1
|
Li S, Xiao Q, Sun J, Li Z, Zhang M, Tian Y, Zhang Z, Dong H, Jiao Y, Xu F, Zhang P. A new chemical derivatization reagent sulfonyl piperazinyl for the quantification of fatty acids using LC-MS/MS. Talanta 2024; 277:126378. [PMID: 38870757 DOI: 10.1016/j.talanta.2024.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
In our previous study, a chemical derivatization reagent named 5-(dimethylamino) naphthalene-1-sulfonyl piperazine (Dns-PP) was developed to enhance the chromatographic retention and the mass spectrometric response of free fatty acids (FFAs) in reversed-phase liquid chromatography coupled with electrospray ionization-mass spectrometry (RPLC-ESI-MS). However, Dns-PP exhibited strong preferences for long-chain FFAs, with limited improvement for short- or medium-chain FFAs. In this study, a new series of labeling reagents targeting FFAs were designed, synthesized, and evaluated. Among these reagents, Tmt-PP (N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine) exhibited the best MS response and was selected for further evaluations. We compared Tmt-PP with Dns-PP and four commonly used carboxyl labeling reagents from existing studies, demonstrating the advantages of Tmt-PP. Further comparisons between Tmt-PP and Dns-PP in measuring FFAs from biological samples revealed that Tmt-PP labeling enhanced the MS response for about 80 % (30/38) of the measured FFAs, particularly for short- and medium-chain FFAs. Moreover, Tmt-PP labeling significantly improved the chromatographic retention of short-chain FFAs. To ensure accurate quantification, we developed a stable isotope-labeled Tmt-PP (i.e., d12-Tmt-PP) to react with chemical standards and serve as one-to-one internal standards (IS). The method was validated for accuracy, precision, sensitivity, linearity, stability, extraction efficiency, as well as matrix effect. Overall, this study introduced a new chemical derivatization reagent Tmt-PP (d12-Tmt-PP), providing a sensitive and accurate option for quantifying FFAs in biological samples.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinwen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiarui Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhaoqian Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mengting Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Chen CJ, Lee DY, Yu J, Lin YN, Lin TM. Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:2349-2378. [PMID: 35645144 DOI: 10.1002/mas.21785] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 06/15/2023]
Abstract
The employment of liquid chromatography-mass spectrometry (LC-MS) untargeted and targeted metabolomics has led to the discovery of novel biomarkers and improved the understanding of various disease mechanisms. Numerous strategies have been reported to expand the metabolite coverage in LC-MS-untargeted and targeted metabolomics. To improve the sensitivity of low-abundance or poor-ionized metabolites for reducing the amount of clinical sample, chemical derivatization methods are used to target different functional groups. Proper sample preparation is beneficial for reducing the matrix effect, maintaining the stability of the LC-MS system, and increasing the metabolite coverage. Machine learning has recently been integrated into the workflow of LC-MS metabolomics to accelerate metabolite identification and data-processing automation, and increase the accuracy of disease classification and clinical outcome prediction. Due to the rapidly growing utility of LC-MS metabolomics in discovering disease markers, this review will address the recent advances in the field and offer perspectives on various strategies for expanding metabolite coverage, chemical derivatization, sample preparation, clinical disease markers, and machining learning for disease modeling.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Min Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Synthesis of New S-Triazine Bishydrazino and Bishydrazido-Based Polymers and Their Application in Flame-Retardant Polypropylene Composites. Polymers (Basel) 2022; 14:polym14040784. [PMID: 35215696 PMCID: PMC8876278 DOI: 10.3390/polym14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this study six new s-triazine bishydrazino and bishydrazido-based polymers were synthesized via condensation of bishydrazino s-triazine derivatives with terephthaldehyde or via nucleophilic substitution of dichloro-s-triazine derivatives with terephthalic acid hydrazide. The synthesized polymers were characterized by different techniques. The new polymers displayed good thermal behavior with great values in terms of limited oxygen indexed (LOI) 27.50%, 30.12% for polymers 5b,c (bishydrazino-s-triazine based polymers) and 27.23%, 29.86%, 30.85% for polymers 7a–c (bishydrazido-s-triazine based polymers) at 800 °C. Based on the LOI values, these polymers could be classified as flame retardant and self-extinguishing materials. The thermal results also revealed that the type of substituent groups on the triazine core has a considerable impact on their thermal behavior. Accordingly, the prepared polymers were mixed with ammonium polyphosphate (APP) in different proportions to form an intumescent flame-retardant (IFRs) system and were introduced into polypropylene (PP) to improve the flame-retardancy of the composites. The best results were obtained with a mass ratio of APP: 5a–c or 7a–c of 2:1, according to the vertical burning study (UL-94). In addition, the presence of 25% “weight ratio” of IFR in the composite showed great impact and passed UL-94 V-0 and V-1 tests.
Collapse
|
5
|
Huang R, Shen K, He Q, Hu Y, Sun C, Guo C, Pan Y. Metabolic Profiling of Urinary Chiral Amino-Containing Biomarkers for Gastric Cancer Using a Sensitive Chiral Chlorine-Labeled Probe by HPLC-MS/MS. J Proteome Res 2021; 20:3952-3962. [PMID: 34229439 DOI: 10.1021/acs.jproteome.1c00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and β-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).
Collapse
Affiliation(s)
- Rongrong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kexin Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
6
|
Zhao S, Li L. Chemical Isotope Labeling LC-MS for Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:1-18. [PMID: 33791971 DOI: 10.1007/978-3-030-51652-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to the great diversity of chemical and physical properties of metabolites as well as a wide range of concentrations of metabolites present in metabolomic samples, performing comprehensive and quantitative metabolome analysis is a major analytical challenge. Conventional approach of combining various techniques and methods with each detecting a fraction of the metabolome can lead to the increase in overall metabolomic coverage. However, this approach requires extensive investment in equipment and analytical expertise with still relatively low coverage and low sample throughput. Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) offers an alternative means of increasing metabolomic coverage while maintaining high quantification precision and accuracy. This chapter describes the CIL LC-MS method and its key features for metabolomic analysis.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Current trends in isotope‐coded derivatization liquid chromatographic‐mass spectrometric analyses with special emphasis on their biomedical application. Biomed Chromatogr 2020; 34:e4756. [DOI: 10.1002/bmc.4756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
|
8
|
Al-Rasheed HH, Mohammady SZ, Dahlous K, Siddiqui MRH, El-Faham A. Synthesis, characterization, thermal stability and kinetics of thermal degradation of novel polymers based-s-triazine Schiff base. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1961-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Deng C, Li C, Zhou J, Wang Q, Shao H, Wang J, Wu Y, Zhang H, Gao M, Xu X, Jin F. Simultaneous Determination of Eight Monoalkyl Phthalate Esters in Porcine Tissue by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7167-7173. [PMID: 31240926 DOI: 10.1021/acs.jafc.9b01078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An improved method for solid-phase extraction (SPE)-liquid chromatography-tandem mass spectrometry was developed to analyze eight monoalkyl phthalate esters (MPEs) in eight different kinds of porcine tissues. The tissue samples were processed using enzymatic deconjugation with β-glucuronidase, followed by SPE with Oasis MAX cartridges. A pentafluorophenyl column was first used to solve the coeluting issues of MPE isomers. The limits of detection and recoveries were 0.01-0.6 ng/g and 62.5-123.7%, respectively. The intra- and interday precisions were less than 7.1 and 9.4%, respectively. The robust method was successfully applied for the investigation of MPEs in various porcine tissue samples collected from markets in Beijing, China. The occurrence of MPEs with total concentrations of 48.0-108 ng/g was detected, and monoethylhexyl phthalate was the predominant MPE (accounting for 30-57%) in all of the porcine tissue samples. The results will be helpful in assessing the potential risks of diets that include pork.
Collapse
Affiliation(s)
- Chao Deng
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Chunmei Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Jie Zhou
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Qi Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | | | | | | | | | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
10
|
Lee DY, Huang WC, Gu TJ, Chang GD. Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues. J Chromatogr A 2018; 1552:43-52. [DOI: 10.1016/j.chroma.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 11/28/2022]
|
11
|
Yu CH, Chou CC, Tu HF, Huang WC, Ho YY, Khoo KH, Lee MS, Chang GD. Antibody-assisted target identification reveals afatinib, an EGFR covalent inhibitor, down-regulating ribonucleotide reductase. Oncotarget 2018; 9:21512-21529. [PMID: 29765556 PMCID: PMC5940374 DOI: 10.18632/oncotarget.25177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
Afatinib, used for the first-line treatment of non-small-cell lung carcinoma (NSCLC) patients with distinct epidermal growth factor receptor (EGFR) mutations, inactivates EGFR by mimicking ATP structure and forming a covalent adduct with EGFR. We developed a method to unravel potential targets of afatinib in NSCLC cells through immunoprecipitation of afatinib-labeling proteins with anti-afatinib antiserum and mass spectrometry analysis. Ribonucleotide reductase (RNR) is one of target proteins of afatinib revealed by this method. Treatment of afatinib at 10-100 nM potently inhibited intracellular RNR activity in an in vitro assay using permeabilized PC-9 cells (formerly known as PC-14). PC-9 cells treated with 10 μM afatinib displayed elevated markers of DNA damage. Long-term treatment of therapeutic concentrations of afatinib in PC-9 cells caused significant decrease in protein levels of RNR subunit M2 at 1-10 nM and RNR subunit M1 at 100 nM. EGFR-null Chinese hamster ovary (CHO) cells treated with afatinib also showed similar effects. Afatinib repressed the upregulation of RNR subunit M2 induced by gemcitabine. Covalent modification with afatinib resulting in inhibition and protein downregulation of RNR underscores the therapeutic and off-target effects of afatinib. Afatinib may serve as a lead compound of chemotherapeutic drugs targeting RNR. This method can be widely used in the identification of potential targets of other covalent drugs.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Yeh Ho
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Kay-Hooi Khoo
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Osman SM, Khattab SN, Aly ESA, Kenawy ER, El-Faham A. 1,3,5-Triazine-based polymer: synthesis, characterization and application for immobilization of silver nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1385-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d 0 / d 4 -acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. J Chromatogr A 2017; 1491:98-107. [DOI: 10.1016/j.chroma.2017.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/24/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|
14
|
Zhao S, Luo X, Li L. Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics. Anal Chem 2016; 88:10617-10623. [DOI: 10.1021/acs.analchem.6b02967] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. J Pharm Biomed Anal 2016; 130:181-193. [DOI: 10.1016/j.jpba.2016.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
|