1
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Zhao Y, Ming Y, Yang Y, Cai C, Bi Y, Fu Q, Ke Y. Separation of carbohydrates using dynamically adsorbed borate stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1720:464780. [PMID: 38458138 DOI: 10.1016/j.chroma.2024.464780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
In this work, a chromatographic method for the separation of carbohydrates was proposed. Tris-(hydroxymethyl)-amine (TRIS) functionalized silica-based hydrophilic interaction liquid chromatography (HILIC) stationary was synthesized. The dynamically absorbed borate layer is generated by using borate buffer as a polar modifier due to the complexation of borate with TRIS ligand in the stationary phase. The chromatographic systems were analyzed by the linear solvation energy relationship model. The calculated system constants revealed the enhancement of anionic exchange by the addition of borate in the mobile phase system. In addition, ligand exchange is critical for the retention and elution order of sugars and sugar alcohols. Carbohydrates displayed prolonged retention with different selectivity profiles relating to their complexation coefficients with borate. Experiment results showed that the effect of borate in this chromatographic system was stable within the range of pH 3-7 and borate concentration of 5-15 mM. This work provides a complementary solution for the separation of carbohydrates. It can also be extended to the separation of glycosides.
Collapse
Affiliation(s)
- Yang Zhao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Ming
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changyu Cai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yujie Bi
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Li P, Gao S, Qu W, Li Y, Liu Z. Chemo-Selective Single-Cell Metabolomics Reveals the Spatiotemporal Behavior of Exogenous Pollutants During Xenopus Laevis Embryogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305401. [PMID: 38115758 PMCID: PMC10916618 DOI: 10.1002/advs.202305401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In-depth profiling of embryogenesis-associated endogenous and exogenous metabolic changes can reveal potential bio-effects resulting from human-made chemicals and underlying mechanisms. Due to the lack of potent tools for monitoring spatiotemporal distribution and bio-transformation behavior of dynamic metabolites at single-cell resolution, however, how and to what extent environmental chemicals may influence or interfere embryogenesis largely remain unclear. Herein, a zero-sample-loss micro-biopsy-based mass spectrometric platform is presented for quantitative, chemo-selective, high-coverage, and minimal-destructive profiling of development-associated cis-diol metabolites, which are critical for signal transduction and epigenome regulation, at both cellular level and tissue level of Xenopus laevis. Using this platform, three extraordinary findings that are otherwise hard to achieve are revealed: 1) there are characteristically different cis-diol metabolic signatures among oocytes, anterior and posterior part of tailbud-stage embryos; 2) halogenated cis-diols heavily accumulate at the posterior part of tailbud-stage embryos of Xenopus laevis; 3) dimethachlon, a kind of exogenous fungicide that is widely used as pesticide, may be bio-transformed and accumulated in vertebrate animals in environment. Thus, this study opens a new avenue to simultaneously monitoring intercellular and intraembryonic heterogeneity of endogenous and exogenous metabolites, providing new insights into metabolic remolding during embryogenesis and putting a warning on potential environmental risk.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Wanting Qu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
4
|
Wang F, Xiong S, Wang T, Hou Y, Li Q. Discrimination of cis-diol-containing molecules using fluorescent boronate affinity probes by principal component analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5803-5812. [PMID: 37901988 DOI: 10.1039/d3ay01719b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Fluorescent boronate affinity molecules have gained increasing attention in the field of fluorescence sensing and detection due to their selective recognition capability towards cis-diol-containing molecules (cis-diols). However, the conventional fluorescent boronate affinity molecules face a challenge in differentiating the type of cis-diol only by their fluorescence responses. In this study, a simple method was used to discriminate different types of cis-diols, including nucleosides, nucleotides, sugars, and glycoproteins based on the phenylboronic acid-functionalized fluorescent molecules combined with principal component analysis (PCA). Both fluorescent molecules were simply synthesized by the covalent interaction between the amino group in 3-aminophenyl boronic acid and the isothiocyanate group in fluorescein or rhodamine B. In view of their fluorescence-responsive behaviors to these cis-diols directly, it is impossible to differentiate their types even under the optimized experimental conditions. When PCA was employed to treat the fluorescence response data and the quenching constants with their molecular weight, different types of cis-diols can be distinguished successfully. As a result, by integrating the fluorescence response of the boronate affinity probes with PCA, it can greatly improve the specific recognition capability of the boronic acids, providing a simple and direct way to distinguish and identify different types of cis-diols.
Collapse
Affiliation(s)
- Fenying Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Shuqing Xiong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Tingting Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
6
|
Wei FY, Zheng HW, Tian JJ, Liu HY, Wei YX, Yang L, Wang CY, Xue CH. Hierarchical Macroporous Agarose Materials with Polyethyleneimine-Assisted Multiple Boronate Affinity Binding Sites for the Separation of Neomycin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37392452 DOI: 10.1021/acs.jafc.3c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Quantification of neomycin residues in food samples demands an efficient purification platform. Herein, hierarchical macroporous agarose monoliths with multiple boronate affinity sites were established for selective separation of neomycin. The silica core was synthesized by "one-step" Stöber procedures followed by modification with amino group and incorporation of polyethyleneimine. A versatile macroporous agarose monolith was prepared by emulsification strategies and functionalized with epoxy groups. After introducing polyethyleneimine-integrated silica nanoparticles onto the agarose monolith, fluorophenylboronic acids were immobilized. The physical and chemical characteristics of the composite monolith were analyzed systematically. After optimization, neomycin showed high binding ability of 23.69 mg/g, and the binding capacity can be manipulated by changing the pH and adding monosaccharides. The composite monolith was subsequently utilized to purify neomycin from the spiked model aquatic products followed by high-performance liquid chromatography analysis, which revealed a remarkable neomycin purification effect, indicating the great potential in the separation of neomycin from complicated aquatic products.
Collapse
Affiliation(s)
- Fa-Yi Wei
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hong-Wei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Jiao-Jiao Tian
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong-Ying Liu
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Ying-Xin Wei
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Lu Yang
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Hu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Li Q, Wang M, Jin Y, Lu Y, Xiong S, Wang M, Xu J, Wei C, Li J. Microfluidic synthesis of pH-responsive molecularly imprinted silica nanospheres for fluorescence sensing target glycoprotein. Food Chem 2023; 426:136570. [PMID: 37302304 DOI: 10.1016/j.foodchem.2023.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Here, fluorescent artificial antibodies for sensing ovalbumin in food were synthesized by molecular imprinting technique in a microfluidic reactor. A phenylboronic acid-functionalized silane was employed as the functional monomer to enable the polymer has pH-responsive property. Fluorescent molecularly imprinted polymers (FMIPs) could be produced continuously in a short time. Both fluorescein isothiocyanate (FITC) and rhodamine B isothiocyanate (RB)-based FMIPs can specifically recognize the target ovalbumin, particularly FITC-based FMIP, giving an imprinting factor of 2.5 and cross-reactivity factors of 2.7 (ovotransferrin), 2.8 (β-lactoglobulin) and 3.4 (bovine serum albumin), and was applied for the detection of ovalbumin in milk powder with recovery rates of 93-110%; moreover, the FMIP can be reused at least four times. Such FMIPs have promising future in replacing the fluorophore-labelled antibodies to fabricate fluorescent sensing devices or establish immunoassay methods, which have extra merits of low-cost, high stability and recyclability, easy to carry and store at ambient environments.
Collapse
Affiliation(s)
- Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Meng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yongling Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shuqing Xiong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Mengdi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Chenhong Wei
- Anhui Costar Biochemical Co. LTD, Dangtu 243100, Anhui, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Xu Y, Zheng H, Sui J, Lin H, Cao L. Rapid and Sensitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods 2023; 12:foods12071366. [PMID: 37048187 PMCID: PMC10093574 DOI: 10.3390/foods12071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
There are increasing demands for fast and simple detection of pathogens in foodstuffs. Fluorescence analysis has demonstrated significant advantages for easy operation and high sensitivity, although it is usually hindered by a complex matrix, low bacterial abundance, and long-term bacterial enrichment. Effective enrichment procedures are required to meet the requirements for food detection. Here, boronate-functionalized cellulose filter paper and specific fluorescent probes were combined. An integrated approach for the enrichment of detection of Staphylococcus aureus was proposed. The modification of polyethyleneimine demonstrated a significant effect in enhancing the bacterial enrichment, and the boronate affinity efficiency of the paper was increased by about 51~132%. With optimized conditions, the adsorption efficiency for S. aureus was evaluated as 1.87 × 108 CFU/cm2, the linear range of the fluorescent analysis was 104 CFU/mL~108 CFU/mL (R2 = 0.9835), and the lowest limit of detection (LOD) was calculated as 2.24 × 102 CFU/mL. Such efficiency was validated with milk and yogurt samples. These results indicated that the material had a high enrichment capacity, simple operation, and high substrate tolerance, which had the promising potential to be the established method for the fast detection of food pathogens.
Collapse
Affiliation(s)
- Yujia Xu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongwei Zheng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Li P, Xu S, Han Y, He H, Liu Z. Machine learning-empowered cis-diol metabolic fingerprinting enables precise diagnosis of primary liver cancer. Chem Sci 2023; 14:2553-2561. [PMID: 36908957 PMCID: PMC9993839 DOI: 10.1039/d2sc05541d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cis-diol metabolic reprogramming evolves during primary liver cancer (PLC) initiation and progression. However, owing to the low concentrations and highly structural heterogeneity of cis-diols in vivo, severe interference from complex biofluids and limited profiling coverage of existing methods, in-depth profiling of cis-diol metabolites and linking their specific changes with PLC remain challenging. Besides, due to the low specificity of widely used protein biomarkers, accurate classification of PLC from hepatitis still represents an unmet need in clinical diagnostics. Herein, to high-coverage profile cis-diols and explore the translational potential of them as biomarkers, a machine learning-empowered boronate affinity extraction-solvent evaporation assisted enrichment-mass spectrometry (MLE-BESE-MS) was developed. A single analytical platform integrated with multiple complementary functions, including pH-controlled boronate affinity extraction, solvent evaporation-assisted enrichment and nanoelectrospray ionization-based cis-diol identification, was constructed, which significantly improved the metabolite coverage. Meanwhile, by virtue of machine learning (principal components analysis, orthogonal partial least-squares discrimination analysis and random forest), collected cis-diols were statistically screened to extract efficient features for precise PLC diagnosis, and the results outperform the routinely used protein biomarker-based methods both in sensitivity (87.5% vs. less than 70%) and specificity (85.7% vs. ca. 80%). This machine learning-empowered integrated MS platform advanced the targeted metabolic analysis for early cancer diagnosis, rendering great promise for clinical translation.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China +86-25-8968-5639
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China +86-25-8968-5639
| | - Yanjie Han
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China +86-25-8968-5639
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China +86-25-8968-5639
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing 210023 China +86-25-8968-5639
| |
Collapse
|
10
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Xu S, He H, Liu Z. New Promises of Advanced Molecular Recognition: Bioassays, Single Cell Analysis, Cancer Therapy, and Beyond. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
12
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Li D, Dong S. 6-Aminopyridine-3-boronic acid functionalized magnetic nanoparticles for highly efficient enrichment of cis-diol-containing biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2331-2337. [PMID: 33969834 DOI: 10.1039/d1ay00414j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boronate affinity materials, as efficient sorbents for extraction, separation and enrichment of cis-diol-containing biomolecules, have attracted more and more attention in recent years. However, conventional boronate affinity materials require a basic binding pH (usually 8.5), which gives rise to not only inconvenience in operation but also the risk of degradation of labile compounds, and suffer from low binding affinity, which make the extraction of cis-diol-containing compounds of low concentration difficult or impossible. In order to reduce the binding pH to neutral or acidic conditions and improve binding affinity, we present a type of material, 6-aminopyridine-3-boronic acid functionalized magnetic nanoparticles, with affinity towards cis-diol-containing biomolecules. 6-Aminopyridine-3-boronic acid, exhibiting low binding pH, high affinity and excellent water solubility toward cis-diol-containing compounds, was first employed as an affinity ligand. The result indicated that the boronate affinity MNPs exhibited low binding pH (5.0) and high binding affinity toward cis-diol-containing biomolecules. Such a property enabled the selective extraction of cis-diol-containing biomolecules with low concentration under neutral or acidic conditions. This feature greatly favored the selective enrichment of cis-diol-containing biomolecules with low concentration from real samples. The feasibility for practical applications was demonstrated with the selective enrichment of cis-diol-containing biomolecules with low concentration in a human urine sample.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China. and Department of Chemistry Bengbu Medical College, 233030, China
| | - Sihan Dong
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China. and Department of Chemistry Bengbu Medical College, 233030, China
| |
Collapse
|
14
|
Mompó-Roselló Ó, Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive Functional Phenylboronic Acid-Based Delivery System as an Emerging Platform for Diabetic Therapy. Int J Nanomedicine 2021; 16:297-314. [PMID: 33488074 PMCID: PMC7816047 DOI: 10.2147/ijn.s284357] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| |
Collapse
|
16
|
Zheng H, Lin H, Chen X, Tian J, Pavase TR, Wang R, Sui J, Cao L. Development of boronate affinity-based magnetic composites in biological analysis: Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Progress in Monolithic Column-based Separation and Enrichment of Glycoproteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Zheng H, Han F, Lin H, Cao L, Pavase TR, Sui J. Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. Food Chem 2019; 294:468-476. [DOI: 10.1016/j.foodchem.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 11/25/2022]
|
19
|
Alzahrani E. Organic Boronate Affinity Sorbent for Capture of cis-Diol Containing Compounds
Eman Alzahrani. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2019.22108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Boronate affinity chromatography (BAC) is argued to be a critical tool in specific capture and separation of cis-diol containing compounds. In present study, organic boronate affinity monolith poly(3-acrylamido phenylboronic acid-co-ethylene dimethacrylate) (AAPBA-co-EDMA) is prepared through one-step in situ polymerization procedure within a micropipette through the application of a pre-polymerization mixture which contains functional monomer (3-acrylamido phenylboronic acid), cross-linker (ethylene dimethacrylate), porogenic solvent (methanol with poly ethylene glycol) and initiator (2,2-dimethoxy-2-phenyl-acetophenone). Following the optimization of time exposure to UV lamp with 365 nm, the macroporous organic boronate monolith was selected. Several approaches including SEM and BET analysis, FT-IR spectroscopy and measuring contact angle were applied in the characterization of the morphology of the monolith. Several cis-diol compounds that include catechol and galactose are applied in the assessment of the boronate affinity of the organic monolithic material. Additionally, the capture of glucose from urine sample is also conducted. The basic principle of the
approach is that boronic acid forms covalent bond with cis-diols in basic solutions whereas the ester bonds are dissociated under acidic media. By using the study results, monolith demonstrate good selectivity towards cis-diol containing compounds. Due to the hydrophilic property of monolith, the affinity chromatography monolith can be performed for several cis-diol compounds including glycoproteins and nucleosides. Also, fabrication of the organic boronate monolithic in microfluidic equipment is essential in facilitating the extraction of boronate affinity using small-volume samples.
Collapse
Affiliation(s)
- Eman Alzahrani
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Development of a new in-line coupling of a miniaturized boronate affinity monolithic column with reversed-phase silica monolithic capillary column for analysis of cis-diol-containing nucleoside compounds. J Chromatogr A 2019; 1597:209-213. [DOI: 10.1016/j.chroma.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
|
21
|
Development of boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres with large pores for endotoxin removal. J Chromatogr A 2019; 1602:91-99. [PMID: 31229248 DOI: 10.1016/j.chroma.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
Abstract
Endotoxins are found almost everywhere and possess high toxicity in vivo and in vitro. Here we design a novel boronate affinity material, called boronic acid-functionalized mesoporous silica-coated core/shell magnetic microspheres (Fe3O4@nSiO2@mSiO2-BA) with large pores (pore size > 20 nm) based on the chemical structure and physical properties of endotoxins, for facile and highly efficient removal of endotoxins. Dual modes for endotoxin removal were proposed and confirmed in this work: the endotoxin aggregates with size < 20 nm were bound with boronic acid ligands chemically modified on the inner and outer surface of the large pores of Fe3O4@nSiO2@mSiO2-BA microspheres; while the larger endotoxin micelles (size >20 nm) were absorbed on the outer surface of the prepared material based on boronate affinity. Transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption/desorption isotherms and Fourier transform infrared (FT-IR) spectroscopy confirm that Fe3O4@nSiO2@mSiO2-BA microspheres possess core/shell structure, uniform diameter (520 nm), high surface area (205.57 m2/g), large mesopores (21.8 nm) and boronic acid ligands. The purification procedures of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin were optimized, and 50 mM NH4HCO3 (pH 8.0) and 0.05 M fructose were selected as loading/washing, elution buffers, respectively. The binding capacity of Fe3O4@nSiO2@mSiO2-BA microspheres for endotoxin was calculated to be 60.84 EU/g under the optimized conditions. Finally, the established analytical method was applied to remove endotoxins from plasmid DNA. After endotoxin removal, the endotoxin content in plasmid DNA was reduced from 0.0026 to 0.0006 EU/mL for two-fold concentration, and from 0.0088 to 0.0022 EU/mL for five-fold concentration after binding, respectively. Additional advantages of the prepared boronate affinity material include excellent stability, reusability/repeatability, and low cost. Boronate affinity materials with large pores could thus prove to be powerful adsorbents for endotoxin removal and the potential applications in the aspects of biological research, pharmaceutical industry, and life health.
Collapse
|
22
|
A streamlined strategy for rapid and selective analysis of serum N-glycome. Anal Chim Acta 2019; 1050:80-87. [DOI: 10.1016/j.aca.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
|
23
|
Improving affinity of boronate capillary monolithic column for microextraction of glycoproteins with hydrophilic macromonomer. J Chromatogr A 2018; 1581-1582:8-15. [DOI: 10.1016/j.chroma.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
|
24
|
Efficient vitamin B12-imprinted boronate affinity magnetic nanoparticles for the specific capture of vitamin B12. Anal Biochem 2018; 561-562:18-26. [DOI: 10.1016/j.ab.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
|
25
|
Espina-Benitez MB, Marconi F, Randon J, Demesmay C, Dugas V. Evaluation of boronate affinity solid-phase extraction coupled in-line to capillary isoelectric focusing for the analysis of catecholamines in urine. Anal Chim Acta 2018; 1034:195-203. [DOI: 10.1016/j.aca.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
|
26
|
Li D, Tu T, Yang M, Xu C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta 2018; 184:316-324. [DOI: 10.1016/j.talanta.2018.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
27
|
Branched polyethyleneimine-assisted boronic acid-functionalized silica nanoparticles for the selective enrichment of trace glycoproteins. Talanta 2018; 184:235-243. [PMID: 29674038 DOI: 10.1016/j.talanta.2018.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022]
Abstract
Boronate affinity materials have attracted more and more attention in extraction, separation and enrichment of glycoproteins due to the important roles that glycoproteins take on in recent years. However, conventional boronate affinity materials suffer from low binding affinity mainly because of the use of single boronic acids. This makes the extraction of glycoproteins of trace concentration become rather difficult or impossible. Here we present a novel boronate avidity material, polyethyleneimine (PEI)-assisted boronic acid-functionalized silica nanoparticles (SNPs). Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties. While 3-carboxybenzoboroxole, exhibiting high affinity and excellent water solubility toward glycoproteins, was used as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the boronate avidity SNPs exhibited strong binding strength toward glycoproteins with dissociation constants of 10-7 M, which was the highest among reported boronic acid-functionalized materials that can be applied for glycoproteomic analysis. Such a high avidity enabled the selective extraction of trace glycoproteins as low as 0.4 pg/mL. This feature greatly favored the selective enrichment of trace glycoproteins from real samples. Meanwhile, the boronate avidity SNPs was tolerant of the interference of abundant sugars. In addition, the PEI-assisted boronate avidity SNPs exhibited high binding capacity and low binding pH. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva.
Collapse
|
28
|
Patejko M, Struck-Lewicka W, Siluk D, Waszczuk-Jankowska M, Markuszewski MJ. Urinary Nucleosides and Deoxynucleosides. Adv Clin Chem 2018; 83:1-51. [PMID: 29304899 DOI: 10.1016/bs.acc.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urinary nucleosides and deoxynucleosides are mainly known as metabolites of RNA turnover and oxidative damage of DNA. For several decades these metabolites have been examined for their potential use in disease states including cancer and oxidative stress. Subsequent improvements in analytical sensitivity and specificity have provided a reliable means to measure these unique molecules to better assess their relationship to physiologic and pathophysiologic conditions. In fact, some are currently used as antiviral and antitumor agents. In this review we provide insight into their molecular characteristics, highlight current separation techniques and detection methods, and explore potential clinical usefulness.
Collapse
|
29
|
Xu Y, Yang Y, Xue A, Chen H, Li S. In situprecipitation of hydrous titanium dioxide for dispersive micro solid-phase extraction of nucleosides and their separation. NEW J CHEM 2018. [DOI: 10.1039/c7nj04590e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In situprecipitated TiO2·nH2O exhibits higher affinity forcis-diol ribonucleosides than both commercial P25 and lab-calcinated TiO2adsorbents.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University
- Wuhan
- China
| | - Yue Yang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University
- Wuhan
- China
| | - Aifang Xue
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University
- Wuhan
- China
| | - Hao Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University
- Wuhan
- China
| | - Shengqing Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University
- Wuhan
- China
| |
Collapse
|
30
|
Gozdalik JT, Adamczyk-Woźniak A, Sporzyński A. Influence of fluorine substituents on the properties of phenylboronic compounds. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-1009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Rapid development of research on the chemistry of boronic acids is connected with their applications in organic synthesis, analytical chemistry, materials’ chemistry, biology and medicine. In many applications Lewis acidity of boron atoms plays an important role. Special group of arylboronic acids are fluoro-substituted compounds, in which the electron withdrawing character of fluorine atoms influences their properties. The present paper deals with fluoro-substituted boronic acids and their derivatives: esters, benzoxaboroles and boroxines. Properties of these compounds, i.e. acidity, hydrolytic stability, structures in crystals and in solution as well as spectroscopic properties are discussed. In the next part examples of important applications are given.
Collapse
Affiliation(s)
- Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | | | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| |
Collapse
|
31
|
Espina-Benitez MB, Randon J, Demesmay C, Dugas V. Back to BAC: Insights into Boronate Affinity Chromatography Interaction Mechanisms. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1365085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Betzabeth Espina-Benitez
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Jérôme Randon
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Claire Demesmay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Vincent Dugas
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| |
Collapse
|
32
|
Liu Z, He H. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. Acc Chem Res 2017; 50:2185-2193. [PMID: 28849912 DOI: 10.1021/acs.accounts.7b00179] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to the complexity of biological systems and samples, specific capture and targeting of certain biomolecules is critical in much biological research and many applications. cis-Diol-containing biomolecules, a large family of important compounds including glycoproteins, saccharides, nucleosides, nucleotides, and so on, play essential roles in biological systems. As boronic acids can reversibly bind with cis-diols, boronate affinity materials (BAMs) have gained increasing attention in recent years. However, real-world applications of BAMs are often severely hampered by three bottleneck issues, including nonbiocompatible binding pH, weak affinity, and difficulty in selectivity manipulation. Therefore, solutions to these issues and knowledge about the factors that influence the binding properties are of significant importance. These issues have been well solved by our group in past years. Our solutions started from the synthesis and screening of boronic acid ligands with chemical moieties favorable for binding at neutral and acidic pH. To avoid tedious synthesis routes, we proposed a straightforward strategy called teamed boronate affinity, which permitted facile preparation of BAMs with strong binding at neutral pH. To enhance the affinity, we confirmed that multivalent binding could significantly enhance the affinity toward glycoproteins. More interestingly, we observed that molecular interactions could be significantly enhanced by confinement within nanoscale spaces. To improve the selectivity, we investigated interactions that govern the selectivity and their interplays. We then proposed a set of strategies for selectivity manipulation, which proved to be useful guidelines for not only the design of new BAMs but also the selection of binding conditions. Applications in metabolomic analysis, glycoproteomic analysis, and aptamer selection well demonstrated the great potential of the prepared BAMs. Molecular imprinting is an important methodology for creating affinity materials with antibody-like binding properties. Boronate affinity-based covalent imprinting is a pioneering approach in molecular imprinting, but only a few cases of successful imprinting of glycoproteins by this method were reported. With sound understanding of boronate affinity, we developed two facile and generally applicable boronate affinity-based molecular imprinting approaches. The resulting boronate affinity molecularly imprinted polymers (MIPs) exhibited dramatically improved binding properties, including biocompatible binding pH range, enhanced affinity, improved specificity, and superb tolerance to interference. In terms of nanoconfinement effect, we explained why the binding pH range was widened and why the affinity was enhanced. The excellent binding properties made boronate affinity MIPs appealing alternatives to antibodies in promising applications such as disease diagnosis, cancer-cell targeting, and single-cell analysis. In this Account, we survey the key aspects of BAMs, the efforts we made to solve these issues, and the connections between imprinted and nonimprinted BAMs. Through this survey, we wish to pave a sound fundamental basis of the dependence of binding properties of BAMs on the nature and structure of the ligands and the supporting materials, which can facilitate the development and applications of BAMs. We also briefly sketch remaining challenges and directions for future development.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Levernæs MCS, Broughton MN, Reubsaet L, Halvorsen TG. To elute or not to elute in immunocapture bottom-up LC–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:51-60. [DOI: 10.1016/j.jchromb.2017.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
|
34
|
Development and application of a new in-line coupling of a miniaturized boronate affinity monolithic column with capillary zone electrophoresis for the selective enrichment and analysis of cis-diol-containing compounds. J Chromatogr A 2017; 1494:65-76. [DOI: 10.1016/j.chroma.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
|
35
|
Li D, Bie Z. Branched polyethyleneimine-assisted boronic acid-functionalized magnetic nanoparticles for the selective enrichment of trace glycoproteins. Analyst 2017; 142:4494-4502. [DOI: 10.1039/c7an01174a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Boronate affinity materials, as efficient sorbents for extraction, separation and enrichment of glycoproteins, have attracted more and more attention in recent years.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry Bengbu Medical College
- China
| |
Collapse
|
36
|
Kowalska K, Adamczyk-Woźniak A, Gajowiec P, Gierczyk B, Kaczorowska E, Popenda Ł, Schroeder G, Sikorski A, Sporzyński A. Fluoro-substituted 2-formylphenylboronic acids: Structures, properties and tautomeric equilibria. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Cheng T, Zhu S, Zhu B, Liu X, Zhang H. Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization. J Sep Sci 2016; 39:1347-56. [DOI: 10.1002/jssc.201500968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ting Cheng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Shuqiang Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Bin Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Xiaoyan Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou China
| |
Collapse
|
38
|
An X, He X, Chen L, Zhang Y. Graphene oxide-based boronate polymer brushes via surface initiated atom transfer radical polymerization for the selective enrichment of glycoproteins. J Mater Chem B 2016; 4:6125-6133. [DOI: 10.1039/c6tb01489e] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A facile and efficient method was developed to synthesize boronic acid polymer brushes immobilized on magnetic graphene oxide for the selective enrichment of glycoproteins from complex biological samples via surface initiated atom transfer radical polymerization (SI-ATRP).
Collapse
Affiliation(s)
- Xiangyang An
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
39
|
Shakya AK, Srivastava A, Kumar A. Polymeric Cryogel‐Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts. ACTA ACUST UNITED AC 2015; 63:10.16.1-10.16.10. [DOI: 10.1002/0471142700.nc1016s63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Akshay Srivastava
- Network of Excellence for Functional Biomaterials, National University of Ireland Galway Republic of Ireland
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur Kanpur (U.P) India
| |
Collapse
|
40
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|
41
|
Liu C, Deng Q, Fang G, Huang X, Wang S, He J. A Novel Poly(ionic liquid) Interface-Free Two-Dimensional Monolithic Material for the Separation of Multiple Types of Glycoproteins. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20430-20437. [PMID: 26317402 DOI: 10.1021/acsami.5b07668] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Currently, many types of affinity materials have been developed for the enrichment of glycoproteins potentially considered to be clinical biomarkers; however, they can not effectively distinguish between different glycoproteins and thus lack the functionality that may be the key to the diagnosis of specific diseases. In the present work, a novel interface-free 2D monolithic material has been developed for the separation of multiple types of glycoproteins, in which boronate-functionalized graphene acts as preconcentration segment and poly(guanidinium ionic liquid) acts as separation segment. The resultant 2D material was characterized by X-ray photoelectron spectroscopy, elemental analysis, and electroosmotic flow analysis to demonstrate successful modification at each step. The performance of this 2D material was evaluated by capillary electrochromatography and allowed the successful online concentration and separation of five standard glycoproteins. The high separation efficiency can be largely attributed to the good orthogonality of boronate-functionalized graphene monolith and poly(guanidinium ionic liquid) monolith.
Collapse
Affiliation(s)
- Cuicui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Qiliang Deng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Xuan Huang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Jinsong He
- Institute of Food Science and Technology, Yunnan Agricultural University , Yunnan 650201, China
| |
Collapse
|
42
|
Qin Q, Li H, Shi X, Xu G. Facile synthesis of Fe3
O4
@polyethyleneimine modified with 4-formylphenylboronic acid for the highly selective extraction of major catecholamines from human urine. J Sep Sci 2015; 38:2857-64. [DOI: 10.1002/jssc.201500377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Qian Qin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Hua Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Xianzhe Shi
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
43
|
Chen J, Min X, Li P, Chen W, Tian D, Chen Q. Sensitive determination of four camptothecins by solid-phase microextraction-HPLC based on a boronic acid contained polymer monolithic layer. Anal Chim Acta 2015; 879:41-7. [DOI: 10.1016/j.aca.2015.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 12/27/2022]
|
44
|
Cheng T, Li H, Ma Y, Liu X, Zhang H. Synthesis of boronic-acid-functionalized magnetic attapulgite for selective enrichment of nucleosides. Anal Bioanal Chem 2015; 407:3525-9. [DOI: 10.1007/s00216-015-8550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
|
45
|
Li D, Li Y, Li X, Bie Z, Pan X, Zhang Q, Liu Z. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J Chromatogr A 2015; 1384:88-96. [DOI: 10.1016/j.chroma.2015.01.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
|
46
|
Zhang L, Wang C, Wei Y. Boronate affinity adsorption ofcis-diol-containing biomolecules in nonaqueous solvent. Biomed Chromatogr 2015; 29:1133-6. [DOI: 10.1002/bmc.3424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| |
Collapse
|
47
|
Li Q, Liu Z. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules. Methods Mol Biol 2015; 1286:159-169. [PMID: 25749953 DOI: 10.1007/978-1-4939-2447-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.
Collapse
Affiliation(s)
- Qianjin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Hankou Road 22, Nanjing, 210093, China
| | | |
Collapse
|
48
|
Svec F, Lv Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal Chem 2014; 87:250-73. [DOI: 10.1021/ac504059c] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frantisek Svec
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongqin Lv
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
49
|
Chen Y, Meng J, Zou J, An J. Selective extraction based on poly(MAA-VB-EGMDA) monolith followed by HPLC for determination of hordenine in plasma and urine samples. Biomed Chromatogr 2014; 29:869-75. [PMID: 25355709 DOI: 10.1002/bmc.3367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023]
Abstract
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid-phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre-polymerization solution consisting of methacrylic acid (MAA), 4-vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA-VB-EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA-VB-EGMDA)-based SPE-HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE-HPLC method presented good linearity (R(2) = 0.9992) within 10-2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%.
Collapse
Affiliation(s)
- Yonggang Chen
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan, Hubei, 430060, People's Republic of China
| | - Junhua Meng
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan, Hubei, 430060, People's Republic of China
| | - Jili Zou
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing An
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan, Hubei, 430060, People's Republic of China
| |
Collapse
|
50
|
Wu Q, Wu D, Guan Y. Hybrid Titania–Zirconia Nanoparticles Coated Adsorbent for Highly Selective Capture of Nucleosides from Human Urine in Physiological Condition. Anal Chem 2014; 86:10122-30. [DOI: 10.1021/ac502876u] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qian Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- Dalian Institute of Chemical Physics, University of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Dapeng Wu
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Yafeng Guan
- Key Laboratory
of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|