1
|
Russell AC, Kenna MA, Huynh AV, Rice AM. Microbial DNA extraction method for avian feces and preen oil from diverse species. Ecol Evol 2024; 14:e70220. [PMID: 39224152 PMCID: PMC11368492 DOI: 10.1002/ece3.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
As DNA sequencing technology continues to rapidly improve, studies investigating the microbial communities of host organisms (i.e., microbiota) are becoming not only more popular but also more financially accessible. Across many taxa, microbiomes can have important impacts on organismal health and fitness. To evaluate the microbial community composition of a particular microbiome, microbial DNA must be successfully extracted. Fecal samples are often easy to collect and are a good source of gut microbial DNA. Additionally, interest in the avian preen gland microbiome is rapidly growing, due to the importance of preen oil for many aspects of avian life. Microbial DNA extractions from avian fecal and preen oil samples present multiple challenges, however. Here, we describe a modified PrepMan Ultra Sample Preparation Reagent microbial DNA extraction method that is less expensive than other commonly used methodologies and is highly effective for both fecal and preen oil samples collected from a broad range of avian species. We expect our method will facilitate microbial DNA extractions from multiple avian microbiome reservoirs, which have previously proved difficult and expensive. Our method therefore increases the feasibility of future studies of avian host microbiomes.
Collapse
Affiliation(s)
- Austin C. Russell
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Margaret A. Kenna
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alex Van Huynh
- Department of BiologyDeSales UniversityCenter ValleyPennsylvaniaUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
2
|
Mora-Rubio C, Garcia-Longoria L, Ferraguti M, Magallanes S, Cruz JT, de Lope F, Marzal A. The Impact of Avian Haemosporidian Infection on Feather Quality and Feather Growth Rate of Migratory Passerines. Animals (Basel) 2024; 14:1772. [PMID: 38929391 PMCID: PMC11200494 DOI: 10.3390/ani14121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Bird feathers have several functions, including flight, insulation, communication, and camouflage. Since feathers degrade over time, birds need to moult regularly to maintain these functions. However, environmental factors like food scarcity, stress, and parasite infections can affect feather quality and moult speed. This study examined the impact of avian haemosporidian infection and uropygial gland volume, as well as feather quality and feather growth rate in two migratory hirundine species captured in southwestern Spain-the house martin (Delichon urbicum) and sand martin (Riparia riparia). Our findings showed that the prevalence of infection varied among species, with house martins having the highest rates, possibly due to their larger colony size. Moreover, haemosporidian infection had a different impact on each species; infected house martins exhibited lower feather quality than healthy individuals, although this outcome was not observed in sand martins. Furthermore, no effect of infection on feather growth rate was observed in both hirundinids. Additionally, feather growth rate only correlated positively with feather quality in house martins. Finally, no link was observed between uropygial gland volume and feather quality or feather growth rate in any of the species in this study. These findings highlight the effect of haemosporidian infections on the plumage of migratory birds, marking, for the first time, how avian haemosporidian infection is shown to adversely impact feather quality. Even so, further research is needed to explore these relationships more deeply.
Collapse
Affiliation(s)
- Carlos Mora-Rubio
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006 Badajoz, Spain; (L.G.-L.); (F.d.L.); (A.M.)
| | - Luz Garcia-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006 Badajoz, Spain; (L.G.-L.); (F.d.L.); (A.M.)
| | - Martina Ferraguti
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (M.F.); (S.M.)
- Centre for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain; (M.F.); (S.M.)
- Centre for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), Madrid, Spain
| | - João T. Cruz
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine (FMV-ULisboa), University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006 Badajoz, Spain; (L.G.-L.); (F.d.L.); (A.M.)
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006 Badajoz, Spain; (L.G.-L.); (F.d.L.); (A.M.)
- Wildlife Research Group, San Martin National University, 22021 Tarapoto, Peru
| |
Collapse
|
3
|
Alves Soares T, Caspers BA, Loos HM. Volatile organic compounds in preen oil and feathers - a review. Biol Rev Camb Philos Soc 2024; 99:1085-1099. [PMID: 38303487 DOI: 10.1111/brv.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
For a long time birds were assumed to be anosmic or at best microsmatic, with olfaction a poorly understood and seldom investigated part of avian physiology. The full viability of avian olfaction was first discovered through its functions in navigation and foraging. Subsequently, researchers have investigated the role of olfaction in different social and non-social contexts, including reproduction, kin recognition, predator avoidance, navigation and foraging. In parallel to the recognition of the importance of olfaction for avian social behaviour, there have been advances in the techniques and methods available for the sampling and analysis of trace volatiles and odourants, leading to insights into the chemistry underlying chemical communication in birds. This review provides (i) an overview of the current state of knowledge regarding the volatile chemical composition of preen oil and feathers, its phylogenetic coverage, chemical signatures and their potential functions, and (ii) a discussion of current methods used for the isolation and detection of volatiles. Finally, lines for future research are proposed.
Collapse
Affiliation(s)
- Tatjana Alves Soares
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, Freising, 85354, Germany
| |
Collapse
|
4
|
Matthews AE, Wijeratne AJ, Sweet AD, Hernandes FA, Toews DPL, Boves TJ. Dispersal-Limited Symbionts Exhibit Unexpectedly Wide Variation in Host Specificity. Syst Biol 2023; 72:802-819. [PMID: 36960591 DOI: 10.1093/sysbio/syad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].
Collapse
Affiliation(s)
- Alix E Matthews
- College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, AR, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Asela J Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Fabio A Hernandes
- Department of Ecology and Zoology, CCB/ECZ, Federal University of Santa Catarina (UFSC), Trindade, Florianópolis, Santa Catarina, Brazil
| | - David P L Toews
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Than J Boves
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
5
|
Whittaker DJ, Atyam A, Burroughs NA, Greenberg JM, Hagey TJ, Novotny MV, Soini HA, Theis KR, Van Laar TA, Slade JWG. Effects of short-term experimental manipulation of captive social environment on uropygial gland microbiome and preen oil volatile composition. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1027399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IntroductionAvian preen oil, secreted by the uropygial gland, is an important source of volatile compounds that convey information about the sender’s identity and quality, making preen oil useful for the recognition and assessment of potential mates and rivals. Although intrinsic factors such as hormone levels, genetic background, and diet can affect preen oil volatile compound composition, many of these compounds are not the products of the animal’s own metabolic processes, but rather those of odor-producing symbiotic microbes. Social behavior affects the composition of uropygial microbial communities, as physical contact results in microbe sharing. We experimentally manipulated social interactions in captive dark-eyed juncos (Junco hyemalis) to assess the relative influence of social interactions, subspecies, and sex on uropygial gland microbial composition and the resulting preen oil odor profiles.MethodsWe captured 24 birds at Mountain Lake Biological Station in Virginia, USA, including birds from two seasonally sympatric subspecies – one resident, one migratory. We housed them in an outdoor aviary in three phases of social configurations: first in same-sex, same-subspecies flocks, then in male-female pairs, and finally in the original flocks. Using samples taken every four days of the experiment, we characterized their uropygial gland microbiome through 16S rRNA gene sequencing and their preen oil volatile compounds via GC-MS.ResultsWe predicted that if social environment was the primary driver of uropygial gland microbiome composition, and if microbiome composition in turn affected preen oil volatile profiles, then birds housed together would become more similar over time. Our results did not support this hypothesis, instead showing that sex and subspecies were stronger predictors of microbiome composition. We observed changes in volatile compounds after the birds had been housed in pairs, which disappeared after they were moved back into flocks, suggesting that hormonal changes related to breeding condition were the most important factor in these patterns.DiscussionAlthough early life social environment of nestlings and long-term social relationships have been shown to be important in shaping uropygial gland microbial communities, our study suggests that shorter-term changes in social environment do not have a strong effect on uropygial microbiomes and the resulting preen oil volatile compounds.
Collapse
|
6
|
Gvoždíková Javůrková V, Doležal P, Fraňková A, Horák M, Chodová D, Langrová I, Tůmová E. Effects of genotype, sex, and feed restriction on the biochemical composition of chicken preen gland secretions and their implications for commercial poultry production. J Anim Sci 2022; 101:6956961. [PMID: 36547363 PMCID: PMC9923712 DOI: 10.1093/jas/skac411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Preen gland secretions spread on the feathers contain various chemical compounds dominated by fatty acids (FAs) and volatile organic compounds (VOCs). These chemicals may significantly affect plumage condition, microbial and ectoparasitic load on feathers, and chemical communication of birds. However, how chemical composition of preen secretions varies in commercially produced chickens with respect to their genotype, sex, and feeding regime remain largely unknown, as well as the welfare implications for farmed poultry. We found that while polyunsaturated fatty acids in chicken preen secretions differed significantly with genotype (P << 0.001), saturated fatty acids and monounsaturated fatty acids varied with genotype-dependent preen gland volume (P < 0.01). Chickens of meat-type fast-growing Ross 308 genotype had reduced preen gland volume and lower proportions of all FA categories in their preen secretions compared with dual-purpose slow-growing ISA Dual chickens. A total of 34 FAs and 77 VOCs with tens of unique FAs were detected in preen secretions of both genotypes. While differences in the relative proportion of 6 of the 10 most dominant VOCs in chicken preen gland secretions were related to genotype (P < 0.001), only 1 of the 10 most dominant VOCs showed a sex effect (P < 0.01), and only 2 of the 10 most dominant VOCs showed a genotype-dependent effect of feed restriction (P < 0.05). Feed restriction had no effect on the relative proportion of any of the FAs in chicken preen gland secretions. Moreover, we found that meat-type Ross 308 preen secretions were dominated by VOCs, which are proven attractants for poultry red mite and may also increase infestation with other ectoparasites and negatively influence overall odor-mediated intraspecific communication and welfare. This study shows that no feeding management, but long-term genetic selection in commercial breeding may be the main cause of the differences in the biochemistry and function of chicken preen secretions. This might have negative consequences for chemosignaling, antiparasitic, and antimicrobial potential of preen secretions and can lead to increased susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, welfare, and productivity of commercially bred chickens. Selection-induced preen gland impairments must therefore be considered and compensated by proper management of the chicken farm and increased care about animal well-being.
Collapse
Affiliation(s)
| | - Petr Doležal
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic,Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Adéla Fraňková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Monika Horák
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
7
|
Rawlinson JM, Cox HJ, Hopkins G, Cahill P, Badyal JPS. Nature-Inspired Trapped Air Cushion Surfaces for Environmentally Sustainable Antibiofouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Talbott KM, Becker DJ, Soini HA, Higgins BJ, Novotny MV, Ketterson ED. Songbird preen oil odour reflects haemosporidian parasite load. Anim Behav 2022; 188:147-155. [PMID: 35756157 PMCID: PMC9223275 DOI: 10.1016/j.anbehav.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Investigating the impact of parasitism on host phenotype is key to understanding parasite transmission ecology, host behavioural ecology and host-parasite coevolution. Previous studies have provided evidence that avian odour is one such phenotypic trait, as mosquitoes that vector the haemosporidian blood parasite Plasmodium tend to prefer birds that are already infected. Preen oil is a major source of avian odour, yet studies to date have not identified differences in preen oil odour based on the presence or absence of haemosporidian infection. Because preen oil can vary with physiological dynamics, we predicted that the composition of preen oil odours might vary according to parasite load, rather than solely by the presence or absence of infection. We used gas chromatography-mass spectrometry to characterize the composition of volatile compounds in preen oil taken from female dark-eyed juncos, Junco hyemalis carolinensis, and asked whether their composition varied with relative haemosporidian parasite load, which we assessed using quantitative PCR. We identified a subset of volatile compounds (a 'blend') and two specific compounds that varied with increasing parasite load. Importantly, the quantity of these compounds did not vary based on parasite presence or absence, suggesting that birds with low parasite loads might be phenotypically indistinguishable from uninfected birds. The volatile blend associated with parasite load also varied with sampling date, suggesting a possible seasonal relapse of chronic infections triggered by shifts in junco host reproductive state. Furthermore, we found a positive relationship between parasite load and a volatile blend shown in a previous study to predict reproductive success in juncos. This is the first study to demonstrate quantitative differences in avian host odour based on haemosporidian parasite load. Our findings highlight the importance of focusing on parasite load, rather than solely presence or absence, in investigating host-parasite interactions.
Collapse
Affiliation(s)
- K. M. Talbott
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - D. J. Becker
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
- Department of Biology, University of Oklahoma, Norman, OK, U.S.A
| | - H. A. Soini
- Department of Chemistry, Indiana University, Bloomington, IN, U.S.A
| | - B. J. Higgins
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - M. V. Novotny
- Department of Chemistry, Indiana University, Bloomington, IN, U.S.A
| | - E. D. Ketterson
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| |
Collapse
|
9
|
Whittaker DJ, Hagelin JC. Female-Based Patterns and Social Function in Avian Chemical Communication. J Chem Ecol 2020; 47:43-62. [PMID: 33103230 DOI: 10.1007/s10886-020-01230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Much of the growing interest in avian chemical signals has focused on the role of kin recognition or mate attraction, often with an emphasis on males, with uropygial gland secretions perhaps providing information about an individual's identity and quality. Yet, data collected to date suggest sexual dimorphism in uropygial glands and secretions are often emphasized in female, rather than in male birds. That is, when a sexual difference occurs (often during the breeding season only), it is the female that typically exhibits one of three patterns: (1) a larger uropygial gland, (2) a greater abundance of volatile or semi-volatile preen oil compounds and/or (3) greater diversity of preen oil compounds or associated microbes. These patterns fit a majority of birds studied to date (23 of 30 chemically dimorphic species exhibit a female emphasis). Multiple species that do not fit are confounded by a lack of data for seasonal effects or proper quantitative measures of chemical compounds. We propose several social functions for these secretions in female-based patterns, similar to those reported in mammals, but which are largely unstudied in birds. These include: (1) intersexual advertisement of female receptivity or quality, including priming effects on male physiology, (2) intrasexual competition, including scent marking and reproductive suppression or (3) parental behaviors, such as parent-offspring recognition and chemical protection of eggs and nestlings. Revisiting the gaps of chemical studies to quantify the existence of female social chemosignals and any fitness benefit(s) during breeding are potentially fruitful but overlooked areas of future research.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.
| | - Julie C Hagelin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| |
Collapse
|
10
|
Grieves LA, MacDougall-Shackleton EA. No evidence that songbirds use odour cues to avoid malaria-infected conspecifics. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Many animals have evolved mechanisms to detect and avoid parasitized conspecifics, primarily through odour cues, but whether birds are capable of odour-mediated parasite avoidance is unknown. Recently, we showed that exposing song sparrows (Melospiza melodia) to avian malaria parasites (Plasmodium sp.) alters the chemical composition of their preen oil, which is the major source of body odour in birds. Here, we presented song sparrows with preen oil from uninfected (sham-inoculated) and malaria-infected conspecifics, predicting that birds would spend more time with odour cues from uninfected than infected birds. Birds without detectable malarial infections spent about 50% more time with preen oil from uninfected than infected conspecifics, and females spent nearly twice as much time with preen oil from uninfected than infected conspecifics. However, neither difference was statistically significant. Song sparrows may be able to detect odour cues of infection, but further experiments are needed to confirm or refute this.
Collapse
Affiliation(s)
- Leanne A. Grieves
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
11
|
Individual Chemical Profiles in the Leach's Storm-Petrel. J Chem Ecol 2020; 46:845-864. [PMID: 32856136 DOI: 10.1007/s10886-020-01207-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
Avian chemical communication, once largely overlooked, is a growing field that has revealed the important role that olfaction plays in the social lives of some birds. Leach's storm-petrels (Oceanodroma leucorhoa) have a remarkable sense of smell and a strong, musky scent. This long-lived, monogamous seabird relies on olfaction for nest relocation and foraging, but whether they use scent for communication is less well studied. They are nocturnally active at the breeding colony and yet successfully reunite with their mate despite poor night-vision, indicating an important role for non-visual communication. We investigated the chemical profiles of Leach's storm-petrels to determine whether there is socially relevant information encoded in their plumage odor. To capture the compounds comprising their strong scent, we developed a method to study the compounds present in the air surrounding their feathers using headspace stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. We collected feathers from Leach's storm-petrels breeding on Bon Portage Island in Nova Scotia, Canada in both 2015 and 2016. Our method detected 142 commonly occurring compounds. We found interannual differences in chemical profiles between the two sampling years. Males and females had similar chemical profiles, while individuals had distinct chemical signatures across the two years. These findings suggest that the scent of the Leach's storm-petrel provides sociochemical information that could facilitate olfactory recognition of individuals and may inform mate choice decisions.
Collapse
|
12
|
Magallanes S, Møller AP, Luján-Vega C, Fong E, Vecco D, Flores-Saavedra W, García-Longoriaa L, de Lope F, Iannacone JA, Marzal A. Exploring the adjustment to parasite pressure hypothesis: differences in uropygial gland volume and haemosporidian infection in palearctic and neotropical birds. Curr Zool 2020; 67:147-156. [PMID: 33854532 PMCID: PMC8026150 DOI: 10.1093/cz/zoaa037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Parasites are globally widespread pathogenic organisms, which impose important selective forces upon their hosts. Thus, in accordance with the Adjustment to parasite pressure hypothesis, it is expected that defenses among hosts vary relative to the selective pressure imposed by parasites. According to the latitudinal gradient in diversity, species richness and abundance of parasites peak near the equator. The uropygial gland is an important defensive exocrine gland against pathogens in birds. Size of the uropygial gland has been proposed to vary among species of birds because of divergent selection by pathogens on their hosts. Therefore, we should expect that bird species from the tropics should have relatively larger uropygial glands for their body size than species from higher latitudes. However, this hypothesis has not yet been explored. Here, we analyze the size of the uropygial gland of 1719 individual birds belonging to 36 bird species from 3 Neotropical (Peru) and 3 temperate areas (Spain). Relative uropygial gland volume was 12.52% larger in bird species from the tropics than from temperate areas. This finding is consistent with the relative size of this defensive organ being driven by selective pressures imposed by parasites. We also explored the potential role of this gland as a means of avoiding haemosporidian infection, showing that species with large uropygial glands for their body size tend to have lower mean prevalence of haemosporidian infection, regardless of their geographical origin. This result provides additional support for the assumption that secretions from the uropygial gland reduce the likelihood of becoming infected with haemosporidians.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, Orsay 91400, France.,Key Laboratory for Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Charlene Luján-Vega
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Esteban Fong
- EverGreen Institute-San Rafael, Distrito de Indiana, Loreto 16200, Perú
| | - Daniel Vecco
- Centro Urku de Estudios Amazónicos, Tarapoto 22202, Perú
| | | | - Luz García-Longoriaa
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund 221 00, Sweden.,Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - José A Iannacone
- Laboratorio de Ingeniería Ambiental, Universidad Científica del Sur-Villa el Salvador, Lima 15067, Perú.,Laboratorio de Invertebrados, Universidad Ricardo Palma, Santiago de Surco 15039, Perú
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| |
Collapse
|
13
|
Campos SM, Pruett JA, Soini HA, Zúñiga-Vega JJ, Goldberg JK, Vital-García C, Hews DK, Novotny MV, Martins EP. Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behav Ecol 2020; 31:978-991. [PMID: 32764859 DOI: 10.1093/beheco/araa044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Animal signals evolve by striking a balance between the need to convey information through particular habitats and the limitations of what types of signals can most easily be produced and perceived. Here, we present new results from field measures of undisturbed behavior and biochemical analyses of scent marks from 12 species of Sceloporus lizards to explore whether evolutionary changes in chemical composition are better predicted by measures of species behavior, particularly those associated with visual displays, chemoreception, and locomotion, or by measures of habitat climate (precipitation and temperature). We found that more active lizard species used fewer compounds in their volatile scent marks, perhaps conveying less specific information about individual and species identity. Scent marks from more active lizard species also had higher proportions of saturated fatty acids, and the evolution of these compounds has been tracking the phylogeny closely as we would expect for a metabolic byproduct. In contrast, the proportions of unsaturated fatty acids were better explained by evolutionary shifts in habitat temperature (and not precipitation), with species in warmer climates using almost no volatile unsaturated fatty acids. The proportion of aldehydes was explained by both behavior and environment, decreasing with behavioral activity and increasing with habitat temperature. Our results highlight the evolutionary flexibility of complex chemical signals, with different chemical compounds responding to different elements of the selective landscape over evolutionary time.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.,Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jake A Pruett
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, OK, USA
| | - Helena A Soini
- Department of Chemistry and the Institute for Pheromone Research, Indiana University, Bloomington, IN, USA
| | - J Jaime Zúñiga-Vega
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacan, Ciudad de México, Mexico
| | - Jay K Goldberg
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Cuauhcihuatl Vital-García
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo envolvente y Estocolmo s/n, Zona PRONAF, Juárez, Chihuahua, CP, Mexico
| | - Diana K Hews
- Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Milos V Novotny
- Department of Chemistry and the Institute for Pheromone Research, Indiana University, Bloomington, IN, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Fischer I, Meissner W, Haliński ŁP, Stepnowski P. Preen oil chemical composition in herring gull Larus argentatus, common gull Larus canus and black-headed gull Chroicocephalus ridibundus confirms their status as two separate genera. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.103987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Grieves LA, Bernards MA, MacDougall-Shackleton EA. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Van Huynh A, Rice AM. Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol Evol 2019; 9:9671-9683. [PMID: 31534684 PMCID: PMC6745874 DOI: 10.1002/ece3.5497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black-capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography-mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y-maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation.
Collapse
Affiliation(s)
- Alex Van Huynh
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| |
Collapse
|
17
|
Whittaker DJ, Kuzel M, Burrell MJ, Soini HA, Novotny MV, DuVal EH. Chemical profiles reflect heterozygosity and seasonality in a tropical lekking passerine bird. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Doña J, Proctor H, Serrano D, Johnson KP, Oploo AO, Huguet‐Tapia JC, Ascunce MS, Jovani R. Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Mol Ecol 2019; 28:203-218. [PMID: 29726053 PMCID: PMC6905397 DOI: 10.1111/mec.14581] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane-dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high-throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long-standing question of the nature of the relationship between birds and their vane-dwelling feather mites, supporting previous evidence for a commensalistic-mutualistic role of feather mites, which are revealed as likely fungivore-microbivore-detritivore symbionts of bird feathers.
Collapse
Affiliation(s)
- Jorge Doña
- Department of Evolutionary EcologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Heather Proctor
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | - David Serrano
- Department of Conservation BiologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Kevin P. Johnson
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinois
| | | | | | - Marina S. Ascunce
- Department of Plant PathologyUniversity of FloridaGainesvilleFlorida
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFlorida
| | - Roger Jovani
- Department of Evolutionary EcologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| |
Collapse
|
19
|
Grieves LA, Bernards MA, MacDougall-Shackleton EA. Wax Ester Composition of Songbird Preen Oil Varies Seasonally and Differs between Sexes, Ages, and Populations. J Chem Ecol 2018; 45:37-45. [PMID: 30456558 DOI: 10.1007/s10886-018-1033-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023]
Abstract
Chemical signaling has been well studied in invertebrates and mammals but less so in birds, due to the longstanding misconception that olfaction is unimportant or even non-existent in this taxon. However, recent findings suggest that olfaction plays an important role in avian mate choice and reproductive behavior, similar to other taxa. The leading candidate source for compounds involved in avian chemical communication is preen oil, a complex mixture secreted from the uropygial gland. Preen oil contains volatile compounds and their potential wax ester precursors, and may act as a reproductive chemosignal. Reproductive signals are generally sexually dimorphic, age-specific, seasonally variable, and may also vary geographically. We tested whether preen oil meets these expectations by using gas chromatography to examine the wax ester composition of preen oil in song sparrows (Melospiza melodia). We found that the wax ester composition of preen oil was significantly different between sexes, age classes, seasons, and populations. Collectively, our results suggest that song sparrow preen oil meets the criteria of a chemical cue that may influence mate choice and reproduction. Our findings in song sparrows, which are sexually monomorphic in plumage, also parallel patterns described for dark-eyed juncos (Junco hyemalis), a closely related songbird with sexually dimorphic plumage. Behavioral tests are needed to confirm that song sparrows attend to the cues present in preen oil, but our findings support the increasingly accepted idea that chemical communication is common and widespread in birds as it is in other taxa.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Biology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada.
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
| | | |
Collapse
|
20
|
Kanakri K, Muhlhausler B, Carragher J, Gibson R, Barekatain R, Dekoning C, Drake K, Hughes R. Relationship between the fatty acid composition of uropygial gland secretion and blood of meat chickens receiving different dietary fats. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Manipulation of the fatty acid composition of chicken feed has been shown to be effective for improving the nutritional value of chicken products. Currently, however, evaluation of the effectiveness of this approach requires invasive blood sampling or post mortem tissue sampling of the birds. Preen oil can be collected non-invasively from live birds. So this study aimed to test the hypothesis that the fatty acid composition of preen oil reflects that of the blood. Male and female meat chickens (Cobb 500) were fed a diet supplemented with 4% (w/w) flaxseed oil (high n-3 polyunsaturates) or beef tallow (mostly monounsaturates and saturates) for 6 weeks. Preen oil and whole blood samples (n = 9 birds per sex/diet treatment group) were collected freshly post mortem for fatty acid analysis. Preen oil analysis showed that ~97% of fatty acids were saturates, with a small percentage of n-6 polyunsaturates and traces of other types. There were negligible n-3 polyunsaturates in preen oil. Proportions of some saturated fatty acids were slightly, but significantly, affected by diet (C16:0 (P < 0.05) and C17:0 (P < 0.01)) or by gender (C10:0 and C18:0) (P < 0.05). Some fatty acids with odd numbers of carbon atoms (e.g. C17:0 and C19:0) were found in relatively high concentrations in preen oil, despite not being detectable in either the diet or blood. In conclusion, the fatty acid composition of preen oil does not accurately reflect the fatty acid profile of the blood; it is not, therefore, a suitable alternative for determining fatty acid status of meat chickens.
Collapse
|
21
|
Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED. Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:5-15. [PMID: 29063285 DOI: 10.1007/s00359-017-1221-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/25/2022]
Abstract
Chemical signals can provide useful information to potential mates and rivals. The production mechanisms of these signals are poorly understood in birds, despite emerging evidence that volatile compounds from preen oil may serve as chemosignals. Steroid hormones, including testosterone (T), may influence the production of these signals, yet variation in circulating T only partly accounts for this variation. We hypothesized that odor is a T-mediated signal of an individual's phenotype, regulated in part by androgen sensitivity in the uropygial gland. We quantified natural variation in chemosignals, T, uropygial gland androgen sensitivity, and aggressive behavior in dark-eyed juncos (Junco hyemalis). The interaction between circulating T and androgen receptor transcript abundance significantly correlated with volatile concentrations in male, but not female, preen oil. In both sexes, odorant variables correlated with aggressive response to an intruder. Our results suggest that preen oil volatiles could function as signals of aggressive intent, and, at least in males, may be regulated by local androgen receptor signaling in the uropygial gland. Because these behavioral and chemical traits have been linked with reproductive success, local regulation of androgen sensitivity in the periphery has the potential to be a target of selection in the evolution of avian olfactory signaling.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd. Room 1441, East Lansing, MI, 48824, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Samuel P Slowinski
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Helena A Soini
- Department of Chemistry and Institute for Pheromone Research, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry and Institute for Pheromone Research, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
22
|
Rossi M, Marfull R, Golüke S, Komdeur J, Korsten P, Caspers BA. Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Rossi
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
- School of Life Sciences University of Sussex Falmer Brighton UK
| | - Reinaldo Marfull
- Behavioural Physiology and Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Sarah Golüke
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
| | - Jan Komdeur
- Behavioural Physiology and Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
| | | |
Collapse
|
23
|
Zidat T, Dell’Ariccia G, Gabirot M, Sourrouille P, Buatois B, Celerier A, Bonadonna F, Crochet PA. Reproductive isolation maintains distinct genotypes, phenotypes and chemical signatures in mixed colonies of the two European Calonectris shearwaters (Procellariiformes: Procellariidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Moreno-Rueda G. Preen oil and bird fitness: a critical review of the evidence. Biol Rev Camb Philos Soc 2017; 92:2131-2143. [PMID: 28231637 DOI: 10.1111/brv.12324] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.
Collapse
Affiliation(s)
- Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
25
|
Whittaker DJ, Gerlach NM, Slowinski SP, Corcoran KP, Winters AD, Soini HA, Novotny MV, Ketterson ED, Theis KR. Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Caro SP, Balthazart J, Bonadonna F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm Behav 2015; 68:25-42. [PMID: 24928570 PMCID: PMC4263688 DOI: 10.1016/j.yhbeh.2014.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Chemical cues were probably the first cues ever used to communicate and are still ubiquitous among living organisms. Birds have long been considered an exception: it was believed that birds were anosmic and relied on their acute visual and acoustic capabilities. Birds are however excellent smellers and use odors in various contexts including food searching, orientation, and also breeding. Successful reproduction in most vertebrates involves the exchange of complex social signals between partners. The first evidence for a role of olfaction in reproductive contexts in birds only dates back to the seventies, when ducks were shown to require a functional sense of smell to express normal sexual behaviors. Nowadays, even if the interest for olfaction in birds has largely increased, the role that bodily odors play in reproduction still remains largely understudied. The few available studies suggest that olfaction is involved in many reproductive stages. Odors have been shown to influence the choice and synchronization of partners, the choice of nest-building material or the care for the eggs and offspring. How this chemical information is translated at the physiological level mostly remains to be described, although available evidence suggests that, as in mammals, key reproductive brain areas like the medial preoptic nucleus are activated by relevant olfactory signals. Olfaction in birds receives increasing attention and novel findings are continuously published, but many exciting discoveries are still ahead of us, and could make birds one of the animal classes with the largest panel of developed senses ever described.
Collapse
Affiliation(s)
- Samuel P Caro
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | - Francesco Bonadonna
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France
| |
Collapse
|
27
|
Corfield JR, Eisthen HL, Iwaniuk AN, Parsons S. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:214-26. [PMID: 25376305 DOI: 10.1159/000365564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/25/2014] [Indexed: 11/19/2022]
Abstract
The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.
Collapse
Affiliation(s)
- Jeremy R Corfield
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
28
|
Amo L, Tomás G, Parejo D, Avilés JM. Are female starlings able to recognize the scent of their offspring? PLoS One 2014; 9:e109505. [PMID: 25299305 PMCID: PMC4192304 DOI: 10.1371/journal.pone.0109505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Although there is growing evidence that birds may have individual chemical profiles that can function in several social contexts, offspring recognition based on olfactory cues has never been explored. This ability should be more likely evolved in colonial birds and/or species suffering brood parasitism, in which the risk of being engaged in costly misdirected parental care is high. Methodology/Principal Findings We performed a choice experiment to examine whether females of the spotless starling, Sturnus unicolor, a species that is colonial, and where a fraction of the population is exposed to intraspecific brood parasitism, can discriminate between the scent of their offspring and that of unrelated nestlings. We also explored whether the development of the uropygial gland secretion may play a role in such olfactory discrimination by performing the choice experiments to females rearing nestlings of two different ages, that is, without and with developed uropygial glands. Results showed that female starlings did not preferentially choose the scent of their offspring, independently of whether the gland of nestlings was developed or not. Conclusions/Significance Our results suggest that female starlings do not have or do not show the ability to distinguish their offspring based on olfaction, at least up to 12–14 days of nestling age. Further research is needed to examine whether odour-based discrimination may function when fledgling starlings leave the nest and the risk of costly misidentification is likely to increase.
Collapse
Affiliation(s)
- Luisa Amo
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
- * E-mail:
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| | - Deseada Parejo
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| | - Jesús Miguel Avilés
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
29
|
Tuttle EM, Sebastian PJ, Posto AL, Soini HA, Novotny MV, Gonser RA. Variation in preen oil composition pertaining to season, sex, and genotype in the polymorphic white-throated sparrow. J Chem Ecol 2014; 40:1025-38. [PMID: 25236380 DOI: 10.1007/s10886-014-0493-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 04/24/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Abstract
Evidence for the the ability of birds to detect olfactory signals is now well documented, yet it remains unclear whether birds secrete chemicals that can be used as social cues. A potential source of chemical cues in birds is the secretion from the uropygial gland, or preen gland, which is thought to waterproof, maintain, and protect feathers from ectoparasites. However, it is possible that preen oil also may be used for individual recognition, mate choice, and signalling social/sexual status. If preen oil secretions can be used as socio-olfactory signals, we should be able to identify the volatile components that could make the secretions more detectable, determine the seasonality of these secretions, and determine whether olfactory signals differ among relevant social groups. We examined the seasonal differences in volatile compounds of the preen oil of captive white-throated sparrows, Zonotrichia albicollis. This species is polymorphic and has genetically determined morphs that occur in both sexes. Mating is almost exclusively disassortative with respect to morph, suggesting strong mate choice. By sampling the preen oil from captive birds in breeding and non-breeding conditions, we identified candidate chemical signals that varied according to season, sex, morph, and species. Linear alcohols with a 10-18 carbon chains, as well as methyl ketones and carboxylic acids, were the most abundant volatile compounds. Both the variety and abundances of some of these compounds were different between the sexes and morphs, with one morph secreting more volatile compounds in the non-breeding season than the other. In addition, 12 compounds were seasonally elevated in amount, and were secreted in high amounts in males. Finally, we found that preen oil signatures tended to be species-specific, with white-throated sparrows differing from the closely related Junco in the abundances and/or prevalence of at least three compounds. Our data suggest roles for preen oil secretions and avian olfaction in both non-social as well as social interactions.
Collapse
Affiliation(s)
- Elaina M Tuttle
- Department of Biology, Indiana State University, 600 Chestnut Street, Terre Haute, IN, 47809, USA,
| | | | | | | | | | | |
Collapse
|
30
|
Differences in olfactory species recognition in the females of two Australian songbird species. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1791-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|