1
|
Song Z, Li J, Lu W, Li B, Liu J, Wang Y, Wang Y, Zhang Z, Chen L. Synthesis and evaluation of fosfomycin group end-capped packing materials for hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1656:462529. [PMID: 34520890 DOI: 10.1016/j.chroma.2021.462529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) plays an important role in the analysis of compounds having high polarity. In this study, fosfomycin (F) was chosen as a new end-capping reagent, owing to the facile hydrolysis reaction of its epoxy group. Zirconia coated silica (ZrO2/SiO2) materials having good chemical and physical stability were prepared. D-glucose-6-phosphate (G) and D-fructose1,6-bisphosphate (FDP) were modified onto the inner and outer surfaces of the ZrO2/SiO2 microbeads. The new end-capping reagent (F) was then bonded onto the surface of the modified material through Lewis acid-base interactions. The properties (morphology, Zr content, pore size, pore volume, and carbon content) of the stationary phases (SPs) were characterized. Finally, the resulting end-capped SPs were employed to separate alkaloids and benzoic acids. Multiple interactions, including HILIC, electrostatic repulsion, ion exchange and hydrogen bonding, contributed to the retention of the analytes on the SPs. On the F-FDP-ZrO2/SiO2 column, a theoretical plate number of 31,700 plates/m and an asymmetry factor of 1.63 were achieved for berberine, exhibiting good chromatographic performance. Furthermore, the FDP-ZrO2/SiO2 column showed good acid-base stability and good potential for the analysis of benzoic acid in Sprite and ginsenoside separations. Thus, the results indicated the significant potential of using F as an end-capping reagent.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China.
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Wenhui Lu
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jinqiu Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yaqi Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yumeng Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
2
|
Liu Z, Tu MJ, Zhang C, Jilek JL, Zhang QY, Yu AM. A reliable LC-MS/MS method for the quantification of natural amino acids in mouse plasma: Method validation and application to a study on amino acid dynamics during hepatocellular carcinoma progression. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:72-81. [PMID: 31177050 DOI: 10.1016/j.jchromb.2019.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023]
Abstract
A simple and fast LC-MS/MS method was developed and validated for simultaneous quantification of 20 proteinogenic l-amino acids (AAs) in a small volume (5 μL) of mouse plasma. Chromatographic separation was achieved on an Intrada Amino Acid column within 13 min via gradient elution with an aqueous solution containing 100 mM ammonium formate and an organic mobile phase containing acetonitrile, water and formic acid (v:v:v = 95:5:0.3), at the flow rate of 0.6 mL/min. Individual AAs and corresponding stable-isotope-labeled AAs internal standards were analyzed by multiple reaction monitoring (MRM) in positive ion mode under optimized conditions. Method validation consisted of linearity, sensitivity, accuracy and precision, recovery, matrix effect, and stability, and the results demonstrated this LC-MS/MS method as a specific, accurate, and reliable assay. This LC-MS/MS method was thus utilized to compare the dynamics of individual plasma AAs between healthy and orthotopic hepatocellular carcinoma (HCC) xenograft mice housed under identical conditions. Our results revealed that, 5 weeks after HCC tumor progression, plasma l-arginine concentrations were significantly decreased in HCC mice while l-alanine and l-threonine levels were sharply increased. These findings support the utilities of this LC-MS/MS method and the promise of specific AAs as possible biomarkers for HCC.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Medical Function, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, China; Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Chao Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Qian-Yu Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Song Y, Xu C, Kuroki H, Liao Y, Tsunoda M. Recent trends in analytical methods for the determination of amino acids in biological samples. J Pharm Biomed Anal 2017; 147:35-49. [PMID: 28927726 DOI: 10.1016/j.jpba.2017.08.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
Amino acids are widely distributed in biological fluids and involved in many biological processes, such as the synthesis of proteins, fatty acids, and ketone bodies. The altered levels of amino acids in biological fluids have been found to be closely related to several diseases, such as type 2 diabetes, kidney disease, liver disease, and cancer. Therefore, the development of analytical methods to measure amino acid concentrations in biological samples can contribute to research on the physiological actions of amino acids and the prediction, diagnosis and understanding of diseases. This review describes the analytical methods reported in 2012-2016 that utilized liquid chromatography and capillary electrophoresis coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection. Additionally, the relationship between amino acid concentrations and several diseases is also summarized.
Collapse
Affiliation(s)
- Yanting Song
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Chang Xu
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Hiroshi Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 1130033, Japan
| | - Yiyi Liao
- Key Laboratory of Tropic Biological Resources, Minister of Education, Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 1130033, Japan.
| |
Collapse
|
4
|
Urban J, Hájek T, Svec F. Monolithic stationary phases with a longitudinal gradient of porosity. J Sep Sci 2017; 40:1703-1709. [PMID: 28225173 DOI: 10.1002/jssc.201700048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/12/2022]
Abstract
The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers.
Collapse
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Tomáš Hájek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Frantisek Svec
- The Molecular Foundry, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Cabooter D, Choikhet K, Lestremau F, Dittmann M, Desmet G. Towards a generic variable column length method development strategy for samples with a large variety in polarity. J Chromatogr A 2014; 1372C:174-186. [PMID: 25465015 DOI: 10.1016/j.chroma.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
Abstract
The development of a novel set-up for the sequential analysis of compounds with a large variety in polarity on HILIC and reversed-phase columns, coupled in series, is discussed. For this purpose, a commercially available ultra-high performance LC system, equipped with two switching valves is employed. The switching valves allow connecting the HILIC and reversed-phase columns either in series or in parallel to the system. An interface to couple the HILIC and reversed-phase columns is developed and optimized. The sample is first injected onto a HILIC column. Apolar compounds in the sample are not retained and will elute close to or within the void volume of the HILIC column. Accurate switching of the valves allows redirecting these compounds towards a trap loop while more polar compounds are retained and separated on the HILIC column. After separation and detection of the polar compounds, the configuration of the valves is switched again to direct the apolar compounds from the trap loop towards a reversed-phase column for separation. To deal with the incompatibility of the mobile phases of HILIC and reversed-phase column separations, commercially available Jet weaver mixers are included in the set-up to allow for an intermediate solvent exchange. The proof-of-concept is demonstrated for the analysis of pharmaceuticals that can be found in waste water and surface water. It is demonstrated that the set-up provides robust analyses with peak capacities that are intermediate to one-dimensional and two-dimensional separations.
Collapse
Affiliation(s)
- Deirdre Cabooter
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, B-3000 Leuven, Belgium.
| | | | | | - Monika Dittmann
- Agilent Technologies R&D, Hewlett-Packard-Strasse 8, Waldbronn, Germany
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|