in the negative polarity using a corona discharge (CD)-IMS-MS technique in air. Standard reactant ions of the negative polarity present in air are O2-·(CO2)n·(H2O)m (m = 0, 1 and n = 1, 2) clusters. Introduction of the FA dopant resulted in the production of HCOO-·FA reactant ions. The effect of the FA dopant on the APCI of different classes of compounds was investigated, including plant hormones, pesticides, acidic drugs, and explosives. FA dopant APCI resulted in deprotonation and/or adduct ion formation, [M - H]- and [M + HCOO]-, respectively. Supporting density functional theory (DFT) calculations showed that the ionization mechanism depended on the gas-phase acidity of the compounds. FA dopant APCI led to the improvement of detection sensitivity, suppression of fragmentation, and changes in the ion mobilities of the analyte ions for analytes with suitable molecular structures and gas acidity.
Collapse
Affiliation(s)
- Vahideh Ilbeigi
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818 Qazvin, Iran
| | - Ladislav Moravsky
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Štefan Matejčík
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| |
Collapse
|
3
|
Afshar Mogaddam MR, Farajzadeh MA, Azadmard Damirchi S, Nemati M. Dispersive solid phase extraction combined with solidification of floating organic drop-liquid-liquid microextraction using in situ formation of deep eutectic solvent for extraction of phytosterols from edible oil samples. J Chromatogr A 2020; 1630:461523. [PMID: 32920246 DOI: 10.1016/j.chroma.2020.461523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
In this study, a dispersive solid phase extraction method was combined with solidification of floating organic drop-liquid-liquid microextraction based on in situ synthesis of deep eutectic solvent. It was used for the extraction of some phytosterols from edible oil samples. The extracted analytes were quantified by gas chromatography-mass spectrometry. In this procedure, the sample lipids are saponified with sodium hydroxide and then the analytes are adsorbed onto an octadecylsilane sorbent. After that the analytes are desorbed from the sorbent with ethanol as an elution solvent and the eluant is diluted with deionized water to obtain a homogenous solution. Then, a few amounts of choline chloride and n-butyric acid are dissolved in the solution and transferred into a water batch adjusted at 75 ⁰C for 5 min. During this period Choline chloride and n-butyric acid form a deep eutectic solvent (extraction solvent) dispersed in whole parts of the solution. The obtained cloudy solution is placed into an ice bath. The extraction solvent is collected and solidified on the top of the solution. Finally, it is removed and allows melted at room temperature and an aliquat of the solution is injected into the separation system. Validation of the method showed that limits of detection and quantification were in the ranges of 0.52-1.6 and 1.7-5.6 ng mL-1, respectively. Enrichment factors and extraction recoveries of the analytes ranged from 312 to 375 and 75-90%, respectively. The method had a proper percision with relative standard deviations less than ≤8.2% for intra- (n = 6) and inter-day (n = 6) precisions at a concentration of 15 ng mL-1 of each analyte. Finally the method was successfully used for determination of the analytes in some edible oil samples.
Collapse
Affiliation(s)
- Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Sodeif Azadmard Damirchi
- Department of Food Science and Technology, School of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods – A systematic approach with focus on forensic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108:32-53. [DOI: 10.1016/j.jchromb.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
|
5
|
Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal Chim Acta 2018; 1026:37-50. [PMID: 29852992 DOI: 10.1016/j.aca.2018.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid and high sensitive technique widely used in security and forensic areas. However, a lack of selectivity is usually observed in the analysis of complex samples due to the scarce resolution of the technique. The literature concerning the use of conventional and novel smart materials in the pretreatment and preconcentration of samples previous to IMS determinations has been critically reviewed. The most relevant strategies to enhance selectivity and sensitivity of IMS determinations have been widely discussed, based in the use of smart materials, as immunosorbents, aptamers, molecularly imprinted polymers (MIPs), ionic liquids (ILs) and nanomaterial. The observed trend is focused on the development of IMS analytical methods in combination of selective sample treatments in order to achieve quick, reliable, sensitive, and selective methods for the analysis of complex samples such as biological fluids, food, or environmental samples.
Collapse
Affiliation(s)
- A Sorribes-Soriano
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - M de la Guardia
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - F A Esteve-Turrillas
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - S Armenta
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain.
| |
Collapse
|
6
|
Haghnazari L, Nomani H, Fattahi N, Sharafi K, Moradi M. Sensitive determination of psychotropic drugs in urine samples using continuous liquid-phase microextraction with an extraction solvent lighter than water. NEW J CHEM 2018. [DOI: 10.1039/c7nj04768a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel extraction vessel was employed, for the first time, in continuous liquid-phase microextraction (CLPME) with an extraction solvent lighter than water for the extraction of psychotropic drugs from urine samples.
Collapse
Affiliation(s)
- Lida Haghnazari
- Department of Clinical Biochemistry
- School of Medicine
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Hamid Nomani
- Department of Clinical Biochemistry
- School of Medicine
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| |
Collapse
|
7
|
Hamidi F, Hadjmohammadi MR, Aghaie AB. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe 3 O 4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:18-24. [DOI: 10.1016/j.jchromb.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
|
8
|
Alves V, Conceição C, Gonçalves J, Teixeira HM, Câmara JS. Improved Analytical Approach Based on QuECHERS/UHPLC-PDA for Quantification of Fluoxetine, Clomipramine and their Active Metabolites in Human Urine Samples. J Anal Toxicol 2016; 41:45-53. [DOI: 10.1093/jat/bkw077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 11/12/2022] Open
|
9
|
Jiao J, Wang J, Li M, Li J, Li Q, Quan Q, Chen J. Simultaneous determination of three azo dyes in food product by ion mobility spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:105-9. [DOI: 10.1016/j.jchromb.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
|
10
|
Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chem 2016; 192:60-6. [DOI: 10.1016/j.foodchem.2015.06.096] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/24/2015] [Accepted: 06/28/2015] [Indexed: 11/23/2022]
|
11
|
Saraji M, Ghani M. Hollow fiber liquid–liquid–liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection. J Chromatogr A 2015; 1418:45-53. [DOI: 10.1016/j.chroma.2015.09.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022]
|
12
|
Alves V, Gonçalves J, Conceição C, Teixeira HM, Câmara JS. An improved analytical strategy combining microextraction by packed sorbent combined with ultra high pressure liquid chromatography for the determination of fluoxetine, clomipramine and their active metabolites in human urine. J Chromatogr A 2015; 1408:30-40. [DOI: 10.1016/j.chroma.2015.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
13
|
Chao YY, Jian ZX, Tu YM, Wang HW, Huang YL. An on-line push/pull perfusion-based hollow-fiber liquid-phase microextraction system for high-performance liquid chromatographic determination of alkylphenols in water samples. Analyst 2013; 138:3271-9. [DOI: 10.1039/c3an36696k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Saraji M, Mehrafza N, Bidgoli AAH, Jafari MT. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection. J Sep Sci 2012; 35:2637-44. [DOI: 10.1002/jssc.201200334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/21/2012] [Accepted: 05/29/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | | | | | | |
Collapse
|
15
|
Abstract
The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.
Collapse
|
16
|
Holopainen S, Nousiainen M, Sillanpää ME, Anttalainen O. Sample-extraction methods for ion-mobility spectrometry in water analysis. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|