1
|
Zhu M, Lamont L, Maas P, Harms AC, Beekman M, Slagboom PE, Dubbelman AC, Hankemeier T. Matrix effect evaluation using multi-component post-column infusion in untargeted hydrophilic interaction liquid chromatography-mass spectrometry plasma metabolomics. J Chromatogr A 2025; 1740:465580. [PMID: 39644743 DOI: 10.1016/j.chroma.2024.465580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Metabolomics based on hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (MS) is a powerful tool for polar metabolite identification and quantification to further contribute to biomarker discovery and disease mechanism elucidation. However, matrix effect (ME), which may lead to altered ionization efficiency due to co-eluting compounds, is a significant challenge during biological analysis. Therefore, ME evaluation plays a crucial role during method development. Two approaches to evaluate ME are using stable isotope labelled-internal standards (SIL-IS) and post-column infusion (PCI) of standards. In this study, we developed an untargeted HILIC-MS method by applying four PCI standards for ME evaluation. We found PCI is a compelling approach for ME assessment compared to SIL-IS method due to its advantage in untargeted analysis. Through the ME evaluation and chromatographic performance comparison of 18 SIL standards across three columns and three different mobile phase pH conditions, our findings revealed that the BEH-Z-HILIC column operated at pH 4 with 10 mM ammonium formate exhibited minimal ME and superior performance. The method showed exceptional linearity (R² > 0.98), reliable repeatability (RSD < 15 %), good inter-day precision (RSD < 30 %), and acceptable recovery (>75 %) for all SIL standards. Absolute matrix effect (AME) and relative matrix effect (RME) assessment in three plasma donors revealed a high consistency between PCI and SIL-IS approaches. Finally, this method coupled with the PCI approach was applied to 40 plasma samples. Fifty endogenous compounds were detected and their AME and RME were evaluated. Results showed that many compounds experienced severe ion suppression, though their ME variation between 40 samples is low. In conclusion, PCI method is a robust alternative for monitoring ME and evaluating ME of endogenous compounds during untargeted method optimization and biological analysis.
Collapse
Affiliation(s)
- Mengle Zhu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Pascal Maas
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Amy C Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne-Charlotte Dubbelman
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands; Institute of Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, the Netherlands.
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
2
|
Reynolds KE, Napier M, Fei F, Green K, Scott AL. Dysregulated Purinergic Signalling in Fragile X Syndrome Cortical Astrocytes. Neuromolecular Med 2024; 26:36. [PMID: 39254908 DOI: 10.1007/s12017-024-08802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The symptoms of fragile X syndrome (FXS), caused by a single gene mutation to Fmr1, have been increasingly linked to disordered astrocyte signalling within the cerebral cortex. We have recently demonstrated that the purinergic signalling pathway, which utilizes nucleoside triphosphates and their metabolites to facilitate bidirectional glial and glial-neuronal interactions, is upregulated in cortical astrocytes derived from the Fmr1 knockout (KO) mouse model of FXS. Heightened Fmr1 KO P2Y purinergic receptor levels were correlated with prolonged intracellular calcium release, elevated synaptogenic protein secretion, and hyperactivity of developing circuits. However, due to the relative lack of sensitive and reproducible quantification methods available for measuring purines and pyrimidines, determining the abundance of these factors in Fmr1 KO astrocytes was limited. We therefore developed a hydrophilic interaction liquid chromatography protocol coupled with mass spectrometry to compare the abundance of intracellular and extracellular purinergic molecules between wildtype and Fmr1 KO mouse astrocytes. Significant differences in the concentrations of UDP, ATP, AMP, and adenosine intracellular stores were found within Fmr1 KO astrocytes relative to WT. The extracellular level of adenosine was also significantly elevated in Fmr1 KO astrocyte-conditioned media in comparison to media collected from WT astrocytes. Glycosylation of the astrocyte membrane-bound CD39 ectonucleotidase, which facilitates ligand breakdown following synaptic release, was also elevated in Fmr1 KO astrocyte cultures. Together, these differences demonstrated further dysregulation of the purinergic signalling system within Fmr1 KO cortical astrocytes, potentially leading to significant alterations in FXS purinergic receptor activation and cellular pathology.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew Napier
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Fan Fei
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
- Moderna Inc., Norwood, MA, USA
| | - Kirk Green
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
| | - Angela L Scott
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Yuan G, Shi J, Zeng C, Shi H, Yang Y, Zhang C, Ma T, Wu M, Jia Z, Du J, Zou C, Ma L, Pan G, Shen Y. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. BMC Genomics 2024; 25:733. [PMID: 39080512 PMCID: PMC11288080 DOI: 10.1186/s12864-024-10656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Gibberella ear rot (GER) is one of the most devastating diseases in maize growing areas, which directly reduces grain yield and quality. However, the underlying defense response of maize to pathogens infection is largely unknown. RESULTS To gain a comprehensive understanding of the defense response in GER resistance, two contrasting inbred lines 'Nov-82' and 'H10' were used to explore transcriptomic profiles and defense-related phytohormonal alterations during Fusarium graminearum infection. Transcriptomic analysis revealed 4,417 and 4,313 differentially expressed genes (DEGs) from the Nov-82 and H10, respectively, and 647 common DEGs between the two lines. More DEGs were obviously enriched in phenylpropanoid biosynthesis, secondary metabolites biosynthesis, metabolic process and defense-related pathways. In addition, the concentration of the defense-related phytohormones, jasmonates (JAs) and salicylates (SAs), was greatly induced after the pathogen infection. The level of JAs in H10 was more higher than in Nov-82, whereas an opposite pattern for the SA between the both lines. Integrated analysis of the DEGs and the phytohormones revealed five vital modules based on co-expression network analysis according to their correlation. A total of 12 hub genes encoding fatty acid desaturase, subtilisin-like protease, ethylene-responsive transcription factor, 1-aminocyclopropane-1-carboxylate oxidase, and sugar transport protein were captured from the key modules, indicating that these genes might play unique roles in response to pathogen infection, CONCLUSIONS: Overall, our results indicate that large number DEGs related to plant disease resistance and different alteration of defensive phytohormones were activated during F. graminearum infection, providing new insight into the defense response against pathogen invasion, in addition to the identified hub genes that can be further investigated for enhancing maize GER resistance.
Collapse
Affiliation(s)
- Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiahao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoya Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuntian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tieli Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyang Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheyi Jia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
4
|
Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R, Zhang W, Rao Y. Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 2023; 12:RP86972. [PMID: 37440432 PMCID: PMC10393021 DOI: 10.7554/elife.86972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.
Collapse
Affiliation(s)
- Xiaobo Jia
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | | | - Sihan Yu
- Chinese Institute for Brain ResearchBeijingChina
| | | | - Lifen Jiang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Renbo Mao
- Chinese Institute for Brain ResearchBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Yi Rao
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Liu H, Yokoyama F, Ishizuka S. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159319. [PMID: 37075973 DOI: 10.1016/j.bbalip.2023.159319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
12α-Hydroxylated (12αOH) bile acids (BAs) selectively increase with high-fat diet intake. Dietary supplementation with cholic acid (CA) in rats is a possible strategy to reveal the causal link between 12αOH BAs and hepatic steatosis. The present study aimed to investigate the metabolic mechanism underlying the effect of 12αOH BAs on hepatic steatosis. Male WKAH rats were fed either a control (Ct) or CA-supplemented diet (0.5 g/kg). After the 12-week intervention, the CA diet elevated the 12αOH BA levels in the gut-liver axis. CA-fed rats showed greater hepatic lipid accumulation than in the Ct group, regardless of the dietary energy balance. Untargeted metabolomics suggested marked differences in the fecal metabolome of rats subjected to the CA diet compared with that of Ct, characterized by the depletion of fatty acids and enrichment of amino acids and amines. Moreover, the liver metabolome differed in the CA diet group, characterized by an alteration in redox-related pathways. The CA diet elevated nicotinamide adenine dinucleotide consumption owing to the activation of poly(ADP-ribose) polymerase 1, resulting in impaired peroxisome proliferator-activated receptor α signaling in the liver. The CA diet increased sedoheptulose 7-phosphate, and enhanced glucose-6-phosphate dehydrogenase activity, suggesting promotion of the pentose phosphate pathway that generates reducing equivalents. Integrated analysis of the gut-liver metabolomic data revealed the role of deoxycholic acid and its liver counterpart in mediating these metabolic alterations. These observations suggest that alterations in metabolites induced by 12αOH BAs in the gut-liver axis contribute to the enhancement of liver lipid accumulation.
Collapse
Affiliation(s)
- Hongxia Liu
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Fumika Yokoyama
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
6
|
Girel S, Guillarme D, Fekete S, Rudaz S, González-Ruiz V. Investigation of several chromatographic approaches for untargeted profiling of central carbon metabolism. J Chromatogr A 2023; 1697:463994. [PMID: 37086708 DOI: 10.1016/j.chroma.2023.463994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Monitoring the central carbon metabolism (CCM) network using liquid chromatography/mass spectrometry (LC-MS) analysis is hampered by the diverse chemical nature of its analytes, which are extremely difficult to analyze using single chromatographic conditions. Furthermore, CCM-related compounds present non-specific adsorption on metal surfaces, causing detrimental chromatographic effects and sensitivity loss. In this study, polar reversed-phase, mixed-mode (MMC), and zwitterionic hydrophilic interaction chromatography (HILIC) featuring low-adsorption hardware were investigated towards untargeted analysis of biological samples with a focus on energy metabolism-related analytes. Best results were achieved with sulfoalkylbetaine HILIC with different supports, where polymeric option featured the highest coverage and inert hybrid silica facilitated best throughput and kinetic performance at a cost of less selectivity for small carboxylic acids. MMC demonstrated excellent performance for strongly anionic analytes such as multiresidue phosphates. The obtained experimental data also suggested that an additional hydrophilic modulation might be necessary to facilitate better resolution of carboxylic acids in zHILIC mode, as found during the application of the developed method to study the effect of two different mutations on the energy metabolism of S. aureus.
Collapse
Affiliation(s)
- Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland.
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Szabolcs Fekete
- Waters Corporation, located in CMU-Rue Michel-Servet 1, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
7
|
Floros DJ, Xu K, Berthiller F, Schwartz-Zimmermann H. Comparison of chromatographic conditions for the targeted tandem mass spectrometric determination of 354 mammalian metabolites. J Chromatogr A 2023; 1697:463985. [PMID: 37062154 DOI: 10.1016/j.chroma.2023.463985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Metabolomics is becoming increasingly popular in livestock research, but no single analytical method can cover the entire metabolome. As such, we compared similar and complementary chromatographic methods with respect to analyte coverage and chromatographic properties of mammalian metabolites. We investigated 354 biologically relevant primary metabolites from 19 compound classes including amino acids, bile acids, biogenic amines, carboxylic acids, lipids, nucleotides and sugars. A total of 2063 selected reaction monitoring transitions were optimized on a triple quadrupole mass spectrometer. We then determined the retention profiles and peak parameters of our compounds using an anion exchange chromatography (AIC), three reversed-phase (RP) and three hydrophilic interaction liquid chromatography (HILIC) methods. On average, HILIC methods covered 54% of all metabolites with retention factors >1, while average RP coverage was 41%. In contrast to RP, HILIC methods could also retain polar metabolites such as amino acids and biogenic amines. Carboxylic acids, nucleotides, and sugar related compounds were best separated by AIC or zwitterionic pHILIC with alkaline eluents. Combining two complementary HILIC and RP methods increased the library coverage to 92%. By further including important short chain fatty acids, a combination of HILIC, RP and AIC methods achieved a coverage of 97%. The resulting dataset of LC and MS/MS parameters will facilitate the development of tailor-made quantitative targeted LC-MS/MS methods to investigate the mammalian metabolome.
Collapse
Affiliation(s)
- Dimitrios J Floros
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Kangkang Xu
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Heidi Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
8
|
Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. SEPARATIONS 2023. [DOI: 10.3390/separations10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
One of the fundamental attributes of a liquid chromatography column is its stability when exposed to acidic and basic mobile phases. However, there have been relatively few reports to date on the stability of hydrophilic interaction chromatography (HILIC) columns. Here, we report the results of stability evaluations carried out for HILIC columns packed with ethylene-bridged hybrid or silica particles using accelerated conditions, employing a 100% aqueous pH 11.3 ammonium bicarbonate mobile phase at 70 °C. Under these conditions, the primary mode of column failure was a loss of efficiency due to the formation of voids resulting from the hydrolysis of the particles. We investigated the dependence of stability on the surface area of both unbonded and sulfobetaine-bonded ethylene-bridged hybrid stationary phases. The results show a clear trend of stability increasing as the surface area decreases. Several commercially available HILIC columns that are recommended for use with high-pH mobile phases were also evaluated. The results show times to 50% loss of the initial efficiency ranging from 0.3 to 9.9 h. Columns containing unbonded, sulfobetaine-bonded or diol-bonded ethylene-bridged hybrid stationary phases had longer lifetimes than amino-bonded silica or sulfobetaine-bonded, hybrid-coated, superficially porous silica columns.
Collapse
|
9
|
Ali AM, Monaghan C, Muggeridge DJ, Easton C, Watson DG. LC/MS-based discrimination between plasma and urine metabolomic changes following exposure to ultraviolet radiation by using data modelling. Metabolomics 2023; 19:13. [PMID: 36781606 PMCID: PMC9925544 DOI: 10.1007/s11306-023-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION This study sought to compare between metabolomic changes of human urine and plasma to investigate which one can be used as best tool to identify metabolomic profiling and novel biomarkers associated to the potential effects of ultraviolet (UV) radiation. METHOD A pilot study of metabolomic patterns of human plasma and urine samples from four adult healthy individuals at before (S1) and after (S2) exposure (UV) and non-exposure (UC) were carried out by using liquid chromatography-mass spectrometry (LC-MS). RESULTS The best results which were obtained by normalizing the metabolites to their mean output underwent to principal components analysis (PCA) and Orthogonal Partial least squares-discriminant analysis (OPLS-DA) to separate pre-from post-of exposure and non-exposure of UV. This separation by data modeling was clear in urine samples unlike plasma samples. In addition to overview of the scores plots, the variance predicted-Q2 (Cum), variance explained-R2X (Cum) and p-value of the cross-validated ANOVA score of PCA and OPLS-DA models indicated to this clear separation. Q2 (Cum) and R2X (Cum) values of PCA model for urine samples were 0.908 and 0.982, respectively, and OPLS-DA model values were 1.0 and 0.914, respectively. While these values in plasma samples were Q2 = 0.429 and R2X = 0.660 for PCA model and Q2 = 0.983 and R2X = 0.944 for OPLS-DA model. LC-MS metabolomic analysis showed the changes in numerous metabolic pathways including: amino acid, lipids, peptides, xenobiotics biodegradation, carbohydrates, nucleotides, Co-factors and vitamins which may contribute to the evaluation of the effects associated with UV sunlight exposure. CONCLUSIONS The results of pilot study indicate that pre and post-exposure UV metabolomics screening of urine samples may be the best tool than plasma samples and a potential approach to predict the metabolomic changes due to UV exposure. Additional future work may shed light on the application of available metabolomic approaches to explore potential predictive markers to determine the impacts of UV sunlight.
Collapse
Affiliation(s)
- Ali Muhsen Ali
- College of Medicine, University of Kerbala, Karbala, Iraq.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Chris Monaghan
- Institute for Clinical Exercise and Health Science, University of theWest of Scotland, Almada Street, Hamilton, Blantyre, ML3 0JB, UK
| | | | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of theWest of Scotland, Almada Street, Hamilton, Blantyre, ML3 0JB, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
10
|
Diamantidou D, Sampsonidis I, Liapikos T, Gika H, Theodoridis G. Liquid chromatography-mass spectrometry metabolite library for metabolomics: Evaluating column suitability using a scoring approach. J Chromatogr A 2023; 1690:463779. [PMID: 36681007 DOI: 10.1016/j.chroma.2023.463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Untargeted metabolomic studies require an extensive set of analyte (metabolic) information to be obtained from each analyzed sample. Thus, highly selective, and efficient analytical methodologies together with reversed-phase (RP) or hydrophilic interaction liquid chromatography (HILIC) are usually applied in these approaches. Here, we present a performance comparison of five different chromatographic columns (C18, C8, RP Amide, zicHILIC, OH5 HILIC phases) to evaluate their sufficiency of analysis for a large analyte library, consisting of 817 authentic standards. By taking into account experimental chromatographic parameters (i.e. retention time, peak tailing and asymmetry, FWHM, signal-to-noise ratio and peak area and intensity), the proposed column scoring approach provides a simple criterion that may assist analysis in the select of a stationary phase for those metabolites of interest. RPLC methods offered better results regarding metabolic library coverage, while the zicHILIC stationary phase delivered a bigger number of properly eluted compounds. This study demonstrates the importance of choosing the most suitable configuration for the analysis of different metabolic classes.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001; FoodOmicsGR Research Infrastructure, AUTh node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001
| | - Ioannis Sampsonidis
- FoodOmicsGR Research Infrastructure, AUTh node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001; Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, GR, 574 00, Greece.
| | - Theodoros Liapikos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001; FoodOmicsGR Research Infrastructure, AUTh node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001; School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001; FoodOmicsGR Research Infrastructure, AUTh node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001
| |
Collapse
|
11
|
Lohse M, Santangeli M, Steininger-Mairinger T, Oburger E, Reemtsma T, Lechtenfeld OJ, Hann S. The effect of root hairs on exudate composition: a comparative non-targeted metabolomics approach. Anal Bioanal Chem 2023; 415:823-840. [PMID: 36547703 PMCID: PMC9883335 DOI: 10.1007/s00216-022-04475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Root exudation is a major pathway of organic carbon input into soils. It affects soil physical properties, element solubility as well as speciation, and impacts the microbial community in the rhizosphere. Root exudates contain a large number of primary and secondary plant metabolites, and the amount and composition are highly variable depending on plant species and developmental stage. Detailed information about exudate composition will allow for a better understanding of exudate-driven rhizosphere processes and their feedback loops. Although non-targeted metabolomics by high-resolution mass spectrometry is an established tool to characterize root exudate composition, the extent and depth of the information obtained depends strongly on the analytical approach applied. Here, two genotypes of Zea mays L., differing in root hair development, were used to compare six mass spectrometric approaches for the analysis of root exudates. Reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography combined with time-of-flight mass spectrometry (LC-TOF-MS), as well as direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS), were applied with positive and negative ionization mode. By using the same statistical workflow, the six approaches resulted in different numbers of detected molecular features, ranging from 176 to 889, with a fraction of 48 to 69% of significant features (fold change between the two genotypes of > 2 and p-value < 0.05). All approaches revealed the same trend between genotypes, namely up-regulation of most metabolites in the root hair defective mutant (rth3). These results were in agreement with the higher total carbon and nitrogen exudation rate of the rth3-mutant as compared to the corresponding wild-type maize (WT). However, only a small fraction of features were commonly found across the different analytical approaches (20-79 features, 13-31% of the rth3-mutant up-regulated molecular formulas), highlighting the need for different mass spectrometric approaches to obtain a more comprehensive view into the composition of root exudates. In summary, 111 rth3-mutant up-regulated compounds (92 different molecular formulas) were detected with at least two different analytical approaches, while no WT up-regulated compound was found by both, LC-TOF-MS and DI-FT-ICR-MS. Zea mays L. exudate features obtained with multiple analytical approaches in our study were matched against the metabolome database of Zea mays L. (KEGG) and revealed 49 putative metabolites based on their molecular formula.
Collapse
Affiliation(s)
- Martin Lohse
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Michael Santangeli
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430, Tulln an Der Donau, Austria
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430, Tulln an Der Donau, Austria.
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
- ProVIS, Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| |
Collapse
|
12
|
Abstract
Metabolomics is a continuously dynamic field of research that is driven by demanding research questions and technological advances alike. In this review we highlight selected recent and ongoing developments in the area of mass spectrometry-based metabolomics. The field of view that can be seen through the metabolomics lens can be broadened by adoption of separation techniques such as hydrophilic interaction chromatography and ion mobility mass spectrometry (going broader). For a given biospecimen, deeper metabolomic analysis can be achieved by resolving smaller entities such as rare cell populations or even single cells using nano-LC and spatially resolved metabolomics or by extracting more useful information through improved metabolite identification in untargeted metabolomic experiments (going deeper). Integration of metabolomics with other (omics) data allows researchers to further advance in the understanding of the complex metabolic and regulatory networks in cells and model organisms (going further). Taken together, diverse fields of research from mechanistic studies to clinics to biotechnology applications profit from these technological developments.
Collapse
Affiliation(s)
- Sofia Moco
- Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
14
|
Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. SEPARATIONS 2022. [DOI: 10.3390/separations9060146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Stability as a function of mobile phase pH is an important consideration when selecting a chromatographic column. While the pH stability of reversed-phase columns is widely studied, there are relatively few reports of the stability of hydrophilic interaction chromatography (HILIC) columns. We evaluated the stability of silica and ethylene-bridged hybrid HILIC columns when used with mobile phases containing basic buffers. The predominant mode of column degradation observed in our studies was a decrease in efficiency due to voiding, resulting from the hydrolysis of the silica particles. Associated with this were increases in tailing factors. Retention factor changes were also noted but were smaller than the efficiency losses. The dependence of the rate of efficiency decrease on the key variables of temperature, mobile phase pH and water content were studied for an unbonded silica column. The effect of the acetonitrile concentration on the pH of the mixed aqueous/acetonitrile mobile phases was also investigated. Using conditions found to cause a 50% decrease in efficiency after approximately five hours of exposure to the basic solution, we evaluated eight different commercially available HILIC columns containing silica or ethylene-bridged hybrid particles. The results show large differences between the stability of the silica and ethylene-bridged hybrid particle stationary phases, with the latter exhibiting greater stability.
Collapse
|
15
|
Lioupi A, Virgiliou C, Walter TH, Smith KM, Rainville P, Wilson ID, Theodoridis G, Gika HG. Application of a hybrid zwitterionic hydrophilic interaction liquid chromatography column in metabolic profiling studies. J Chromatogr A 2022; 1672:463013. [DOI: 10.1016/j.chroma.2022.463013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023]
|
16
|
Pal A, Iyer MS, Srinivasan S, Narain Seshasayee AS, Venkatesh KV. Global pleiotropic effects in adaptively evolved Escherichia coli lacking CRP reveal molecular mechanisms that define the growth physiology. Open Biol 2022; 12:210206. [PMID: 35167766 PMCID: PMC8846999 DOI: 10.1098/rsob.210206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in Escherichia coli results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions. Further, we disentangle the growth-mediated effects from the CRP regulation-specific effects on these metabolic pathways. We quantitatively illustrate that the loss of CRP perturbs proteome efficiency, as evident from metabolic as well as ribosomal proteome fractions, that corroborated with intracellular metabolite profiles. To address how E. coli copes with such systemic defect, we evolved Δcrp mutant in the presence of glucose. Besides acquiring mutations in the promoter of glucose transporter ptsG, the evolved populations recovered the metabolic pathways to their pre-perturbed state coupled with metabolite re-adjustments, which altogether enabled increased growth. By contrast to Δcrp mutant, the evolved strains remodelled their proteome efficiency towards biomass synthesis, albeit at the expense of carbon efficiency. Overall, we comprehensively illustrate the genetic and metabolic basis of pleiotropic effects, fundamental for understanding the growth physiology.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Walter TH, Alden BA, Berthelette K, Field JA, Lawrence NL, McLaughlin J, Patel AV. Characterization of a highly stable zwitterionic hydrophilic interaction chromatography stationary phase based on hybrid organic/inorganic particles. J Sep Sci 2021; 45:1389-1399. [PMID: 34937126 PMCID: PMC9487986 DOI: 10.1002/jssc.202100859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic/inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of columns packed with this material were determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2 to 10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed greatly improved peak shape. This article is protected by copyright. All rights reserved.
Collapse
|
18
|
Lebeau-Roche E, Daniele G, Fildier A, Turies C, Dedourge-Geffard O, Porcher JM, Geffard A, Vulliet E. An optimized LC-HRMS untargeted metabolomics workflow for multi-matrices investigations in the three-spined stickleback. PLoS One 2021; 16:e0260354. [PMID: 34843526 PMCID: PMC8629232 DOI: 10.1371/journal.pone.0260354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental metabolomics has become a growing research field to understand biological and biochemical perturbations of organisms in response to various abiotic or biotic stresses. It focuses on the comprehensive and systematic analysis of a biologic system’s metabolome. This allows the recognition of biochemical pathways impacted by a stressor, and the identification of some metabolites as biomarkers of potential perturbations occurring in a body. In this work, we describe the development and optimization of a complete reliable methodology based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) for untargeted metabolomics studies within a fish model species, the three-spined stickleback (Gasterosteus aculeatus). We evaluated the differences and also the complementarities between four different matrices (brain, gills, liver and whole fish) to obtain metabolome information. To this end, we optimized and compared sample preparation and the analytical method, since the type and number of metabolites detected in any matrix are closely related to these latter. For the sample preparation, a solid-liquid extraction was performed on a low quantity of whole fish, liver, brain, or gills tissues using combinations of methanol/water/heptane. Based on the numbers of features observed in LC-HRMS and on the responses of analytical standards representative of different metabolites groups (amino acids, sugars…), we discuss the influence of the nature, volume, and ratio of extraction solvents, the sample weight, and the reconstitution solvent. Moreover, the analytical conditions (LC columns, pH and additive of mobile phases and ionization modes) were also optimized so as to ensure the maximum metabolome coverages. Thus, two complementary chromatographic procedures were combined in order to cover a broader range of metabolites: a reversed phase separation (RPLC) on a C18 column followed by detection with positive ionization mode (ESI+) and a hydrophilic interaction chromatography (HILIC) on a zwitterionic column followed by detection with negative ionization mode (ESI-). This work provides information on brain, gills, liver, vs the whole body contribution to the stickleback metabolome. These information would help to guide ecotoxicological and biomonitoring studies.
Collapse
Affiliation(s)
- Emmanuelle Lebeau-Roche
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Gaëlle Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Cyril Turies
- Institut National de l’Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, Verneuil-en-Halatte, France
| | - Odile Dedourge-Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
| | - Jean-Marc Porcher
- Institut National de l’Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, Verneuil-en-Halatte, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
- * E-mail:
| |
Collapse
|
19
|
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metabolomics studies rely on the availability of suitable analytical platforms to determine a vast collection of chemically diverse metabolites in complex biospecimens. Liquid chromatography-mass spectrometry operated under reversed-phase conditions is the most commonly used platform in metabolomics, which offers extensive coverage for nonpolar and moderately polar compounds. However, complementary techniques are required to obtain adequate separation of polar and ionic metabolites, which are involved in several fundamental metabolic pathways. This chapter focuses on the main mass-spectrometry-based analytical platforms used to determine polar and/or ionizable compounds in metabolomics (GC-MS, HILIC-MS, CE-MS, IPC-MS, and IC-MS). Rather than comprehensively describing recent applications related to GC-MS, HILIC-MS, and CE-MS, which have been covered in a regular basis in the literature, a brief discussion focused on basic principles, main strengths, limitations, as well as future trends is presented in this chapter, and only key applications with the purpose of illustrating important analytical aspects of each platform are highlighted. On the other hand, due to the relative novelty of IPC-MS and IC-MS in the metabolomics field, a thorough compilation of applications for these two techniques is presented here.
Collapse
|
20
|
Xu M, Legradi J, Leonards P. Cross platform solutions to improve the zebrafish polar metabolome coverage using LC-QTOF MS: Optimization of separation mechanisms, solvent additives, and resuspension solvents. Talanta 2021; 234:122688. [PMID: 34364485 DOI: 10.1016/j.talanta.2021.122688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
Untargeted metabolomics has been widely used for studies with zebrafish embryos. Until now, the number of analytical approaches to determine metabolites in zebrafish is limited, and there is a lack of consensus on the best platforms for comprehensive metabolomics analysis of zebrafish embryos. In addition, the capacity of these methods to detect metabolites is unsatisfactory and the confidence level for identifying compounds is relatively low. To improve the metabolome coverage, we mainly focused on the optimization of separation mechanisms, mobile phase additives, and resuspension solvents based on liquid chromatography (LC) coupling to high-resolution mass spectrometry (HRMS) techniques. Moreover, the procedures for optimizing methods were assessed when taking metabolite profiles in both positive and negative ionization modes into account. Four LC columns were studied: C18, T3, PFP, and HILIC. In positive ionization mode, it was strongly recommended to employ the HILIC approach operated at the neutral condition, which led to the presence of more than 4700 features and the annotation of 151 metabolites, mainly zwitterionic and basic compounds, in comparison to reverse phase (RP)-based methods with less than 1000 features. In negative ionization mode, the PFP column operated at 0.02% acetic acid showed the best performance in terms of metabolite coverage: 3100 metabolic features were detected and 218 metabolites were annotated in zebrafish embryos. Metabolite profiles mainly contained acidic and zwitterionic compounds. HILIC-based platforms were complementary to RP columns when analyzing highly polar metabolites. Additionally, it was preferable to reconstitute zebrafish extracts in 100% water for analysis of metabolites on RP columns, with a 20-30% increase in the number of identified metabolites compared to a 50% water in methanol solution. However, water/methanol (1:9, v/v), as resuspension solution, was advantageous over water/methanol (1:1, v/v) for HILIC analysis showing an 8-15% increase in detected metabolites. In total 336 polar metabolites were annotated by the combination of the optimized HILIC (positive) and PFP (negative) approaches. The largest metabolome coverage of polar metabolites in zebrafish embryos was obtained when three approaches were combined (negative PFP and HILIC, and HILIC positive) resulting in more than 420 annotated compounds.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Phapale P, Palmer A, Gathungu RM, Kale D, Brügger B, Alexandrov T. Public LC-Orbitrap Tandem Mass Spectral Library for Metabolite Identification. J Proteome Res 2021; 20:2089-2097. [PMID: 33529026 DOI: 10.1021/acs.jproteome.0c00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics studies require high-quality spectral libraries for reliable metabolite identification. We have constructed EMBL-MCF (European Molecular Biology Laboratory-Metabolomics Core Facility), an open LC-MS/MS spectral library that currently contains over 1600 fragmentation spectra from 435 authentic standards of endogenous metabolites and lipids. The unique features of the library include the presence of chromatographic profiles acquired with different LC-MS methods and coverage of different adduct ions. The library covers many biologically important metabolites with some unique metabolites and lipids as compared with other public libraries. The EMBL-MCF spectral library is created and shared using an in-house-developed web application at https://curatr.mcf.embl.de/. The library is freely available online and also integrated with other mass spectral repositories.
Collapse
Affiliation(s)
- Prasad Phapale
- Metabolomics Core Facility, EMBL, Heidelberg 69117, Germany
| | - Andrew Palmer
- Metabolomics Core Facility, EMBL, Heidelberg 69117, Germany
| | | | - Dipali Kale
- Heidelberg University Biochemistry Center (BZH), Heidelberg 69120, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg 69120, Germany
| | - Theodore Alexandrov
- Metabolomics Core Facility, EMBL, Heidelberg 69117, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Schäbler S, Amatobi KM, Horn M, Rieger D, Helfrich-Förster C, Mueller MJ, Wegener C, Fekete A. Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation. Cell Mol Life Sci 2020; 77:4939-4956. [PMID: 31960114 PMCID: PMC7658074 DOI: 10.1007/s00018-019-03441-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period01 (per01) clock mutants and Canton-S wildtype (WTCS) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabolites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per01 mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per01 mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per01 did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per01 mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants.
Collapse
Affiliation(s)
- Stefan Schäbler
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Kelechi M Amatobi
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Melanie Horn
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Würzburg Insect Research, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-Von-Sachs-Institute, Biocenter, University of Würzburg, Julius-von-Sachs Platz 2, 97084, Würzburg, Germany.
| |
Collapse
|
23
|
Metabolomics profiling of plasma, urine and saliva after short term training in young professional football players in Saudi Arabia. Sci Rep 2020; 10:19759. [PMID: 33184375 PMCID: PMC7665217 DOI: 10.1038/s41598-020-75755-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolomics profiling was carried out to observe the effect of short-term intensive physical activity on the metabolome of young Saudi professional football players. Urine, plasma and saliva were collected on 2 days pre- and post-training. An Orbitrap Exactive mass spectrometer was used to analyze the samples. A reversed-phase (RP) column was used for the analysis of non-polar plasma metabolites, and a ZIC-pHILIC column was used for the analysis of plasma, saliva and urine. mzMine was used to extract the data, and the results were modelled using Simca-P 14.1 software. There was no marked variation in the metabolite profiles between pre day 1 and 2 or between post day 1 and 2 according to principal components analysis (PCA). When orthogonal partial least squares (OPLSDA) modelling was also used, and then models could be fitted based on a total number of metabolites of 75, 16 and 32 for urine, plasma and saliva using hydrophilic interaction chromatography (HILIC) and 6 for analysis of plasma with reversed-phase (RP) chromatography respectively. The present study concludes that acylcarnitine may increase post-exercise in football players suggesting that they may burn fat rather than glucose. The levels of carnitine metabolites in plasma post-exercise could provide an important indicator of fitness.
Collapse
|
24
|
Hydrophilic Liquid Chromatography versus Reversed-Phase Liquid Chromatography in the Absence and the Presence of 1-Hexyl-3-methylimidazolium Chloride for the Analysis of Basic Compounds. SEPARATIONS 2020. [DOI: 10.3390/separations7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In reversed-phase liquid chromatography (RPLC), positively charged basic compounds yield broad and asymmetric peaks, as a result of ionic interactions with free silanols that remain on conventional silica-based columns. Diverse solutions have been proposed to mask the silanophilic activity, which is translated to an improved peak shape. In this work, the chromatographic performance of hydrophilic interaction liquid chromatography (HILIC) was evaluated as an alternative to the addition of an ionic liquid (IL) to the aqueous-organic mobile phase used with RPLC columns, for the analysis of eight β-adrenoceptor antagonists. ILs change the behavior of RPLC stationary phases owing to adsorption on their surface. Meanwhile, in HILIC, a layer of adsorbed water is formed on the stationary phase surface. The association of cationic basic compounds with the adsorbed additive ions, hydrophilic partitioning on the HILIC columns, and other interactions, give rise to complex retention mechanisms. The chromatographic behavior was examined in terms of retention, elution strength, selectivity, peak shape and resolution, using acetonitrile-water mobile phases buffered at pH 3. Both chromatographic modes, RPLC with added IL and HILIC, proved to be a viable solution to the problem of poor peak shape for basic compounds.
Collapse
|
25
|
Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020; 278:102141. [PMID: 32213350 DOI: 10.1016/j.cis.2020.102141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, zwitterionic polymers have been frequently reported to modify various surfaces to enhance hydrophilicity, antifouling and antibacterial properties, which show significant potentials particularly in biological systems. This review focuses on the fabrication, properties and various applications of zwitterionic polymer grafted surfaces. The "graft-from" and "graft-to" strategies, surface grafting copolymerization and post zwitterionization methods were adopted to graft lots type of the zwitterionic polymers on different inorganic/organic surfaces. The inherent hydrophilicity and salt affinity of the zwitterionic polymers endow the modified surfaces with antifouling, antibacterial and lubricating properties, thus the obtained zwitterionic surfaces show potential applications in biosystems. The zwitterionic polymer grafted membranes or stationary phases can effectively separate plasma, water/oil, ions, biomolecules and polar substrates. The nanomedicines with zwitterionic polymer shells have "stealth" effect in the delivery of encapsulated drugs, siRNA or therapeutic proteins. Moreover, the zwitterionic surfaces can be utilized as wound dressing, self-healing or oil extraction materials. The zwitterionic surfaces are expected as excellent support materials for biosensors, they are facing the severe challenges in the surface protection of marine facilities, and the dense ion pair layers may take unexpected role in shielding the grafted surfaces from strong electromagnetic field.
Collapse
|
26
|
Qiao L, Yu C, Sun R. Preparation and comparison of three zwitterionic stationary phases for hydrophilic interaction liquid chromatography. J Sep Sci 2020; 43:1071-1079. [DOI: 10.1002/jssc.201901087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Lizhen Qiao
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Chunmei Yu
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Ruiting Sun
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| |
Collapse
|
27
|
Alqarni AM, Dissanayake T, Nelson DJ, Parkinson JA, Dufton MJ, Ferro VA, Watson DG. Metabolomic Profiling of the Immune Stimulatory Effect of Eicosenoids on PMA-Differentiated THP-1 Cells. Vaccines (Basel) 2019; 7:vaccines7040142. [PMID: 31600945 PMCID: PMC6963534 DOI: 10.3390/vaccines7040142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Honey bee venom has been established to have significant effect in immunotherapy. In the present study, (Z)-11-eicosenol-a major constituent of bee venom, along with its derivations methyl cis-11-eicosenoate and cis-11-eicosenoic acid, were synthesised to investigate their immune stimulatory effect and possible use as vaccine adjuvants. Stimuli that prime and activate the immune system have exerted profound effects on immune cells, particularly macrophages; however, the effectiveness of bee venom constituents as immune stimulants has not yet been established. Here, the abilities of these compounds to act as pro-inflammatory stimuli were assessed, either alone or in combination with lipopolysaccharide (LPS), by examining the secretion of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 by THP-1 macrophages. The compounds clearly increased the levels of IL-1β and decreased IL-10, whereas a decrease in IL-6 levels suggested a complex mechanism of action. A more in-depth profile of macrophage behaviour was therefore obtained by comprehensive untargeted metabolic profiling of the cells using liquid chromatography mass spectrometry (LC-MS) to confirm the ability of the eicosanoids to trigger the immune system. The level of 358 polar and 315 non-polar metabolites were changed significantly (p < 0.05) by all treatments. The LPS-stimulated production of most of the inflammatory metabolite biomarkers in glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, purine, pyrimidine and fatty acids metabolism were significantly enhanced by all three compounds, and particularly by methyl cis-11-eicosenoate and cis-11-eicosenoic acid. These findings support the proposed actions of (Z)-11-eicosenol, methyl cis-11-eicosenoate and cis-11-eicosenoic acid as immune system stimulators.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam 31441, Saudi Arabia.
| | - Tharushi Dissanayake
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
28
|
Choosing an Optimal Sample Preparation in Caulobacter crescentus for Untargeted Metabolomics Approaches. Metabolites 2019; 9:metabo9100193. [PMID: 31547088 PMCID: PMC6836107 DOI: 10.3390/metabo9100193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
Untargeted metabolomics aims to provide a global picture of the metabolites present in the system under study. To this end, making a careful choice of sample preparation is mandatory to obtain reliable and reproducible biological information. In this study, eight different sample preparation techniques were evaluated using Caulobacter crescentus as a model for Gram-negative bacteria. Two cell retrieval systems, two quenching and extraction solvents, and two cell disruption procedures were combined in a full factorial experimental design. To fully exploit the multivariate structure of the generated data, the ANOVA multiblock orthogonal partial least squares (AMOPLS) algorithm was employed to decompose the contribution of each factor studied and their potential interactions for a set of annotated metabolites. All main effects of the factors studied were found to have a significant contribution on the total observed variability. Cell retrieval, quenching and extraction solvent, and cell disrupting mechanism accounted respectively for 27.6%, 8.4%, and 7.0% of the total variability. The reproducibility and metabolome coverage of the sample preparation procedures were then compared and evaluated in terms of relative standard deviation (RSD) on the area for the detected metabolites. The protocol showing the best performance in terms of recovery, versatility, and variability was centrifugation for cell retrieval, using MeOH:H2O (8:2) as quenching and extraction solvent, and freeze-thaw cycles as the cell disrupting mechanism.
Collapse
|
29
|
Burgos-Gil R, Peris-García E, Ruiz-Angel M, Baeza-Baeza J, García-Alvarez-Coque M. Protocol to compare column performance applied to hydrophilic interaction liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Fall F, Lenuzza N, Lamy E, Brollo M, Naline E, Devillier P, Thévenot E, Grassin-Delyle S. A split-range acquisition method for the non-targeted metabolomic profiling of human plasma with hydrophilic interaction chromatography - high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121780. [PMID: 31479891 DOI: 10.1016/j.jchromb.2019.121780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022]
Abstract
Untargeted metabolomics of human plasma with mass spectrometry is of particular interest in medical research to explore pathophysiology, find disease biomarkers or for the understanding of the response to pharmacotherapy. Since analytical performances may be impacted by the laboratory environment and the acquisition method settings, the objectives of this study were to assess the role of interfering compounds and to propose an acquisition method to maximize the metabolome coverage for human plasma metabolomic analysis. Human plasma samples were processed with liquid/liquid extraction then analysed with HILIC-high resolution mass spectrometry. A method with a single m/z range was compared to four methods with different split acquisition ranges and four sets of ionization source parameters were compared. The data were analysed with the R software and on the Worklow4Metabolomics online platform. The major interfering compounds were identified in blank samples where they accounted for up to 86% of the signal intensity. Splitting the acquisition range into 3 m/z ranges improved the number of detected features, the number of features with proposed annotation in the Human Metabolome Database, as well as signal intensity throughout the whole m/z range. The method performing best was the one using three m/z ranges of approximatively the same extent. Ionization source parameters also strongly affected the number of detected features. Splitting the acquisition range into 3 m/z ranges with optimized ionization source parameters allows a comprehensive analysis of the human plasma metabolome with perspectives for applications to pathophysiological studies.
Collapse
Affiliation(s)
- Fanta Fall
- INSERM U1173, Plateforme de Spectrométrie de Masse, UFR Simone Veil - Santé, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Montigny le Bretonneux, France
| | - Natacha Lenuzza
- CEA, LIST, Laboratory for Data Sciences and Decision, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Elodie Lamy
- INSERM U1173, Plateforme de Spectrométrie de Masse, UFR Simone Veil - Santé, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Montigny le Bretonneux, France
| | - Marion Brollo
- UPRES EA220, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Suresnes, France
| | - Emmanuel Naline
- UPRES EA220, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Suresnes, France; Département des Maladies des Voies Respiratoires, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- UPRES EA220, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Suresnes, France; Département des Maladies des Voies Respiratoires, Hôpital Foch, Suresnes, France
| | - Etienne Thévenot
- CEA, LIST, Laboratory for Data Sciences and Decision, MetaboHUB-Paris, Gif-sur-Yvette, France
| | - Stanislas Grassin-Delyle
- INSERM U1173, Plateforme de Spectrométrie de Masse, UFR Simone Veil - Santé, Université Versailles - Saint Quentin en Yvelines, Université Paris Saclay, Montigny le Bretonneux, France; Département des Maladies des Voies Respiratoires, Hôpital Foch, Suresnes, France.
| |
Collapse
|
31
|
Alqarni AM, Niwasabutra K, Sahlan M, Fearnley H, Fearnley J, Ferro VA, Watson DG. Propolis Exerts an Anti-Inflammatory Effect on PMA-Differentiated THP-1 Cells via Inhibition of Purine Nucleoside Phosphorylase. Metabolites 2019; 9:metabo9040075. [PMID: 30995826 PMCID: PMC6523283 DOI: 10.3390/metabo9040075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1β, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam 31441, Saudi Arabia.
| | - Kanidta Niwasabutra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Muhamad Sahlan
- Faculty of Engineering, Universitas Indonesia Campus UI, Depok 16424, Indonesia.
| | - Hugo Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - James Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
32
|
Pezzatti J, González-Ruiz V, Codesido S, Gagnebin Y, Joshi A, Guillarme D, Schappler J, Picard D, Boccard J, Rudaz S. A scoring approach for multi-platform acquisition in metabolomics. J Chromatogr A 2019; 1592:47-54. [PMID: 30685186 DOI: 10.1016/j.chroma.2019.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Since the ultimate goal of untargeted metabolomics is the analysis of the broadest possible range of metabolites, some new metrics have to be used by researchers to evaluate and select different analytical strategies when multi-platform analyses are considered. In this context, we aimed at developing a scoring approach allowing to compare the performance of different LC-MS conditions for metabolomics studies. By taking into account both chromatographic and MS attributes of the analytes' peaks (i.e. retention, signal-to-noise ratio, peak intensity and shape), the newly proposed score reflects the potential of a set of LC-MS operating conditions to provide useful analytical information for a given compound. A chemical library containing 597 metabolites was used as a benchmark to apply this approach on two RPLC and three HILIC methods hyphenated to high resolution mass spectrometry (HRMS) in positive and negative ionization modes. The scores not only allowed to evaluate each analytical platform, but also to optimize the number of analytical methods needed for the analysis of metabolomics samples. As a result, the most informative combination of three LC methods and ionization modes was found, leading to a coverage of nearly 95% of the detected compounds. It was therefore demonstrated that the overall performance reached with three selected methods was almost equivalent to the performance reached when five LC-MS conditions were used.
Collapse
Affiliation(s)
- Julian Pezzatti
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Santiago Codesido
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Yoric Gagnebin
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Abhinav Joshi
- Department of Cell Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Didier Picard
- Department of Cell Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
33
|
Untargeted Metabolic Profiling Cell-Based Approach of Pulmonary Artery Smooth Muscle Cells in Response to High Glucose and the Effect of the Antioxidant Vitamins D and E. Metabolites 2018; 8:metabo8040087. [PMID: 30513640 PMCID: PMC6316736 DOI: 10.3390/metabo8040087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multi-factorial disease characterized by the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs). Excessive reactive oxygen species (ROS) formation resulted in alterations of the structure and function of pulmonary arterial walls, leading to right ventricular failure and death. Diabetes mellitus has not yet been implicated in pulmonary hypertension. However, recently, variable studies have shown that diabetes is correlated with pulmonary hypertension pathobiology, which could participate in the modification of pulmonary artery muscles. The metabolomic changes in PASMCs were studied in response to 25 mM of D-glucose (high glucose, or HG) in order to establish a diabetic-like condition in an in vitro setting, and compared to five mM of D-glucose (normal glucose, or LG). The effect of co-culturing these cells with an ideal blood serum concentration of cholecalciferol-D3 and tocopherol was also examined. The current study aimed to examine the role of hyperglycemia in pulmonary arterial hypertension by the quantification and detection of the metabolomic alteration of smooth muscle cells in high-glucose conditions. Untargeted metabolomics was carried out using hydrophilic interaction liquid chromatography and high-resolution mass spectrometry. Cell proliferation was assessed by cell viability and the [³H] thymidine incorporation assay, and the redox state within the cells was examined by measuring reactive oxygen species (ROS) generation. The results demonstrated that PASMCs in high glucose (HG) grew, proliferated faster, and generated higher levels of superoxide anion (O₂·-) and hydrogen peroxide (H₂O₂). The metabolomics of cells cultured in HG showed that the carbohydrate pathway, especially that of the upper glycolytic pathway metabolites, was influenced by the activation of the oxidation pathway: the pentose phosphate pathway (PPP). The amount of amino acids such as aspartate and glutathione reduced via HG, while glutathione disulfide, N6-Acetyl-L-lysine, glutamate, and 5-aminopentanoate increased. Lipids either as fatty acids or glycerophospholipids were downregulated in most of the metabolites, with the exception of docosatetraenoic acid and PG (16:0/16:1(9Z)). Purine and pyrimidine were influenced by hyperglycaemia following PPP oxidation. The results in addition showed that cells exposed to 25 mM of glucose were oxidatively stressed comparing to those cultured in five mM of glucose. Cholecalciferol (D3, or vitamin D) and tocopherol (vitamin E) were shown to restore the redox status of many metabolic pathways.
Collapse
|
34
|
Alghamdi A, Gerasimidis K, Blackburn G, Akinci D, Edwards C, Russell RK, Watson DG. Untargeted Metabolomics of Extracts from Faecal Samples Demonstrates Distinct Differences between Paediatric Crohn's Disease Patients and Healthy Controls but No Significant Changes Resulting from Exclusive Enteral Nutrition Treatment. Metabolites 2018; 8:E82. [PMID: 30467282 PMCID: PMC6315767 DOI: 10.3390/metabo8040082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomic profiling using high resolution mass spectrometry with hydrophilic interaction chromatography was applied to 11 faecal extracts from eleven healthy children and to 43 faecal extracts from eleven children undergoing exclusive enteral nutrition for the treatment of active Crohn's disease (CD) at timepoints before, during (15, 30, and 60 days), and after treatment. Differences between the control and CD samples were identified at each timepoint. An orthogonal partial least square-discriminant analysis (OPLS-DA) model identified eight metabolites that were normally distributed according to Q-Q plots. The OPLS-DA model was able to discriminate the CD samples from the controls at every timepoint, but the model was not able to differentiate the CD samples from one another at the different timepoints during treatment with exclusive enteral nutrition. The differentiated metabolites identified in the CD samples included tyrosine, an ornithine isomer, arachidonic acid, eicosatrienoic acid, docosatetraenoic acid, a sphingomyelin, a ceramide, and dimethylsphinganine. Despite successful treatment, underlying differences remained in the metabolome of the CD patients. These differences dominated the separation of the samples when multivariate methods were applied.
Collapse
Affiliation(s)
- Adel Alghamdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | - Gavin Blackburn
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Didem Akinci
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Christine Edwards
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow G51 4TF, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
35
|
Tan A, Fanaras JC. Use of high-pH (basic/alkaline) mobile phases for LC-MS or LC-MS/MS bioanalysis. Biomed Chromatogr 2018; 33:e4409. [PMID: 30315658 DOI: 10.1002/bmc.4409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022]
Abstract
High-pH or basic/alkaline mobile phases are not commonly used in LC-MS or LC-MS/MS bioanalysis because of the deeply rooted concern with column instability and reduced detection sensitivity for basic compounds in high-pH mobile phases owing to charge neutralization. With the advancement of LC column technology and the wide recognition of the "wrong-way-round" phenomena, high-pH mobile phases are more and more used in LC-MS or LC-MS/MS bioanalysis to improve chromatographic peak shape, retention, selectivity, resolution, and detection sensitivity, not only for basic compounds, but also for many other compounds. In this article, the benefits, practical considerations, application examples and cautions for using high-pH mobile phases in LC-MS or LC-MS/MS bioanalysis are reviewed, with a focus on quantification. Furthermore, the future trends in this field are also envisaged. A total of 84 references are cited in this review.
Collapse
Affiliation(s)
- Aimin Tan
- Nucro-Technics, Scarborough, ON, Canada
| | | |
Collapse
|
36
|
Alqarni AM, Ferro VA, Parkinson JA, Dufton MJ, Watson DG. Effect of Melittin on Metabolomic Profile and Cytokine Production in PMA-Differentiated THP-1 Cells. Vaccines (Basel) 2018; 6:vaccines6040072. [PMID: 30322119 PMCID: PMC6313865 DOI: 10.3390/vaccines6040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/25/2022] Open
Abstract
Melittin, the major active peptide of honeybee venom (BV), has potential for use in adjuvant immunotherapy. The immune system response to different stimuli depends on the secretion of different metabolites from macrophages. One potent stimulus is lipopolysaccharide (LPS), a component isolated from gram-negative bacteria, which induces the secretion of pro-inflammatory cytokines in macrophage cell cultures. This secretion is amplified when LPS is combined with melittin. In the present study, pure melittin was isolated from whole BV by flash chromatography to obtain pure melittin. The ability of melittin to enhance the release of tumour necrosis factor-α (TNF-α), Interleukin (IL-1β, IL-6, and IL-10) cytokines from a macrophage cell line (THP-1) was then assessed. The response to melittin and LPS, applied alone or in combination, was characterised by metabolic profiling, and the metabolomics results were used to evaluate the potential of melittin as an immune adjuvant therapy. The addition of melittin enhanced the release of inflammatory cytokines induced by LPS. Effective chromatographic separation of metabolites was obtained by liquid chromatography-mass spectrometry (LC-MS) using a ZIC-pHILIC column and an ACE C4 column. The levels of 108 polar and non-polar metabolites were significantly changed (p ˂ 0.05) following cell activation by the combination of LPS and melittin when compared to untreated control cells. Overall, the findings of this study suggested that melittin might have a potential application as a vaccine adjuvant.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
37
|
Spalding JL, Naser FJ, Mahieu NG, Johnson SL, Patti GJ. Trace Phosphate Improves ZIC-pHILIC Peak Shape, Sensitivity, and Coverage for Untargeted Metabolomics. J Proteome Res 2018; 17:3537-3546. [PMID: 30160483 DOI: 10.1021/acs.jproteome.8b00487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Existing hydrophilic interaction liquid chromatography (HILIC) methods, considered individually, each exhibit poor chromatographic performance for a substantial fraction of polar metabolites. In addition to limiting metabolome coverage, such deficiencies also complicate automated data processing. Here we show that some of these analytical challenges can be addressed for the ZIC-pHILIC, a zwitterionic stationary phase commonly used in metabolomics, with the addition of trace levels of phosphate. Specifically, micromolar phosphate extended metabolome coverage by hundreds of credentialed features, improved peak shapes, and reduced peak-detection errors during informatic processing. Although the addition of high levels of phosphate (millimolar) as a HILIC mobile phase buffer has been explored previously, such concentrations interfere with mass spectrometric (MS) detection. We show that using phosphate as a trace additive at micromolar concentrations improves analysis by electrospray MS, increasing signal for a diverse set of polar standards. Given the small amount of phosphate needed, comparable chromatographic improvements were also achieved by direct addition of phosphate to the sample during reconstitution. Our results suggest that defects in ZIC-pHILIC performance are predominantly driven by electrostatic interactions, which can be modulated by phosphate. These findings constitute both a methodological improvement for untargeted metabolomics and an advance in our understanding of the mechanisms limiting HILIC coverage.
Collapse
Affiliation(s)
- Jonathan L Spalding
- Department of Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , United States.,Department of Genetics , Washington University in St. Louis , St. Louis , MO 63110 , United States.,Department of Medicine , Washington University in St. Louis , St. Louis , MO 63110 , United States
| | - Fuad J Naser
- Department of Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , United States
| | - Nathaniel G Mahieu
- Department of Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , United States
| | - Stephen L Johnson
- Department of Genetics , Washington University in St. Louis , St. Louis , MO 63110 , United States
| | - Gary J Patti
- Department of Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , United States.,Department of Medicine , Washington University in St. Louis , St. Louis , MO 63110 , United States
| |
Collapse
|
38
|
Workflow for the Targeted and Untargeted Detection of Small Metabolites in Fish Skin Mucus. FISHES 2018. [DOI: 10.3390/fishes3020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Elmsjö A, Haglöf J, Engskog MKR, Erngren I, Nestor M, Arvidsson T, Pettersson C. Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts. J Chromatogr A 2018; 1568:49-56. [PMID: 29789170 DOI: 10.1016/j.chroma.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Evaluation of the chromatographic separation in metabolomics studies has primarily been done using preselected sets of standards or by counting the number of detected features. An alternative approach is to calculate each feature's co-feature ratio, which is a combined selectivity measurement for the separation (i.e. extent of co-elution) and the MS-signal (i.e. adduct formation and in-source fragmentation). The aim of this study was to demonstrate how the selectivity of different HILIC stationary phases can be evaluated using the co-feature ratio approach. The study was based on three sample types; plasma, urine and cell extracts. Samples were analyzed on an UHPLC-ESI-Q-ToF system using an amide, a bare silica and a sulfobetaine stationary phase. For each feature, a co-feature ratio was calculated and used for multivariate analysis of the selectivity differences between the three stationary phases. Unsupervised PCA models indicated that the co-feature ratios were highly dependent on type of stationary phase. For several metabolites a 15-30 fold difference in the co-feature ratio were observed between the stationary phases. Observed selectivity differences related primarily to the retention patterns of unwanted matrix components such as inorganic salts (detected as salt clusters), glycerophospholipids, and polyethylene glycols. These matrix components affected the signal intensity of co-eluting metabolites by interfering with the ionization efficiency and/or their adduct formation. Furthermore, the retention pattern of these matrix components had huge influence on the number of detected features. The co-feature ratio approach has successfully been applied for evaluation of the selectivity performance of three HILIC stationary phases. The co-feature ratio could therefore be used in metabolomics for developing selective methods fit for their purpose, thereby avoiding generic analytical approaches, which are often biased, as type and amount of interfering matrix components are metabolome dependent.
Collapse
Affiliation(s)
- Albert Elmsjö
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden.
| | - Jakob Haglöf
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Mikael K R Engskog
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Ida Erngren
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Torbjörn Arvidsson
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden; Medical Product Agency, Uppsala, Sweden
| | - Curt Pettersson
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| |
Collapse
|
40
|
Schatschneider S, Abdelrazig S, Safo L, Henstra AM, Millat T, Kim DH, Winzer K, Minton NP, Barrett DA. Quantitative Isotope-Dilution High-Resolution-Mass-Spectrometry Analysis of Multiple Intracellular Metabolites in Clostridium autoethanogenum with Uniformly 13C-Labeled Standards Derived from Spirulina. Anal Chem 2018. [PMID: 29533656 DOI: 10.1021/acs.analchem.7b04758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with 13C, as a readily accessible source of multiple 13C-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)-13C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 μM with excellent linearity for all of the calibration curves ( R2 ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U-13C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Salah Abdelrazig
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Laudina Safo
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Anne M Henstra
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Thomas Millat
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Klaus Winzer
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Nigel P Minton
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
41
|
Fu Q, Liu D, Wang Y, Li X, Wang L, Yu F, Shen J, Xia X. Metabolomic profiling of Campylobacter jejuni with resistance gene ermB by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and tandem quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:62-68. [PMID: 29453015 DOI: 10.1016/j.jchromb.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/26/2022]
Abstract
The metabolome changes of Campylobacter jejuni with resistant gene ermB remain unclear. Here, we described an untargeted metabolomic workflow based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry to investigate the metabolites perturbations mediated by ermB in C. jejuni. After optimization of extractants and chromatographic conditions, the combination of 100% methanol extraction with a 12 min gradient by C18 column was adopted for untargeted metabolomic profiling in reversed phase separation. Meanwhile, 60% methanol extraction followed by a 14 min separation using hydrophilic interaction chromatography column was suitable to complementally expand the metabolite coverage of C. jejuni. Multivariate statistical analysis was performed by means of orthogonal projection to latent structures-discriminant analysis to select metabolic features. The selected features were further confirmed by ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry. A total of thirty-six differential metabolites between the susceptible strain (C. jejuni NCTC 11168) and resistant stain (C. jejuni NCTC 11168 with ermB) were identified. These pivotal metabolites were primarily participated in biological processes as cell signaling, membrane integrity/stability, fuel and energy source/storage and nutrient. The biofilm formation capability of resistant strain was inferior to that of susceptible strain, confirming the influence of ermB on membrane integrity/stability of C. jejuni. Our findings revealed important metabolic regulatory pathways associated with resistant C. jejuni with ermB.
Collapse
Affiliation(s)
- Qin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China
| | - Lina Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fugen Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Untargeted Metabolomics Profiling of an 80.5 km Simulated Treadmill Ultramarathon. Metabolites 2018; 8:metabo8010014. [PMID: 29438325 PMCID: PMC5876003 DOI: 10.3390/metabo8010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/23/2023] Open
Abstract
Metabolomic profiling of nine trained ultramarathon runners completing an 80.5 km self-paced treadmill-based time trial was carried out. Plasma samples were obtained from venous whole blood, collected at rest and on completion of the distance (post-80.5 km). The samples were analyzed by using high-resolution mass spectrometry in combination with both hydrophilic interaction (HILIC) and reversed phase (RP) chromatography. The extracted putatively identified features were modeled using Simca P 14.1 software (Umetrics, Umea, Sweden). A large number of amino acids decreased post-80.5 km and fatty acid metabolism was affected with an increase in the formation of medium-chain unsaturated and partially oxidized fatty acids and conjugates of fatty acids with carnitines. A possible explanation for the complex pattern of medium-chain and oxidized fatty acids formed is that the prolonged exercise provoked the proliferation of peroxisomes. The peroxisomes may provide a readily utilizable form of energy through formation of acetyl carnitine and other acyl carnitines for export to mitochondria in the muscles; and secondly may serve to regulate the levels of oxidized metabolites of long-chain fatty acids. This is the first study to provide evidence of the metabolic profile in response to prolonged ultramarathon running using an untargeted approach. The findings provide an insight to the effects of ultramarathon running on the metabolic specificities and alterations that may demonstrate cardio-protective effects.
Collapse
|
43
|
Abstract
Metabolomics is an "omics" approach to quantitatively measure a large set of metabolites. In this chapter, we describe an example method for performing liquid chromatography coupled to mass spectrometry (LC-MS)-based untargeted metabolomics on a cell extract from Vibrio cholerae.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jay S Kirkwood
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Claudia C Häse
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
44
|
Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Anal Bioanal Chem 2017; 410:1287-1297. [PMID: 29256075 DOI: 10.1007/s00216-017-0768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.
Collapse
|
45
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 2017; 179:792-802. [PMID: 29310309 DOI: 10.1016/j.talanta.2017.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/29/2022]
Abstract
The untargeted profiling is a promising approach for the characterization of secondary metabolites in biological matrices. Thanks to the recent rapid development of high-resolution mass spectrometry (HRMS) instrumentations, the number of applications by untargeted approaches for biological samples profiling has widely increased in the recent years. Despite the high potentialities of HRMS, however, a major issue in natural products analysis often arises in the upstream process of compounds separation. A separation technique is necessary to avoid phenomena such as signal suppression, and it is especially needed in the presence of isomeric metabolites, which are otherwise indistinguishable. Glucosinolates (GLSs), a group of secondary metabolites widely distributed among plants, resulted to be associated to the prevention of some serious diseases, such as cancer. This led to the development of several methods for the analysis of GLSs in vegetables tissues. The issue of GLSs chromatographic separation has been widely studied in the past because of the difficulty in the analysis of this highly polar and variable class of compounds. Several alternatives to reversed phase (RP) chromatography, sometimes not compatible with the coupling of liquid chromatography with mass spectrometry, have been tested for the analysis of intact GLSs. However, the availability of new stationary phases, in the last years, could allow the re-evaluation of RP chromatography for the analysis of intact GLSs. In this work, a thorough evaluation of four RP chromatographic columns for the analysis of GLSs in cauliflower (Brassica oleracea L. var. botrytis) extracts by an ultra-high performance liquid chromatographic system coupled via electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer is presented. The columns tested were the following: one column Luna Omega polar C18, one column Kinetex Biphenyl, one column Kinetex core-shell XB-C18, two columns Kinetex core-shell XB-C18. After a previous optimization of the extraction method, cauliflower extracts were analyzed testing four different mobile phases onto the four columns for a total of sixteen different chromatographic conditions. The chromatographic systems were evaluated based on the number of detected and tentatively identified GLSs. Luna Polar stationary phase resulted to be the most suitable for the analysis of GLSs compared to Kinetex XB and Kinetex Biphenyl columns stationary phase. However, two in series Kinetex XB columns increased the number of tentatively identified GLSs compared to one Kinetex XB, showing the importance of column length in the analysis of complex mixtures. The data obtained with the best chromatographic system were deeply analyzed by MS/MS investigation for the final identification. Fiflty-one GLSs were tentatively identified, 24 of which have never been identified in cauliflower. Finally the linearity of the analytes response over the analyzed range of concentration was checked, suggesting that the developed method is suitable for both qualitative and quantitative analysis of GLSs in phytochemical mixtures.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgia La Barbera
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carmela Maria Montone
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Susy Piovesana
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | - Aldo Laganà
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
46
|
Hydrophilic interaction liquid chromatography of hydroxy aromatic carboxylic acid positional isomers. Anal Chim Acta 2017; 996:98-105. [DOI: 10.1016/j.aca.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 11/23/2022]
|
47
|
The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng 2017; 42:43-51. [DOI: 10.1016/j.ymben.2017.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 11/18/2022]
|
48
|
Alonezi S, Tusiimire J, Wallace J, Dufton MJ, Parkinson JA, Young LC, Clements CJ, Park JK, Jeon JW, Ferro VA, Watson DG. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells. Metabolites 2017; 7:metabo7020014. [PMID: 28420117 PMCID: PMC5487985 DOI: 10.3390/metabo7020014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Melittin, the main peptide present in bee venom, has been proposed as having potential for anticancer therapy; the addition of melittin to cisplatin, a first line treatment for ovarian cancer, may increase the therapeutic response in cancer treatment via synergy, resulting in improved tolerability, reduced relapse, and decreased drug resistance. Thus, this study was designed to compare the metabolomic effects of melittin in combination with cisplatin in cisplatin-sensitive (A2780) and resistant (A2780CR) ovarian cancer cells. Liquid chromatography (LC) coupled with mass spectrometry (MS) was applied to identify metabolic changes in A2780 (combination treatment 5 μg/mL melittin + 2 μg/mL cisplatin) and A2780CR (combination treatment 2 μg/mL melittin + 10 μg/mL cisplatin) cells. Principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) multivariate data analysis models were produced using SIMCA-P software. All models displayed good separation between experimental groups and high-quality goodness of fit (R2) and goodness of prediction (Q2), respectively. The combination treatment induced significant changes in both cell lines involving reduction in the levels of metabolites in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway. The combination of melittin with cisplatin that targets these pathways had a synergistic effect. The melittin-cisplatin combination had a stronger effect on the A2780 cell line in comparison with the A2780CR cell line. The metabolic effects of melittin and cisplatin in combination were very different from those of each agent alone.
Collapse
Affiliation(s)
- Sanad Alonezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Jonans Tusiimire
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410 Mbarara, Uganda.
| | - Jennifer Wallace
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Louise C Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Carol J Clements
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Jin-Kyu Park
- #204, Beesen Co. Ltd., Bio Venture Town, Yuseong Daero 1662, Dae Jeon 34054, Korea.
| | - Jong-Woon Jeon
- #204, Beesen Co. Ltd., Bio Venture Town, Yuseong Daero 1662, Dae Jeon 34054, Korea.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
49
|
Tailored liquid chromatography–mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells. J Chromatogr A 2017; 1487:168-178. [DOI: 10.1016/j.chroma.2017.01.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/15/2017] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
|
50
|
Guder JC, Schramm T, Sander T, Link H. Time-Optimized Isotope Ratio LC–MS/MS for High-Throughput Quantification of Primary Metabolites. Anal Chem 2017; 89:1624-1631. [DOI: 10.1021/acs.analchem.6b03731] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Christopher Guder
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany
| | - Thorben Schramm
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043 Marburg, Germany
| |
Collapse
|