1
|
Aqel A, Ghfar AA, Badjah-Hadj-Ahmed AY, ALOthman ZA. Monolithic stationary phases prepared via cyclic anhydride ring-opening polymerization as tunable platforms for chromatographic applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3231-3239. [PMID: 38717475 DOI: 10.1039/d4ay00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Polymer monolithic stationary phases were prepared based on a cyclic anhydride as a reactive and tunable platform via ring-opening post-polymerization using primary amines, octadecylamine and benzylamine. The characterization techniques indicated the insertion of the functional groups into the original monoliths and confirmed the amidation reactions. The post-polymerization modification also improved the monolith's thermal and mechanical stability and induced significant improvement in their surface area. The stationary phases were synthesized inside small dimension stainless-steel columns (2.1 mm i.d. × 50 mm length). The prepared columns before and after modifications have been tested for the separation of the alkylbenzene series and some polycyclic aromatic hydrocarbons (PAHs) as model compounds. In all cases, the chromatographic performance in terms of the height equivalent to a theoretical plate on the functionalized monoliths was remarkably improved when compared with that on the unmodified monolith, which was between 9.59-39.49 μm and 4.08-31.50 μm using monoliths modified with octadecylamine and benzylamine, respectively. Under the same chromatographic conditions, the functionalization of monoliths with octadecylamine provided more hydrophobic interactions and enhanced the retention of alkylbenzenes, while the modification of monoliths with benzyl groups improved the separation and the retention of the PAHs through the strong π-π interactions. However, post-modification polymerization with octadecylamine and benzylamine enhanced the separation efficiency of the prepared columns toward all studied compounds. The repeatability of the injections on the same column and the reproducibility of the prepared columns have been studied for some selected parameters and estimated in terms of percent relative standard deviation (%RSD) for some of the studied compounds. The repeatability of the prepared columns was ≤9.42% (n = 5) based on run-to-run injections and ≤9.48% based on day-to-day injections for five successive days. The reproducibility levels, on the other hand, were ≤20.95% for all studied parameters in all cases. To assess their performance for the analysis of real samples, the applicability of the prepared columns was examined for the separation of the active ingredients extracted from some commercial pharmaceutical formulations and for the separation of tea water extract constituents. The validation data show the suitability of the columns for practical use in the routine analysis of these samples.
Collapse
Affiliation(s)
- Ahmad Aqel
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | | | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
2
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Galactose-functionalized methacrylate polymers as affinity sorbents for extraction of food allergen lectins. Anal Chim Acta 2023; 1255:341142. [PMID: 37032057 DOI: 10.1016/j.aca.2023.341142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
In this study, glycidyl methacrylate (GMA)-based materials functionalized with different galactose derivatives were prepared to be used as affinity sorbents for solid-phase extraction (SPE) of several food allergen lectins (such as phytohemagglutinin (PHA)). First, GMA-based polymers were synthesized and then galactose derivatives were immobilized onto the GMA surface using two different synthetic routes. In the first approach, the bare polymer was modified with ethylenediamine and glutaraldehyde, and subsequently two galactose derivatives were immobilized. In the second strategy, the starting polymer was modified with cystamine and gold nanoparticles (AuNPs), on which a thiolated galactose derivative was subsequently anchored. The resulting materials were characterized by scanning electron microscopy and used as SPE sorbents for the isolation of PHA (as probe protein) from food matrices. Different SPE parameters (sample pH, eluent solution composition, binding capacity, sample volume, selectivity and reusability) were evaluated. The material that provided the best PHA recovery (98%) was the one obtained in the second approach, being this material successfully applied to the selective extraction of PHA and other similar lectins from different foods (red and lima dried beans, fresh soybeans and biscuits containing soybean protein traces as indicated in their label). After SDS-PAGE of eluates, all samples only exhibited the characteristic PHA band around 30 kDa, suggesting the high potential of the developed material for application in food allergy field.
Collapse
|
3
|
Hefnawy M, El-Gendy M, Al-Salem H, Marenga H, El-Azab A, Abdel-Aziz A, Gamal AE, Alanazi M, Obaidullah A, Al-Hossaini A, Hefnawy A. Trends in monoliths: Packings, stationary phases and nanoparticles. J Chromatogr A 2023; 1691:463819. [PMID: 36724721 DOI: 10.1016/j.chroma.2023.463819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Monoliths media are gaining interest as excellent substitutes to conventional particle-packed columns. Monolithic columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monolithic columns with longer length, smaller inner diameter and specific selectivity to peptides or enantiomers have been played important role in hyphenated system. Monolithic stationary phases possess great efficiency, resolution, selectivity and sensitivity in the separation of complex biological samples, such as the complex mixtures of peptides for proteome analysis. The development of monolithic stationary phases has opened the new avenue in chromatographic separation science and is in turn playing much more important roles in the wide application area. Monolithic stationary phases have been widely used in fast and high efficiency one- and multi-dimensional separation systems, miniaturized devices, and hyphenated system coupled with mass spectrometers. The developing technology for preparation of monolithic stationary phases is revolutionizing the column technology for the separation of complex biological samples. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, the origin of the concept, the differences between their characteristics and those of traditional packings, their advantages and drawbacks, theory of separations, the methods for the monoliths preparation of different forms, nanoparticle monoliths and metal-organic framework are discussed. Two application areas of monolithic metal-organic framework and nanoparticle monoliths are provided. The review article discusses the results reported in a total of 218 references. Other older references were included to illustrate the historical development of monoliths, both in preparation and types, as well as separation mechanism.
Collapse
Affiliation(s)
- Mohamed Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Manal El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Huda Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanin Marenga
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali El Gamal
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plant Research Center (MAPPRC), College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Hefnawy
- Faculty of Medicine, Mansoura Manchester Medical Program, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Liang Y, Zhang L, Zhang Y. Chromatographic separation of peptides and proteins for characterization of proteomes. Chem Commun (Camb) 2023; 59:270-281. [PMID: 36504223 DOI: 10.1039/d2cc05568f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Characterization of proteomes aims to comprehensively characterize proteins in cells or tissues via two main strategies: (1) bottom-up strategy based on the separation and identification of enzymatic peptides; (2) top-down strategy based on the separation and identification of intact proteins. However, it is challenged by the high complexity of proteomes. Consequently, the improvements in peptide and protein separation technologies for simplifying the sample should be critical. In this feature article, separation columns for peptide and protein separation were introduced, and peptide separation technologies for bottom-up proteomic analysis as well as protein separation technologies for top-down proteomic analysis were summarized. The achievement, recent development, limitation and future trends are discussed. Besides, the outlook on challenges and future directions of chromatographic separation in the field of proteomics was also presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
6
|
Halder S, Aggrawal R, Jana S, Saha SK. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112351. [PMID: 34763228 DOI: 10.1016/j.jphotobiol.2021.112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Srabanti Jana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior 474005, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
7
|
Belenguer-Sapiña C, Pellicer-Castell E, Pottanam Chali S, Ravoo BJ, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. Host-guest interactions for extracting antibiotics with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid sorbent. Talanta 2021; 232:122478. [PMID: 34074446 DOI: 10.1016/j.talanta.2021.122478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
A procedure for the solid-phase extraction of antibiotics (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and sparfloxacin) in water has been developed. The sorbent used is based on a poly(glycidyl-co-ethylene dimethacrylate) network, whose previously modified surface has been functionalized with γ-cyclodextrin through a click-chemistry reaction. The architecture of the material has been characterized by thermogravimetric analysis, N2 adsorption-desorption, Raman spectroscopy, confocal microscopy, and scanning electron microscopy, showing good capability to be used as a filler for extraction cartridges. The optimization of the extraction methodology shows good intra-day and inter-day repeatability of the extraction procedure, with coefficients of variation between 2.5 and 5.1% and the possibility of reusing the material at least five times. The detection limits of the method have been established at the μg L-1 level, confirming the possibility of quantifying trace levels. To end, real groundwater samples have been analyzed and the results are comparable with those obtained with a reference method. The proposed material can be used for assessing the presence of antibiotics in aqueous environments through an extraction procedure taking advantage of the presence of γ-cyclodextrin on its structure.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
8
|
Mompó-Roselló Ó, Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Torres-Cartas S, Meseguer-Lloret S, Gómez-Benito C, Catalá-Icardo M, Simó-Alfonso EF, Herrero-Martínez JM. Preparation of monolithic polymer-magnetite nanoparticle composites into poly(ethylene-co-tetrafluoroethylene) tubes for uses in micro-bore HPLC separation and extraction of phosphorylated compounds. Talanta 2021; 224:121806. [PMID: 33379032 DOI: 10.1016/j.talanta.2020.121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
This paper describes the fabrication of a novel microbore monolithic column modified with magnetite nanoparticles (MNPs) prepared in a poly(ethylene-co-tetrafluoroethylene) (EFTE) tubing, and its application as stationary phase for the chromatographic separation of phosphorylated compounds. In order to obtain the composite column, a two-step procedure was performed. The formation of a glycidyl methacrylate-based monolith inside the activated ETFE tube was firstly carried out. Then, two incorporation approaches of MNPs in monoliths were investigated. The generic polymer was modified with 3-aminopropyltrimethoxysilane (APTMS) to be subsequently attached to MNP surfaces. Alternatively, APTMS-coated MNPs were firstly prepared and subsequently used for attachment onto the monolith surface through reaction of epoxy groups present in the generic monolith. This last strategy gave a reproducible layer of MNPs coated onto the polymer monolith as well as robust and permeable chromatographic columns. The retention behaviour of this MNP-based composite monolithic column was studied by using small phosphorylated compounds (adenosine phosphates). It was found that the retention of model analytes was ruled by partitioning and adsorption HILIC mechanisms. The columns also exhibited satisfactory performance in the separation of these target compounds, showing good chromatographic behaviour after two months of continued use. These composite monolithic columns were also successfully applied to the extraction of a tryptic digest of β-casein.
Collapse
Affiliation(s)
- Sagrario Torres-Cartas
- Institut D'Investigació per a La Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain.
| | - Susana Meseguer-Lloret
- Institut D'Investigació per a La Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | - Carmen Gómez-Benito
- Institut D'Investigació per a La Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | - Mónica Catalá-Icardo
- Institut D'Investigació per a La Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | |
Collapse
|
10
|
Deep eutectic solvents-based polymer monolith incorporated with titanium dioxide nanotubes for specific recognition of proteins. Anal Chim Acta 2020; 1139:27-35. [DOI: 10.1016/j.aca.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
|
11
|
Pont L, Marin G, Vergara-Barberán M, Gagliardi LG, Sanz-Nebot V, Herrero-Martínez JM, Benavente F. Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. J Chromatogr A 2020; 1622:461097. [PMID: 32381302 DOI: 10.1016/j.chroma.2020.461097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
In this study, polymeric monoliths with gold nanoparticles (AuNP@monolith) were investigated as microcartridges for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS). "Plug-and-play" microcartridges (7 mm) were prepared from a glycidyl methacrylate (GMA)-based monolithic capillary column (5 cm x 250 µm i.d.), which was modified with ammonia and subsequently functionalized with gold nanoparticles (AuNPs). The performance of these novel microcartridges was evaluated with human transthyretin (TTR), which is a protein related to different types of familial amyloidotic polyneuropathies (FAP). Protein retention depended on the isoelectric point of the protein (TTR pI~5.4) and elution was achieved with a basic phosphate solution. Under the optimized conditions, limits of detection (LODs) for TTR by AuNP@monolith-SPE-CE-MS were 50 times lower than by CE-MS (5 vs 250 mg•L-1, with an ion trap (IT) mass spectrometer). The sensitivity enhancement was similar compared to SPE-CE-MS using immunoaffinity (IA) microcartridges with intact antibodies against TTR. Linearity, repeatability in migration times and peak areas, reusability, reproducibility and application to serum samples were also evaluated.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gemma Marin
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA CONICET, C/ 47 esq. 115, B1900AJL La Plata, Argentina
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José M Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Eco-friendly production of metal nanoparticles immobilised on organic monolith for pepsin extraction. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Polymer monoliths modified by using nanoparticles (NPs) integrate high NP specific surface area with different monolith surface chemistry and high porosity. As a result, they have extensive applications within different fields, whereas nanomaterial-functionalised porous polymer monoliths have elicited considerable interest from investigators. This study is aimed at fabricating organic polymer-based monoliths from polybutyl methacrylate-co-ethylenedimethacrylate (BuMA-co-EDMA) monoliths prior to immobilization of gold or silver metal on the pore surface of the monoliths using reducing reagent (extracts of lemon peels). This was intended to denote a sustainable technique of immobilizing nanoparticles that are advantageous over physical and chemical techniques because it is safe in terms of handling, readily available, environmentally friendly, and cheap. Two different methods were used in the study to effectively immobilize nanoparticles on monolithic components. The outcomes showed that soaking the monolith rod in the prepared nano solution directly and placing it within ovens at temperatures of 80°C constituted the most effective method. Characterisation of the fabricated monolith was undertaken using SEM/EDX analysis, UV-vis. spectra analysis, and visual observation. The SEM analysis showed that nanoparticles were extensively immobilised on the surface polymers. Another peak was attained through EDX analysis, thus confirming the Au atom existence at 2.83% alongside another peak that proved the Ag atom existence at 1.92%. The fabricated components were used as sorbents for purifying protein. The ideal performance was achieved using gold nanoparticles (GNPs) immobilised organic monolith that attained a greater pepsin extraction recovery compared to silver nanoparticles (SNPs) immobilised organic monoliths alongside bare organic-based monolith.
Collapse
|
13
|
In syringe hybrid monoliths modified with gold nanoparticles for selective extraction of glutathione in biological fluids prior to its determination by HPLC. Talanta 2020; 209:120566. [DOI: 10.1016/j.talanta.2019.120566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
|
14
|
Luo Q, Ren X, Wei S, Zheng Y, Gao D, Fu Q, Xia Z, Wang L. Preparation and evaluation of a molybdenum disulfide quantum dots embedded C18 mixed-mode chromatographic stationary phase. Anal Bioanal Chem 2020; 412:1365-1374. [DOI: 10.1007/s00216-019-02363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
|
15
|
Current trends in affinity-based monoliths in microextraction approaches: A review. Anal Chim Acta 2019; 1084:1-20. [DOI: 10.1016/j.aca.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
|
16
|
Alzahrani E. Green Silver Nanoparticles Confined in Monolithic Silica Disk-packed Spin Column for Human Serum Albumin Preconcentration. CURR ANAL CHEM 2019. [DOI: 10.2174/2210676609666181204151244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In recent times many new uses have been found for nanomaterials that have
undergone homogenous immobilization within porous supports. For this paper, immobilization of
SNPs on a thiol-functionalized silica monolith using a fast, easy, environmentally friendly and costeffective
process was performed. This was achieved by modifying the surface of a silica-based
monolith using thiol groups, and then we fabricated green SNPs in situ, reducing an inorganic precursor
silver nitrate solution (AgNO3) by employing tangerine peel extract as a reducing reagent,
with Ag-thiol bonds forming along the monument. Doing this allows monoliths to be prepared in
such a way that, as TEM analysis demonstrated, SNPs are evenly distributed along the rod's length.
Once the materials had been fabricated, they were employed as a sorbent by being placed in a centrifuge.
The SNP-thiol functionalized silica monolith was then tested using a standard protein (HSA).
Methods:
The process involves creating monolithic materials by employing a two-part sol-gel technique
before modifying the surface of the silica-based monolith using thiol groups for hosting purposes.
Homogenous surface coverage was achieved through the use of a non-toxic "green" reducing
reagent (tangerine peel extract) to reduce a silver nitrate solution in place to create SNPs joined to the
pore surface of a thiol-functionalized silica monolith, employing bonds of Ag-thiol. Once these materials
were synthesized, they were classified by utilizing a number of methods based on SEM coupled
with EDAX, TEM, AFM and BET analysis. The silica-based monolith, embedded with constructed
SNPs, was employed as a sorbent in the preconcentration of human serum albumin (HSA).
Results:
The performance of the fabricated materials was measured against a silica-based monolith
with no SNPs. Also, a silica monolith with constructed SNPs embedded was employed to capture
HSA within a sample of human urine mixed with a double detergent concentrate (SDS). Such a
monolith containing functionalized SNPs can be a highly effective sorbent for preconcentration of
proteins in complex samples.
Conclusion:
It was shown to have superior performance compared to a bare silica-based monolith.
Additionally, it was shown that a monolithic column modified by SNPs could preconcentrate spiked
HSA in urine samples.
Collapse
Affiliation(s)
- Eman Alzahrani
- Chemistry Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
17
|
Use of thiol functionalities for the preparation of porous monolithic structures and modulation of their surface chemistry: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
|
19
|
Bratskaya S, Privar Y, Slobodyuk A, Shashura D, Marinin D, Mironenko A, Zheleznov V, Pestov A. Cryogels of carboxyalkylchitosans as a universal platform for the fabrication of composite materials. Carbohydr Polym 2019; 209:1-9. [PMID: 30732787 DOI: 10.1016/j.carbpol.2018.12.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 12/28/2022]
Abstract
Here we report a new simple method for fabrication of supermacroporous beads and monoliths via cross-linking of carboxyalkylated chitosan derivatives with hexamethylene diisocyanate in aqueous solution at subzero temperature. These materials provide high filtration rate and good mass-transfer that in combination with high binding capacity toward metal ions allows their application as a universal platform for fabrication of composite catalysts, sorbents, and metal-affine chromatography stationary phases. Using N-(2-carboxyethyl)chitosan (CEC), we have demonstrated that optimum chitosan carboxylation degree for cryogels synthesis is close to 1.0. Cu(II)-chelated CEC cryogels have shown high efficiency as metal-affinity sorbents for ciprofloxacin recovery. Co(II)-chelated CEC cryogels have been used for fabrication of Co(II) ferrocyanide-containing composite with the distribution coefficient for 137Cs of 140,000 ml/g and the adsorption capacity of ˜1 mmol/g. Composite Pd-catalysts supported on CEC cryogel provided tenfold higher reaction rate in 4-nitrophenol reduction in comparison with Pd-catalyst supported on chitosan beads.
Collapse
Affiliation(s)
- Svetlana Bratskaya
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia.
| | - Yuliya Privar
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Arseny Slobodyuk
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Dariya Shashura
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Dmitry Marinin
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Alexandr Mironenko
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Veniamin Zheleznov
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Alexander Pestov
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20, S. Kovalevskoy str., Yekaterinburg 620990, Russia
| |
Collapse
|
20
|
Currivan SA, Chen WQ, Wilson R, Sanz Rodriguez E, Upadhyay N, Connolly D, Nesterenko PN, Paull B. Multi-lumen capillary based trypsin micro-reactor for the rapid digestion of proteins. Analyst 2018; 143:4944-4953. [PMID: 30221288 DOI: 10.1039/c8an01330f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work we evaluated a novel microreactor prepared using a surface modified, high surface-to-volume ratio multi-lumen fused silica capillary (MLC). The MLC investigated contained 126 parallel channels, each of 4 μm internal diameter. The MLC, along with conventional fused silica capillaries of 25 μm and 50 μm internal diameter, were treated by (3-aminopropyl)triethoxysilane (APTES) and then modified with gold nanoparticles, of ∼20 nm in diameter, to ultimately provide immobilisation sites for the proteolytic enzyme, trypsin. The modified capillaries and MLCs were characterised and profiled using non-invasive scanning capacitively coupled contactless conductivity detection (sC4D). The sC4D profiles confirmed a significantly higher amount of enzyme was immobilised to the MLC when compared to the fused silica capillaries, attributable to the increased surface to volume ratio. The MLC was used for dynamic protein digestion, where peptide fragments were collected and subjected to off-line chromatographic evaluation. The digestion was achieved with the MLC reactor, using a residence time of just 1.26 min, following which the HPLC peak associated with the intact protein decreased by >70%. The MLC reactors behaved similarly to the classical in vitro or in-solution approach, but provided a reduction in digestion time, and fewer peaks associated with trypsin auto-digestion, which is common using in-solution digestion. The digestion of cytochrome C using both the MLC-IMER and the in-solution approach, resulted in a sequence coverage of ∼80%. The preparation of the MLC microreactor was reproducible with <2.5% RSD between reactors (n = 3) as determined by sC4D.
Collapse
Affiliation(s)
- S A Currivan
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dores-Sousa JL, Fernández-Pumarega A, De Vos J, Lämmerhofer M, Desmet G, Eeltink S. Guidelines for tuning the macropore structure of monolithic columns for high-performance liquid chromatography. J Sep Sci 2018; 42:522-533. [DOI: 10.1002/jssc.201801092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022]
Affiliation(s)
- José Luís Dores-Sousa
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Alejandro Fernández-Pumarega
- Departament de Química Analítica and Institut de Biomedicina (IBUB); Universitat de Barcelona, Facultat de Química; Barcelona Spain
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis; University of Tübingen; Tübingen Germany
| | - Gert Desmet
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
22
|
Wang C, He M, Chen B, Hu B. Polymer monolithic capillary microextraction on-line coupled with ICP-MS for determination of inorganic selenium species in natural waters. Talanta 2018; 188:736-743. [DOI: 10.1016/j.talanta.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
|
23
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
24
|
Zhou XJ, Zhang LS, Song WF, Huang YP, Liu ZS. A polymer monolith incorporating stellate mesoporous silica nanospheres for use in capillary electrochromatography and solid phase microextraction of polycyclic aromatic hydrocarbons and organic small molecules. Mikrochim Acta 2018; 185:444. [DOI: 10.1007/s00604-018-2964-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
25
|
Ribeiro LF, Masini JC. Complexing porous polymer monoliths for online solid-phase extraction of metals in sequential injection analysis with electrochemical detection. Talanta 2018; 185:387-395. [DOI: 10.1016/j.talanta.2018.03.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/01/2023]
|
26
|
Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J Chromatogr A 2017; 1526:93-103. [DOI: 10.1016/j.chroma.2017.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2023]
|
27
|
Maya F, Palomino Cabello C, Ghani M, Turnes Palomino G, Cerdà V. Emerging materials for sample preparation. J Sep Sci 2017; 41:262-287. [DOI: 10.1002/jssc.201700836] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Fernando Maya
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | | | - Milad Ghani
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | - Gemma Turnes Palomino
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Víctor Cerdà
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| |
Collapse
|
28
|
Ganewatta N, El Rassi Z. Organic polymer-based monolithic stationary phases with incorporated nanostructured materials for HPLC and CEC. Electrophoresis 2017; 39:53-66. [PMID: 28926678 DOI: 10.1002/elps.201700312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
This review article is concerned with the recent advances made in the field of organic polymer-based monoliths with incorporated nanostructured materials (NSMs) for use in liquid chromatography and capillary electrochromatography. It covers the pertinent literature published over the last 7-8 years with a total of 56 references. The present article has two distinct parts: one major part encompassing "traditional" organic polymer-based monoliths modified with NSMs and a minor part on cryogels modified with NSMs.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK
| |
Collapse
|
29
|
Ruan M, Wang Q, Wu H, Wang Y, Han H, Jiang Z. Preparation and evaluation oftert-leucine derivative functionalized polymeric monoliths for micro-liquid chromatography. Electrophoresis 2017; 38:3020-3028. [DOI: 10.1002/elps.201700176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Ruan
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
- Integrated Chinese and Western Medicine Postdoctoral research station; Jinan University; Guangzhou P. R. China
| | - Huihui Wu
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Yuqiang Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Hai Han
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou P. R. China
| |
Collapse
|
30
|
Poupart R, Le Droumaguet B, Guerrouache M, Grande D, Carbonnier B. Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Development of a metal/chelate polyhydroxyethylmethacrylate monolith capillary for selective depletion of immunoglobulin G from human plasma for proteomics. J Chromatogr A 2017; 1517:117-125. [DOI: 10.1016/j.chroma.2017.08.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/03/2023]
|
32
|
Beeram SR, Rodriguez E, Doddavenkatanna S, Li Z, Pekarek A, Peev D, Goerl K, Trovato G, Hofmann T, Hage DS. Nanomaterials as stationary phases and supports in liquid chromatography. Electrophoresis 2017; 38:2498-2512. [DOI: 10.1002/elps.201700168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Zhao Li
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Allegra Pekarek
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Darin Peev
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Kathryn Goerl
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Gianfranco Trovato
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Tino Hofmann
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - David S. Hage
- Department of Chemistry University of Nebraska Lincoln NE USA
| |
Collapse
|
33
|
Ten-Doménech I, Simó-Alfonso EF, Herrero-Martínez JM. Isolation of human milk whey proteins by solid phase extraction with a polymeric material modified with gold nanoparticles. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Jiang X, Jiao X, Zhang D, Bai L, Liu H, Yan H. Fabrication of a polymer monolithic column via redox system and its application in efficient separation of Chinese herb Rheum palmatumL. J Appl Polym Sci 2017. [DOI: 10.1002/app.44874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoya Jiang
- College of Pharmaceutical Sciences; Hebei University; Baoding 071002 China
| | - Xiaoyan Jiao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 China
- College of Science; Hebei North University; Zhangjiakou 075000 China
| | - Doudou Zhang
- College of Pharmaceutical Sciences; Hebei University; Baoding 071002 China
| | - Ligai Bai
- College of Pharmaceutical Sciences; Hebei University; Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 China
| | - Haiyan Liu
- College of Pharmaceutical Sciences; Hebei University; Baoding 071002 China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Hebei University; Baoding 071002 China
| |
Collapse
|
35
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|
36
|
Shao X, Zhang X. Design of five-layer gold nanoparticles self-assembled in a liquid open tubular column for ultrasensitive nano-LC-MS/MS proteomic analysis of 80 living cells. Proteomics 2017; 17. [PMID: 28181392 DOI: 10.1002/pmic.201600463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
In this work, for the first time, a liquid open tubular column modified by five-layer gold nanoparticles and linked with C18 (GNPs@C18 ) was designed and fabricated for nano-LC-MS/MS analysis of 80 living cells. Sixty nanometer gold nanoparticles were self-assembled layer by layer on the inner wall of a 20 μm id fused-silica capillary. C18 was then linked on the gold nanoparticles to make the liquid open tubular column show hydrophobic character. Enough loading capacities for analysis of 80 living cells, ∼100 fmol for pk-10 and ∼30 fmol for insulin, were obtained with the 2 m × 20 μm id five-layer GNPs@C18 open tubular column. The open tubular column was used in an online pretreatment and direct nano-LC-MS/MS analysis system to analyze 80 living HepG2 cells. In total, 650 proteins were identified in triplicate runs. The subcellular localization of the identified proteins showed that our system had no bias toward different cellular compartments. Protein copy number per cell of the identified proteins showed that the detection limit could reach 50 zmol and the abundance of the identified proteins could cover a dynamic range of 6 orders.
Collapse
Affiliation(s)
- Xi Shao
- Department of Chemistry, Fudan University, Shanghai, P. R., China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R., China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai, P. R., China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R., China
| |
Collapse
|
37
|
Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta 2017; 164:348-354. [DOI: 10.1016/j.talanta.2016.11.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/24/2022]
|
38
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
39
|
Yu B, Zhang H, Cong H, Gu C, Gao L, Yang B, Usman M. Diazoresin modified monodisperse porous poly(glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography. NEW J CHEM 2017. [DOI: 10.1039/c6nj04001b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazoresin modified monodisperse porous PGMA–DVB microspheres were used as a novel tool for the separation and purification of the N-vinyl-1,2,4-triazole product from its by-product was developed.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hongbo Zhang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bo Yang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
40
|
|
41
|
Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns. J Chromatogr A 2016; 1477:11-21. [DOI: 10.1016/j.chroma.2016.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022]
|
42
|
Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Anal Bioanal Chem 2016; 409:243-250. [DOI: 10.1007/s00216-016-9993-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
|
43
|
Hong T, Yang X, Xu Y, Ji Y. Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal Chim Acta 2016; 931:1-24. [DOI: 10.1016/j.aca.2016.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
|
44
|
Lv Y, Tan X, Svec F. Preparation and applications of monolithic structures containing metal-organic frameworks. J Sep Sci 2016; 40:272-287. [DOI: 10.1002/jssc.201600423] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yongqin Lv
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| | - Xinyi Tan
- College of Chemistry; Jilin University; Changchun China
| | - Frantisek Svec
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
45
|
Groarke RJ, Brabazon D. Methacrylate Polymer Monoliths for Separation Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E446. [PMID: 28773570 PMCID: PMC5456823 DOI: 10.3390/ma9060446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 01/10/2023]
Abstract
This review summarizes the development of methacrylate-based polymer monoliths for separation science applications. An introduction to monoliths is presented, followed by the preparation methods and characteristics specific to methacrylate monoliths. Both traditional chemical based syntheses and emerging additive manufacturing methods are presented along with an analysis of the different types of functional groups, which have been utilized with methacrylate monoliths. The role of methacrylate based porous materials in separation science in industrially important chemical and biological separations are discussed, with particular attention given to the most recent developments and challenges associated with these materials. While these monoliths have been shown to be useful for a wide variety of applications, there is still scope for exerting better control over the porous architectures and chemistries obtained from the different fabrication routes. Conclusions regarding this previous work are drawn and an outlook towards future challenges and potential developments in this vibrant research area are presented. Discussed in particular are the potential of additive manufacturing for the preparation of monolithic structures with pre-defined multi-scale porous morphologies and for the optimization of surface reactive chemistries.
Collapse
Affiliation(s)
- Robert J Groarke
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Dermot Brabazon
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
46
|
Masini JC. Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate- and polystyrene-based monolithic columns. J Sep Sci 2016; 39:1648-55. [DOI: 10.1002/jssc.201600049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jorge Cesar Masini
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
47
|
Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation. J Chromatogr A 2016; 1446:125-33. [PMID: 27083263 DOI: 10.1016/j.chroma.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/16/2016] [Accepted: 04/04/2016] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition.
Collapse
|
48
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta 2016; 917:37-43. [PMID: 27026598 DOI: 10.1016/j.aca.2016.02.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/25/2023]
Abstract
In this study, a novel polymeric material functionalized with gold nanoparticles (AuNPs) was prepared as solid-phase extraction (SPE) sorbent for isolation of proteins. The sorbent was synthesized from a powdered poly(glycidyl-co-ethylene dimethacrylate) monolith, and modified with ammonia, followed by immobilization of AuNPs on the pore surface of the material. To evaluate the performance of this SPE support, proteins were selected as test solutes, being the extraction conditions and other parameters (loading capacity and regenerative ability of sorbent) established. The results indicated that this sorbent could be employed to selectively capture proteins according to their pI, on the basis of the strong affinity of these biomacromolecules towards to AuNPs surface. The applicability of this sorbent was demonstrated by isolating protein species of interest (bovine serum albumin, cytochrome c and lectins in European mistletoe leaves), followed by SDS-PAGE analysis.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain.
| | - María Jesús Lerma-García
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
49
|
Wang H, Ou J, Bai J, Liu Z, Yao Y, Chen L, Peng X, Zou H. Improving permeability and chromatographic performance of poly(pentaerythritol diacrylate monostearate) monolithic column via photo-induced thiol-acrylate polymerization. J Chromatogr A 2016; 1436:100-8. [DOI: 10.1016/j.chroma.2016.01.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
|
50
|
Xu W, Qian J, Zhang Y, Suo A, Cui N, Wang J, Yao Y, Wang H. A double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater 2016; 33:131-41. [PMID: 26805429 DOI: 10.1016/j.actbio.2016.01.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/19/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023]
Abstract
To mimic the structure of breast tumor microenvironment, novel double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid (pLysAAm/HA) hydrogels were fabricated by a two-step photo-polymerization process for in vitro three-dimensional (3D) cell culture. The morphology, mechanical properties, swelling and degradation behaviors of pLysAAm/HA hydrogels were investigated. The growth behavior and function of MCF-7 cells cultured on the hydrogels and standard 2D culture plates were compared. The results showed that pLysAAm/HA hydrogels had a highly porous microstructure with a double network and that their mechanical properties, swelling ratio and degradation rate depended on the degree of methacrylation of HA. The results of in vitro studies revealed that the pLysAAm/HA hydrogels could support MCF-7 cell adhesion, promote cell proliferation, and induce the diversification of cell morphologies and overexpression of VEGF, IL-8 and bFGF. The MCF-7 cells cultured on 3D hydrogels showed significantly increased migration and invasion abilities as compared to 2D-cultured cells. Preliminary in vivo results confirmed that the 3D culture of MCF-7 cells resulted in greater tumorigenesis than their 2D culture. These results indicate that the pLysAAm/HA hydrogels can provide a 3D microenvironment for MCF-7 cells that is more representative of the in vivo breast cancer. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures cannot ideally represent their in vivo physiological conditions. In this work, we reported a method for preparing double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel, and demonstrated its suitability for use in mimicing breast tumor microenvironment. Results showed the prepared hydrogels had controllable mechanical properties, swelling ratio and degradation rate. The MCF-7 cells cultured in hydrogels expressed much higher levels of pro-angiogenic growth factors and displayed significantly enhanced migration and invasion abilities. The tumorigenic capability of MCF-7 cells pre-cultured in 3D hydrogels was enhanced significantly. Therefore, the novel hydrogel may provide a more physiologically relevant 3D in vitro model for breast cancer research. To our knowledge, this is the first report assessing a HA-based double-network hydrogel used as a tumor model.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hejing Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|