1
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Li A, Wang C, Wu Z, Liu Y, Hao Z, Lu C, Chen H. Development of a Cation Exchange SPE-HILIC-MS/MS Method for the Determination of Ningnanmycin Residues in Tea and Chrysanthemum. Foods 2024; 13:635. [PMID: 38472748 DOI: 10.3390/foods13050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Ningnanmycin is a widely used antibiotic in agricultural production that effectively controls fungal and viral diseases in tea trees and chrysanthemums. The polarity characteristic of ningnanmycin has posed limitations on the development of robust detection methods, thereby hindering effective monitoring and control measures. By combining cation exchange solid phase extraction (SPE) with hydrophilic interaction chromatography tandem mass spectrometry (HILIC-MS/MS), we have effectively tackled the issue pertaining to the separation and retention of ningnanmycin. The average recoveries of ningnanmycin in green tea, black tea, and chrysanthemum were 77.3-82.0%, 80.1-81.5%, and 74.0-80.0%, respectively. The intraday and interday relative standard deviations (RSDs) were below and equal to 7.7%. Good linearity was observed in the concentration range of 1-1000 μg/L (R2 > 0.998). The limits of detection (LODs) ranged from 1.1 μg/kg to 7.1 μg/kg, and the limits of quantification (LOQs) ranged from 3.6 μg/kg to 23.7 μg/kg for ningnanmycin. These results indicate the good accuracy, repeatability, reproducibility, and sensitivity of the method. It is suitable for detecting ningnanmycin in tea and chrysanthemum.
Collapse
Affiliation(s)
- Aiping Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhenghao Wu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingying Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenxia Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Laboratory of Quality and Safety Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
4
|
Trojanowicz M. Impact of nanotechnology on progress of flow methods in chemical analysis: A review. Anal Chim Acta 2023; 1276:341643. [PMID: 37573121 DOI: 10.1016/j.aca.2023.341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
In evolution of instrumentation for analytical chemistry as crucial technological breakthroughs should be considered a common introduction of electronics with all its progress in integration, and then microprocessors which was followed by a widespread computerization. It is seems that a similar role can be attributed to the introduction of various elements of modern nanotechnology, observed with a fast progress since beginning of this century. It concerns all areas of the applications of analytical chemistry, including also progress in flow analysis, which are being developed since the middle of 20th century. Obviously, it should not be omitted the developed earlier and analytically applied planar structures like lipid membranes or self-assembled monolayers They had essential impact prior to discoveries of numerous extraordinary nanoparticles such as fullerenes, carbon nanotubes and graphene, or nanocrystalline semiconductors (quantum dots). Mostly, due to catalytic effects, significantly developed surface and the possibility of easy functionalization, their application in various stages of flow analytical procedures can significantly improve them. The application of new nanomaterials may be used for the development of new detection methods for flow analytical systems in macro-flow setups as well as in microfluidics and lateral flow immunoassay tests. It is also advantageous that quick flow conditions of measurements may be helpful in preventing unfavorable agglomeration of nanoparticles. A vast literature published already on this subject (e.g. almost 1000 papers about carbon nanotubes and flow-injection analytical systems) implies that for this reviews it was necessary to make an arbitrary selection of reported examples of this trend, focused mainly on achievements reported in the recent decade.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Chemistry, University of Warsaw, Poland.
| |
Collapse
|
5
|
Xiao Z, Xing Y, Zhu J, Liu Y, Wang J, Liu Q, Huang M, Zhong G. An effective pretreatment technique based on multi-walled carbon nanotubes to reduce the matrix effect in plasma samples analyzed by a new type probe electrospray ionization method. Anal Chim Acta 2023; 1263:341268. [PMID: 37225332 DOI: 10.1016/j.aca.2023.341268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023]
Abstract
The quantitative analysis of drug plasma samples plays an important role in the drug development and drug clinical use. Our research team developed a new electrospray ion source-Micro probe electrospray ionization (μPESI) in the early stage, which was combined with mass spectrometry (μPESI-MS/MS) showing good qualitative and quantitative analysis performance. However, matrix effect severely interfered the sensitivity in μPESI-MS/MS analysis. To solve this problem, we recently developed a Solid-phase purification method based on multi-walled carbon nanotubes (MWCNTs), which was used for removing matrix interfering substances (especially phospholipid compounds) in the preparation of plasma samples, so as to reduce the matrix effect. In this study, aripiprazole (APZ), carbamazepine (CBZ) and omeprazole (OME) were used as representative analytes, the quantitative analysis related to the plasma samples spiked with the analytes above and the mechanism of the MWCNTs to reduce matrix effect were both investigated. Compared with the ordinary protein precipitation, MWCNTs could reduced the matrix effect for several to dozens of times, which resulting from the removement of phospholipid compounds from the plasma samples by MWCNTs in the selective adsorption manner. We further validated the linearity, precision and accuracy of this pretreatment technique by the μPESI-MS/MS method. These parameters all met the requirements of FDA guidelines. It was showed that MWCNTs have a good application prospect in the drug quantitative analysis of plasma samples using the μPESI-ESI-MS/MS method.
Collapse
Affiliation(s)
- Zhenwei Xiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China.
| | - Yunhui Xing
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China; Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China.
| | - Janshon Zhu
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China.
| | - Yang Liu
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| | - Jinxingyi Wang
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| | - Qian Liu
- Guangdong RangerBio Technologies Co., Ltd., Dongguan, Guangdong, 523000, China; The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - GuoPing Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Godlewska K, Paszkiewicz M. Reusable passive sampler with carbon nanotubes for monitoring contaminants in wastewater: Application, regeneration and reuse. CHEMOSPHERE 2023; 332:138855. [PMID: 37149101 DOI: 10.1016/j.chemosphere.2023.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Progress in excogitation suitable strategies for monitoring chemical compounds in wastewater is an essential step for further research into the occurrence, impact, and fate of the pollutants in the aquatic environment. At present, it is desirable to advance and use economical, environmentally friendly and non-labour intensive methods of environmental analysis. In this study, carbon nanotubes (CNTs) were successfully applied, regenerated, and reused as a sorbent in passive samplers for monitoring contaminants in treated and untreated wastewater at three wastewater treatment plants (WWTPs) located in different urbanization areas in northern Poland. Three cycles of chemical and thermal regeneration of used sorbents were performed. It was shown that it is possible to regenerate CNTs a minimum of three times and reuse them in passive samplers while maintaining the desired sorption properties. The obtained results confirm that the CNTs are perfectly in line with the main principles of green chemistry and sustainability. Carbamazepine, ketoprofen, naproxen, diclofenac, p-nitrophenol, atenolol, acebutolol, metoprolol, sulfapyridine and sulfamethoxazole were detected in each of the WWTPs, both in treated and untreated wastewater. The obtained data drastically show the inefficiency of the removal of contaminants by conventional WWTPs. More importantly, the results even indicate negative contaminant removal in most cases, i.e. higher concentrations (up to 863%) of these substances in the effluent compared to the influent.
Collapse
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Multiwalled Carbon Nanotubes Embedded in a Polymeric Matrix as a New Material for Thin Film Microextraction (TFME) in Organic Pollutant Monitoring. Polymers (Basel) 2023; 15:polym15020314. [PMID: 36679194 PMCID: PMC9863860 DOI: 10.3390/polym15020314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
It is essential to monitor organic pollutants to control contamination levels in environmental water bodies. In this respect, the development of new materials based on functionalised polymeric films for the measurement of toxic compounds is of interest. In this study, we prepare new films based on polymer cellulose triacetate modified with multi-walled carbon nanotubes for the monitoring of selected compounds: a fungicide (chlorpyrifos) and two emerging contaminants, the musk tonalide and the bactericide triclosan, which are used in the formulation of personal care products. The films, upon contact with water samples and following the principles of thin film microextraction, allow the determination of organic pollutants at low concentration levels. The contact time of the film with a predetermined volume of water is fixed at 60 min, and the compounds are eluted with a small volume (1 mL) of organic solvent for GC-MS analysis. Parameters such as repeatability for different films and detection limits are found to be satisfactory. Applying the method to river water demonstrates its suitability and, in the cases of chlorpyrifos and tonalide, the absence of a significant matrix effect.
Collapse
|
8
|
Determination of Local Anesthetic Drugs in Human Plasma Using Magnetic Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography. Molecules 2022; 27:molecules27175509. [PMID: 36080279 PMCID: PMC9457896 DOI: 10.3390/molecules27175509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, magnetic tetraethylenepentamine (TEPA)-modified carboxyl–carbon nanotubes were synthesized, characterized, and used as adsorbents to conduct magnetic solid-phase extraction (MSPE) for the preconcentration of seven local anesthetic drugs (procaine, lidocaine, mepivacaine, oxybuprocaine, bupivacaine, tetracaine, and cinchocaine) from human plasma. The separation and determination of analytes were performed on high-performance liquid chromatography with UV detection. Several factors affected the extraction efficiency, such as the amount of adsorbents used, extraction time, sample pH, and optimization of elution conditions. Under optimal conditions, satisfactory linear relationships were obtained in the range of 0.02–5.00 mg/L, with the limits of detection (LOD) ranging from 0.003 mg/L to 0.008 mg/L. The recoveries of analytes for spiked human plasma were in the range of 82.0–108%. Moreover, the precision with intra-day and inter-day RSD values were obtained in the range of 1.5–7.7% and 1.5–8.3%. The results indicated that this method could determine the concentration of seven local anesthetic drugs in human plasma with high precision and repeatability and provide support for the clinical monitoring of the concentration of local anesthetic drugs in human plasma.
Collapse
|
9
|
Yang C, Li J, Wang S, Wang Y, Jia J, Wu W, Hu J, Zhao Q. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem 2022; 384:132620. [PMID: 35413776 DOI: 10.1016/j.foodchem.2022.132620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022]
Abstract
Amino-modified mesoporous silicawas prepared by modifying mesoporous silica with 3-aminopropyltriethoxysilane and used as adsorbents in matrix solid-phase dispersion (MSPD) to analyze free fatty acids (FFAs) in krill meals for the first time. The adsorption-desorption experiments and Fourier-transform infrared spectroscopy showed amino-modified mesoporous silica with ordered mesoporous structure was successfully synthesized. The adsorption experiments including static and dynamic adsorption showed thatabsorption capacity of amino-modified mesoporous silica towards FFAs was better than that of aminated silicon microspheres at all concentrations. Under optimal extraction conditions, outstanding linearity (0.1-12000 nmol g-1), low LODs (0.05-1.25 nmol g-1), satisfactory recoveries (82.17-96.43%) and precisions (0.19-5.26%) were obtained. Moreover, the application of MSPD for FFAs analysis avoided complicated lipid extraction procedures and accomplished the homogenization, crushing, extraction and cleaning of the samples in one step. Consequently, this approach provides an alternative choice to the existing approach for analyzing FFAs in solid and semi-solid samples.
Collapse
Affiliation(s)
- Chunyu Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shimiao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiran Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Wang XF, Wang Q, Yang JL, Zhao DH. Determination of Paralytic Shellfish Toxins in Bivalve Mollusks by Amino-Modified Multiwalled Carbon Nanotube (MWCNT) Solid-Phase Extraction (SPE) and High-Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC–MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1941073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xu-Feng Wang
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiang Wang
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jin-Lan Yang
- Guangzhou Environmental Monitoring Centre of Ocean and Fishery, Guangzhou, China
| | - Dong-Hao Zhao
- Ministry of Agriculture and Rural Affairs, Key Lab. of Aquatic Product Processing, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| |
Collapse
|
11
|
Comparison of Adsorbents Containing Carbon Nanotubes for Express Pre-Concentration of Volatile Organic Compounds from the Air Flow. SEPARATIONS 2021. [DOI: 10.3390/separations8040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New composite adsorbents including silica supports (silica, aerosilogel, and diatomite) and carbon materials (multiwall carbon nanotubes and pyrolytic carbon) have been prepared and characterized. The analytical capabilities of the produced sorbents have been evaluated by their efficiency in the express pre-concentration of volatile organic compounds (butanol and phenols) from the air stream. The prepared surface-layered adsorbents containing multiwall carbon nanotubes placed onto the surface of aerosilogel by use of the carbon vapor deposition method with preloading cobalt nanostructures as a catalyst were found significantly more efficient than traditionally used graphitic carbon-based adsorbents Carbopacks B, C, and X. Additionally, a new adsorbent composed of diatomite Porochrome-3 support coated with a pyrocarbon layer was prepared. This low surface area composited adsorbent allowed both quantitative pre-concentration of phenol and isomeric cresols from the air and their thermal desorption. The developed adsorbents provided fast pre-concentration of selected phenols with a concentration factor of 2 × 103 in 5 min and were used for gas chromatographic determination of analytes in the air at low concentration levels starting from several μg/m3 with a flame ionization detector.
Collapse
|
12
|
Piscopo R, Almeida Â, Coppola F, De Marchi L, Esteves VI, Soares AMVM, Pretti C, Morelli A, Chiellini F, Polese G, Freitas R. How temperature can alter the combined effects of carbon nanotubes and caffeine in the clam Ruditapes decussatus? ENVIRONMENTAL RESEARCH 2021; 195:110755. [PMID: 33556353 DOI: 10.1016/j.envres.2021.110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Nowadays, multi-walled carbon nanotubes are considered to be emerging contaminants and their impact in ecosystem has drawn special research attention, while other contaminants, such as caffeine, have more coverage in literature. Despite this, the effects of a combination of the two has yet to be evaluated, especially considering predicted temperature rise. In the present study a typical bioindicator species for marine environment, the clam Ruditapes decussatus, and classical tools, such as biomarkers and histopathological indices, were used to shed light on the species' response to these contaminants, under actual and predicted warming scenarios. The results obtained showed that both contaminants have a harmful effect at tissue level, as shown by higher histopathological index, especially in digestive tubules. Temperatures seemed to induce greater biochemical impacts than caffeine (CAF) and -COOH functionalized multi-walled carbon nanotubes (f-MWCNTs) when acting alone, namely in terms of antioxidant defences and energy reserves content, which were exacerbated when both contaminants were acting in combination (MIX treatment). Overall, the present findings highlight the complex response of clams to both pollutants, evidencing the role of temperature on clams' sensitivity, especially to mixture of pollutants.
Collapse
Affiliation(s)
- Raffaele Piscopo
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Naples Federico II, 80126, Italy
| | - Ângela Almeida
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
13
|
Godlewska K, Jakubus A, Stepnowski P, Paszkiewicz M. Impact of environmental factors on the sampling rate of β-blockers and sulfonamides from water by a carbon nanotube-passive sampler. J Environ Sci (China) 2021; 101:413-427. [PMID: 33334535 DOI: 10.1016/j.jes.2020.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Passive techniques are a constantly evolving approach to the long-term monitoring of micropollutants, including pharmaceuticals, in the aquatic environment. This paper presents, for the first time, the calibration results of a new CNTs-PSDs (carbon nanotubes used as a sorbent in passive sampling devices) with an examination of the effect of donor phase salinity, water pH and the concentration of dissolved humic acids (DHAs), using both ultrapure and environmental waters. Sampling rates (Rs) were determined for the developed kinetic samplers. It has been observed that the impact of the examined environmental factors on the Rs values strictly depends on the type of the analytes. In the case of β-blockers, the only environmental parameter affecting their uptake rate was the salinity of water. A certain relationship was noted, namely the higher the salt concentration in water, the lower the Rs values of β-blockers. In the case of sulfonamides, water salinity, water pH 7-9 and DHAs concentration decreased the uptake rate of these compounds by CNTs-PSDs. The determined Rs values differed in particular when the values obtained from the experiments carried out using ultrapure water and environmental waters were compared. The general conclusion is that the calibration of novel CNTs-PSDs should be carried out under physicochemical conditions of the aquatic phase that are similar to the environmental matrix.
Collapse
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Aleksandra Jakubus
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, Gdansk 80-308, Poland
| |
Collapse
|
14
|
Kamran M, Dauda M, Basheer C, Siddiqui MN, Lee HK. Highly efficient porous sorbent derived from asphalt for the solid-phase extraction of polycyclic aromatic hydrocarbons. J Chromatogr A 2020; 1631:461559. [PMID: 33007581 DOI: 10.1016/j.chroma.2020.461559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated primarily during the incomplete combustion of organic matter and are ubiquitous environmental pollutants. For the first time, in this study, a mesoporous carbon derived from asphalt with high surface area (2300 m²g-1 with an average of 1.2 cm³ g-1) was utilized as a sorbent for the solid-phase extraction (SPE) of several PAHs in tap water samples. The factors influencing the extraction capability of the new material were investigated and the optimum conditions were determined to be as follows: Sample volume - 200 mL, no adjustment of sample pH, and sorbent amount - 50 mg. Under the most favorable SPE conditions, with gas chromatography-mass spectrometric analysis, the method exhibited a linear range of 0.5-50 μgL-1 with limits of detection between 0.004 and 0.026 μgL-1. The recoveries obtained from spiked tap water samples spiked at 1 μgL-1 and 5 μgL-1, were in the range 86.7-98.2% with relative standard deviations of <9%. The method was also applied to tap water samples collected from the local environment. The concentrations of PAHs detected ranged between 0.13 and 48 μgL-1. The reusability of the sorbent was tested with five consecutive SPE extraction, and no carryover of analytes was observed.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammed Dauda
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chanbasha Basheer
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammad Nahid Siddiqui
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
15
|
Dong J, Feng Z, Kang S, An M, Wu G. Magnetic solid-phase extraction based on magnetic amino modified multiwalled carbon nanotubes for the fast determination of seven pesticide residues in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2747-2756. [PMID: 32930306 DOI: 10.1039/d0ay00288g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A rapid and simple analytical method based on magnetic solid-phase extraction with magnetic amino modified multiwalled carbon nanotubes with ultra-high performance liquid chromatography-tandem mass spectrometry is reported for the determination of seven pesticides (futriafol, metalaxyl, myclobutanil, napropamide, epoxiconazole, fipronil and diniconazole) in water samples. In this study, magnetic amino modified multi-walled carbon nanotubes were synthesized and selected as a new kind of material to adsorb pesticides in the water samples. Various magnetic solid-phase extraction parameters, such as the amount and type of adsorbent, extraction methods, extraction time, the type and volume of desorption solvent, desorption time and solution ionic strength, were systematically optimized. Under optimum conditions, the method validation results showed good linearity and recoveries. The calibration curves were in the range of 1.0-100 ng mL-1 for napropamide, epoxiconazole, metalaxyl, and fipronil, while they were 5.0-500 ng mL-1 for futriafol, myclobutanil, and diniconazole, with determination coefficients (R2) higher than 0.9909. The limits of quantification were 1.0-5.0 ng mL-1 and the limits of detection were 0.3-1.5 ng mL-1. The recoveries of the seven pesticides ranged from 80.4% to 103.2%. This developed method, which is more convenient and effective in comparison with traditional methods, has been successfully applied for the analysis of pesticides in water samples qualitatively and quantitatively.
Collapse
Affiliation(s)
- JiaNi Dong
- Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - ZhiAo Feng
- Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - SongSong Kang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - Ming An
- Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - GuoDong Wu
- Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| |
Collapse
|
16
|
Effect of Heavy Metal Ions on Steroid Estrogen Removal and Transport in SAT Using DLLME as a Detection Method of Steroid Estrogen. WATER 2020. [DOI: 10.3390/w12020589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Environmental endocrine-disrupting chemicals have become a global environmental problem, and the distribution, transport, and fate of estrogens in soil and water environments closely relate to human and ecological health as well as to the remediation scheme design. A new micro-extraction technique termed dispersive liquid–liquid micro-extraction (DLLME) combined with high-performance liquid chromatography with fluorescence detector (HPLC-FLD) was developed for the determination of the concentration of steroid estrogens in water samples. The detection limits of HPLC-FLD and DLLME-HPLC/FLD were 0.68–1.73 μg L−1 and 7.16–69.22 ng L−1, respectively. Based on this method, the isothermal adsorption of 17β-E2 on sand and a breakthrough experiment of 17β-E2 and Cu2+ in a soil aquifer treatment (SAT) system were studied. The 17β-E2 adsorption capacity of sand in 17β-E2 solution was detected to be larger than that in a mixed solution of 17β-E2 and Cu(NO3)2 solution, and the breakthrough curves of 17β-E2 and Cu2+ in the mixed solution shifted forward in sand column experiments. Both suggested that the competitive adsorption of 17β-E2 and Cu2+ in the mixed solution might occur on the surface of the sand. In the process of the removal of 17β-E2 in wastewater by SAT, the existence of Cu2+ slightly inhibited the adsorption of 17β-E2 and accelerated the breakthrough of 17β-E2. These results ought to be a warning for SAT application for 17β-E2 removal in water where heavy metals coexist.
Collapse
|
17
|
|
18
|
Guo X, Bai H, Ma X, Li J, Ren Y, Ouyang Z, Ma Q. Online coupling of an electrochemically fabricated solid-phase microextraction probe and a miniature mass spectrometer for enrichment and analysis of chemical contaminants in infant drinks. Anal Chim Acta 2020; 1098:66-74. [DOI: 10.1016/j.aca.2019.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
|
19
|
Kogame-Asahara C, Ito S, Iguchi H, Kazama A, Shigemitsu H, Kida T. A novel molecular tube fully modified at one end: selective inclusion of cis-unsaturated fatty acid esters. Chem Commun (Camb) 2020; 56:1353-1356. [DOI: 10.1039/c9cc08709e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A cyclodextrin tube with one fully modified and one unmodified end selectively includes cis-unsaturated fatty acid esters.
Collapse
Affiliation(s)
| | - Shogo Ito
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Hitomi Iguchi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Ai Kazama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Hajime Shigemitsu
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Toshiyuki Kida
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
20
|
Cu2O-CuO ball like/multiwalled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection. Talanta 2020; 207:120295. [DOI: 10.1016/j.talanta.2019.120295] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
|
21
|
D'Orazio G, Fanali C, Gentili A, Tagliaro F, Fanali S. Nano-liquid chromatography for enantiomers separation of baclofen by using vancomycin silica stationary phase. J Chromatogr A 2019; 1605:360358. [PMID: 31337499 DOI: 10.1016/j.chroma.2019.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/06/2023]
Abstract
The chiral separation of baclofen (Bac) was obtained by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) using a 100 μm I.D. fused silica capillary column packed with silica particles chemically modified with vancomycin. Various experimental parameters, such as composition (buffer concentration, water content, organic modifier) and pH of the mobile phase and sample solvent were investigated for method optimization. In order to increase the sensitivity an on-column focusing procedure was applied. Acceptable separation of Bac enantiomers was obtained in less than 11 min eluting in isocratic mode, with 90:10 MeOH/water (v/v) containing 10 mM ammonium acetate at pH 4.5. These optimized experimental conditions were applied to the analysis of human plasma samples spiked with racemic mixture of Bac. The use of a Buckypaper disc as sorbent membrane allows one to recover both enantiomers with yields ≥ 65%. The method was fully validated, following the identification criteria of the European Commission Decision 2002/657/EC.
Collapse
Affiliation(s)
- Giovanni D'Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, Rome, Italy
| | - Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; Pharmacokinetics and Metabolomics Laboratory of the I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Verona, Italy.
| |
Collapse
|
22
|
ALOthman ZA, Wabaidur SM. Application of carbon nanotubes in extraction and chromatographic analysis: A review. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Abstract
This article offers a review on the application of nanoparticles (NPs) that have been used as sorbents in the analysis of polycyclic aromatic hydrocarbons (PAHs). The novel advances in the application of carbon NPs, mesoporous silica NPs, metal, metal oxides, and magnetic and magnetised NPs in the extraction of PAHs from matrix solutions were discussed. The extraction techniques used to isolate PAHs have been highlighted including their advantages and limitations. Methods for preparing NPs and optimized conditions of NPs extraction efficiency have been overviewed since proper extraction procedures were necessary to achieve optimum analytical results. The aim was to provide an overview of current knowledge and information in order to assess the need for further exploration that can lead to an efficient and optimum analysis of PAHs.
Collapse
|
25
|
Speltini A, Profumo A, Merli D, Grossi N, Milanese C, Dondi D. Tuning retention and selectivity in reversed-phase liquid chromatography by using functionalized multi-walled carbon nanotubes. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
|
27
|
Tomai P, Martinelli A, Gasperi T, Bianchi M, Purcaro V, Teofili L, Papacci P, Cori MS, Vento G, Curini R, Fanali S, Gentili A. Rotating-disc micro-solid phase extraction of F2-isoprostanes from maternal and cord plasma by using oxidized buckypaper as sorbent membrane. J Chromatogr A 2018; 1586:30-39. [PMID: 30563692 DOI: 10.1016/j.chroma.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
This paper describes the development of an original micro-solid phase extraction device and its evaluation for the isolation of F2-isoprostanes (F2-IsoPs) from cord and maternal plasma samples. The unit is very simple and consists in a rotating disc (1.8 cm diameter) of oxidized buckypaper (BP), enwrapped in a polypropylene mesh pouch. Even if the selected F2-IsoPs have logP and pKa values that make them suitable candidates for their sorption on BP, several parameters were optimized to maximize recoveries: time of adsorption and desorption; stirring speed; volume, pH and ionic strength of the sample; type, volume, and fractions of the elution solvent; oxidation grade of BP. Among all, the last one was crucial in affecting extraction yields because of the analyte interactions with polar functionalities, introduced by a preliminary oxidative acid treatment. The investigation established the optimal oxidation time and highlighted the pros and cons of the acid activation step. All extracts were analyzed by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Validation was performed according to the main FDA guidelines for bioanalytical methods. Depending on the spike level and analyte, recoveries ranged between 30 and 120% with precision and accuracy values lower than 20%. Quantitative analysis was accomplished by matrix-matched calibration curves whose determination coefficients were higher than 0.95. Lower limit of quantitation (LLOQ) spanned the range 2.45-6.77 μg L-1. The validated method was applied to the analysis of eight pairs of mother/child plasma samples, revealing the presence of 8-iso-15-keto-PGF2α and 8-iso-PGE2 at a concentration of about 10 μg L-1 in most cord plasma samples of preterm newborns.
Collapse
Affiliation(s)
- Pierpaolo Tomai
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Maria Bianchi
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Velia Purcaro
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Luciana Teofili
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Patrizia Papacci
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Maria Sofia Cori
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Giovanni Vento
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Italy
| | - Roberta Curini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy
| | - Salvatore Fanali
- PhD School in Natural Science and Engineering, University of Verona, 37129 Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro n°5, P.O. Box 34, Posta 62, 00185, Roma, Italy.
| |
Collapse
|
28
|
Deveci S, Çetinkaya E, Dönmez KB, Orman S, Doğu M. Development of preconcentration process of iron by using graphene adsorbent and experimental design methodology. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
30
|
Muhammad N, Rahman A, Younis MA, Subhani Q, Shehzad K, Cui H, Zhu Y. Porous SnO 2 nanoparticles based ion chromatographic determination of non-fluorescent antibiotic (chloramphenicol) in complex samples. Sci Rep 2018; 8:12327. [PMID: 30120273 PMCID: PMC6098012 DOI: 10.1038/s41598-018-29922-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/16/2018] [Indexed: 01/18/2023] Open
Abstract
Nowadays, there are rising concerns about the extensive use of the antibiotics such as chloramphenicol (CAP), has threatened the human life in the form of various vicious diseases. The limited selectivity and sensitivity of confirmatory techniques (UV and electrochemical) and non-fluorescence property of CAP make its determination a challenging task in the modern pharmaceutical analysis. In order to redeem the selective, sensitive and cost-effective fluorescence methodology, here by the dual role of synthesized porous SnO2 nanoparticles were exploited; (i) a porous sorbent in a µ-QuEChERS based sample preparation and as (ii) a stimulant for the transformation of non-fluorescent analytes namely CAP and p-nitrophenol (p-NP) into their respective fluorescent product. We report a green, simple, selective and cost effective ion chromatographic method for CAP sensitive determination in three complex matrices including milk, human urine and serum. The synthesized sorbent not only selectively adsorbed and degraded the matrix/interferences but also selectively reduced the non-fluorescent antibiotic CAP into a fluorescent species. This developed ion chromatographic method exhibited good selectivity, linearity (r2 ≥ 0.996) and limit of detection (LOD) was in the range 0.0201-0.0280 µg/kg. The inter- and intraday precisions were also satisfactory having a relative standard deviation (RSDs) less than 14.96% and excellent recoveries of CAP in the range of 78.3-100.2% were retrieved in various complex samples.
Collapse
Affiliation(s)
- Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, China
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Abdul Rahman
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | | | - Qamar Subhani
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | | | - Hairong Cui
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, China
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.
| |
Collapse
|
31
|
Fernandes VC, Freitas M, Pacheco JPG, Oliveira JM, Domingues VF, Delerue-Matos C. Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries. J Chromatogr A 2018; 1566:1-12. [PMID: 30017087 DOI: 10.1016/j.chroma.2018.06.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
Magnetic nanoparticles (MNPs) with different sizes and characteristics were synthesized to be used as a QuEChERS sorbents for the determination of seven organophosphorus pesticides (OPPs) in strawberries by gas chromatography analysis with flame photometric and mass spectrometry detection. To achieve the optimum conditions of modified QuEChERS procedure several parameters affecting the cleanup efficiency including the amount of the sorbents and cleanup time were investigated. The results were compared with classical QuEChERS methodologies and the modified QuEChERS procedure using MNPs showed the better performance. Under the optimum conditions of the new methodology, three spiking levels (25, 50 and 100 μg kg-1) were evaluated in a strawberry sample. The results showed that the average recovery was 93% and the relative standard deviation was less than 12%. The enrichment factor ranged from 111 to 145%. The good linearity with coefficients of determination of 0.9904-0.9991 was obtained over the range of 25-250 μg kg-1 for 7 OPPs. It was determined that the MNPs have an excellent function as sorbent when purified even using less amount of sorbents and the magnetic properties allowed non-use of the centrifugation in cleanup step. The new methodology was applied in strawberry samples from conventional and organic farming. The new sorbents were successfully applied for extraction and determination of OPPs in strawberries.
Collapse
Affiliation(s)
- Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | - Maria Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - João P G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - José Maria Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Valentina Fernandes Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Drº António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
32
|
V. Soares Maciel E, de Toffoli AL, Lanças FM. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis 2018; 39:1582-1596. [DOI: 10.1002/elps.201800009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos SP Brazil
| | | |
Collapse
|
33
|
Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. J Chromatogr A 2018; 1550:45-56. [DOI: 10.1016/j.chroma.2018.03.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 11/23/2022]
|
34
|
Tomai P, Martinelli A, Morosetti S, Curini R, Fanali S, Gentili A. Oxidized Buckypaper for Stir-Disc Solid Phase Extraction: Evaluation of Several Classes of Environmental Pollutants Recovered from Surface Water Samples. Anal Chem 2018; 90:6827-6834. [DOI: 10.1021/acs.analchem.8b00927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pierpaolo Tomai
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro no 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro no 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Stefano Morosetti
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro no 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Roberta Curini
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro no 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Salvatore Fanali
- PhD School in Natural Science and Engineering, University of Verona, 37129 Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome “La Sapienza“, Piazzale Aldo Moro no 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| |
Collapse
|
35
|
Vosough M, Hassanbeigi Z, Salemi A. Determination of ultraviolet filter compounds in environmental water samples using membrane-protected micro-solid-phase extraction. J Sep Sci 2018; 41:2401-2410. [DOI: 10.1002/jssc.201701082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Maryam Vosough
- Chemistry and Chemical Engineering Research Center of Iran; Tehran Iran
| | - Zahra Hassanbeigi
- Chemistry and Chemical Engineering Research Center of Iran; Tehran Iran
| | - Amir Salemi
- Environmental Sciences Research Institute; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
36
|
D'Archivio AA, Maggi MA, Odoardi A, Santucci S, Passacantando M. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate. NANOTECHNOLOGY 2018; 29:065701. [PMID: 29226848 DOI: 10.1088/1361-6528/aaa0a0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Department of Physical and Chemical Science, University of L'Aquila, via Vetoio, I-67100, Coppito, L'Aquila, Italy
| | | | | | | | | |
Collapse
|
37
|
Socas-Rodríguez B, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MÁ. Recent applications of nanomaterials in food safety. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Dispersive multi-walled carbon nanotubes extraction of benzenesulfonamides, benzotriazoles, and benzothiazoles from environmental waters followed by microwave desorption and HPLC-HESI-MS/MS. Anal Bioanal Chem 2017; 409:6709-6718. [DOI: 10.1007/s00216-017-0627-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
39
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
40
|
Hemasa AL, Naumovski N, Maher WA, Ghanem A. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. NANOMATERIALS 2017; 7:nano7070186. [PMID: 28718832 PMCID: PMC5535252 DOI: 10.3390/nano7070186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Abstract
Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.
Collapse
Affiliation(s)
- Ayman L Hemasa
- Chirality Program, Biomedical Science, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - Nenad Naumovski
- Collaborative Research in Bioactives and Biomarkers Group (CRIBB), University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - William A Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - Ashraf Ghanem
- Chirality Program, Biomedical Science, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| |
Collapse
|
41
|
Magnetic nanoparticles—carbon nanotubes hybrid composites for selective solid-phase extraction of polycyclic aromatic hydrocarbons and determination by ultra-high performance liquid chromatography. Anal Bioanal Chem 2017; 409:5125-5132. [DOI: 10.1007/s00216-017-0459-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
42
|
Kędziora K, Wasiak W. Extraction media used in needle trap devices—Progress in development and application. J Chromatogr A 2017; 1505:1-17. [DOI: 10.1016/j.chroma.2017.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
43
|
de Faria HD, Rosa MA, Silveira AT, Figueiredo EC. Direct extraction of tetracyclines from bovine milk using restricted access carbon nanotubes in a column switching liquid chromatography system. Food Chem 2017; 225:98-106. [DOI: 10.1016/j.foodchem.2017.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
44
|
Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples. Food Chem 2017; 223:8-15. [DOI: 10.1016/j.foodchem.2016.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022]
|
45
|
Paszkiewicz M, Caban M, Bielicka-Giełdoń A, Stepnowski P. Optimization of a procedure for the simultaneous extraction of polycyclic aromatic hydrocarbons and metal ions by functionalized and non-functionalized carbon nanotubes as effective sorbents. Talanta 2017; 165:405-411. [DOI: 10.1016/j.talanta.2016.10.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023]
|
46
|
Application of carbon nanosorbent for PRiME pass-through cleanup of 10 selected local anesthetic drugs in human plasma samples. Anal Chim Acta 2017; 960:72-80. [DOI: 10.1016/j.aca.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
|
47
|
Ayazi Z. Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst 2017; 142:721-739. [DOI: 10.1039/c6an02744j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a general overview of the recent trends for the preparation of nanocomposites and their applications in microextraction techniques.
Collapse
Affiliation(s)
- Zahra Ayazi
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
48
|
Carbon nanotube-polymer composite for effervescent pipette tip solid phase microextraction of alkaloids and flavonoids from Epimedii herba in biological samples. Talanta 2017; 162:10-18. [DOI: 10.1016/j.talanta.2016.09.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
|
49
|
Adam V, Vaculovicova M. Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 2017; 142:849-857. [DOI: 10.1039/c6an02608g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials are, in analytical science, used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection and identification of target molecules.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
50
|
Yanez H JE, Wang Z, Lege S, Obst M, Roehler S, Burkhardt CJ, Zwiener C. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles. WATER RESEARCH 2017; 108:78-85. [PMID: 27816193 DOI: 10.1016/j.watres.2016.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/29/2016] [Accepted: 10/22/2016] [Indexed: 05/13/2023]
Abstract
Carbon nanotube (CNT) membranes were produced from multi-walled CNTs by a filtration technique and used for the removal of the betablocker metoprolol by adsorptive and reactive processes. The reactivity of CNT membranes was enhanced by nanoparticulate zero-valent iron (NZVI) which was deposited on the CNT membranes by pulsed voltammetry applying defined number of pulses (Fe-CNT (100) and Fe-CNT (400) membranes). Surface analysis with SEM showed iron nanoparticle sizes between 19 and 425 nm. Pore size distribution for the different membranes was determined by capillary flow porometry (Galwick fluid). Pore size distribution for all membranes was similar (40 nm), which resulted in a water permeability typical for microfiltration membranes. Metoprolol was removed by the CNT membrane only by sorption, whereas the Fe-CNT membrane revealed also metoprolol degradation due to Fenton type reactions. Further application of electrochemical potentials on both the CNT and the Fe-CNT membranes improved the removal efficiencies to 74% for CNT membranes at 1 V and to 97% for Fe-CNT (400) membranes at 1 V. Seven transformation products have been identified for metoprolol by high-resolution mass spectrometry when electrochemical degradation was performed with CNT and Fe-CNT membranes. Additionally, two of the identified transformation products (TPs) were also observed for Fe-CNT membranes without the application of electrochemical potential. However, only 10% of the degraded metoprolol could be explained by the formation of TPs.
Collapse
Affiliation(s)
- Jorge E Yanez H
- Eberhard Karls Universität Tübingen, Center for Applied Geosciences (ZAG), Environmental Analytical Chemistry, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Zi Wang
- Eberhard Karls Universität Tübingen, Center for Applied Geosciences (ZAG), Environmental Analytical Chemistry, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Sascha Lege
- Eberhard Karls Universität Tübingen, Center for Applied Geosciences (ZAG), Environmental Analytical Chemistry, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Martin Obst
- Universität Bayreuth, Bayreuth Center of Ecology and Environmental Research, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian Roehler
- NMI Natural and Medical Sciences Institute, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Claus J Burkhardt
- NMI Natural and Medical Sciences Institute, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Christian Zwiener
- Eberhard Karls Universität Tübingen, Center for Applied Geosciences (ZAG), Environmental Analytical Chemistry, Hölderlinstr. 12, 72074 Tübingen, Germany.
| |
Collapse
|