1
|
Su R, Xiao X, Li G. Thermosensitive poly(N-isopropylacrylamide) hydrogel/highly internal phase emulsion porous polymer tube tip solid-phase extraction for the determination of methylimidazoles in beverage. J Chromatogr A 2023; 1712:464476. [PMID: 37924617 DOI: 10.1016/j.chroma.2023.464476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Poly(N-isopropylacrylamide) thermosensitive hydrogel tube tip solid-phase extraction/ultra-high liquid chromatography-mass spectrometry (UPLC-MS/MS) method was developed for analysis of methylimidazoles in beverages. Thermosensitive poly(N-isopropylacrylamide) (PNIPA) hydrogel solid-phase extraction (SPE) medium was prepared on the surface of highly internal phase emulsion (HIPE) porous polymer by thermally initiated polymerization in a tube tip. The temperature sensitive SPE medium has the characteristics of high porosity and high specific surface area. When the temperature is higher than 30.0℃, it can well adsorb polar molecular, and could quickly desorb polar molecular when the temperature was less than 20.0℃. The tube tip SPE coupled with UPLC-MS/MS method was established for the determination of three polar molecules including 1-methylimidazole, 4-methylimidazole and 2-methylimidazole, with linear ranges of 2.50 - 240 μg/L, and detection limits of 1.20, 1.20 and 0.65 μg/L, respectively. The method was applied to the determination of three methylimidazoles in beverages with the spiked recoveries of 81.5%-115.5% and the RSD of 0.6%-5.0%, and the relative errors of the results with the national standard UPLC-MS/MS method were in the range of -8.5%-8.9%.
Collapse
Affiliation(s)
- Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Critto EF, Medina G, Reta M, Acquaviva A. Determination of polycyclic aromatic hydrocarbons in surface waters by high performance liquid chromatography previous to preconcentration through solid-phase extraction by using polymeric monoliths. J Chromatogr A 2022; 1679:463397. [PMID: 35973336 DOI: 10.1016/j.chroma.2022.463397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
A simple, sensitive and reproducible solid-phase extraction method using plastic cartridges containing a monolithic sorbent (m-SPE), coupled to reverse phase liquid chromatography analysis, aiming to determine fifteen polycyclic aromatic hydrocarbons in surface water samples, was developed. The sorbent was easily prepared through a thermal polymerization reaction by using a mixture of n-butyl methacrylate as non-polar monomer and ethylene glycol dimethacrylate as crosslinker contained in a typical Polypropylene syringe cartridge. The effect of different parameters (type of hydrophobic monomer, elution solvent, sample volume, sorbent amount and sorbent load capacity) on the extraction efficiency was optimized. The optimal conditions were achieved by using n-butyl methacrylate as monomer, tetrahydrofurane (THF) as solvent for sorbent cleaning, THF:acetone (1:1) as elution solvent, 25.00 mL of sample volume, 600 µL of the polymerization mixture and 60 µg L-1 as sample loading capacity. Finally, the sorbent charge capacity, the reusability of the cartridges and the extraction efficiency of the m-SPE monolith, as compared with a typical C8 cartridge, were evaluated. Under the optimized experimental conditions, enrichment factors were between 76 and 103, relative recovery factors from 78 to 103%, accuracy values in the range of 58 to 98%, and inter-batch reproducibility values from between 2 and 10%, were obtained. The limits of detection and quantification were obtained by two different procedures: the signal to noise (S/N) ratios (3 and 10, respectively) and the IUPAC convention. The lowest LOD and LOQ values, obtained with the S/N ratios, were between 0.02 and 1.00 µg L-1, respectively whereas with the IUPAC convention the values were between 0.07 and 5 µg L-1. Using this procedure, several PAHs could be detected in the surface water sample taken from a river stream located in La Plata city (Buenos Aires Province, Argentina).
Collapse
Affiliation(s)
- Emilia Frickel Critto
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Giselle Medina
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Mario Reta
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina
| | - Agustín Acquaviva
- Facultad de Ciencias Exactas, UNLP, CONICET, Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) y División Química Analítica, Calle 47 esq. 115, La Plata B1900AJL, Argentina.
| |
Collapse
|
3
|
Korzhikova‐Vlakh EG, Tennikova TB. Some factors affecting pore size in the synthesis of rigid polymer monoliths: Theory and its applicability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Sun H, Feng J, Han S, Ji X, Li C, Feng J, Sun M. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochim Acta 2021; 188:189. [PMID: 33991231 DOI: 10.1007/s00604-021-04806-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
There are a lot of review papers of sample pretreatment, but the comprehensive review on pipette-tip solid-phase extraction (PT-SPE) is lacking. This review (133 references) is mainly devoted to the development of different types of micro- and nanosorbent-based PT-SPE, including silica materials, carbon materials, organic polymers, molecularly imprinted polymers, and metal-organic frameworks. Each section mainly introduces and discusses the preparation methods, advantages and limitations of adsorbents, and their applications to environmental, biological, and food samples. This review also demonstrates the advantages of PT-SPE like convenience, speed, less organic solvent, and low cost. Finally, the future application and development trend of PT-SPE are prospected.
Collapse
Affiliation(s)
- Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
5
|
Santos RT, Santos NS, Oliveira MAD, Campeão FDAB, Mandu MALGMR, Marques MRC, Costa LDC. Antimicrobial activity of silver composites obtained from crosslinked polystyrene with polyHIPE structures. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Fresco-Cala B, Gálvez-Vergara A, Cárdenas S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta 2020; 218:121124. [DOI: 10.1016/j.talanta.2020.121124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
8
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
9
|
Jiang LP, Li N, Liu LQ, Zheng X, Du FY, Ruan GH. Preparation and Application of Polymerized High Internal Phase Emulsion Monoliths for the Preconcentration and Determination of Malachite Green and Leucomalachite Green in Water Samples. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00145-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Jiang X, Ruan G, Huang Y, Chen Z, Yuan H, Du F. Assembly and application advancement of organic-functionalized graphene-based materials: A review. J Sep Sci 2020; 43:1544-1557. [PMID: 32043693 DOI: 10.1002/jssc.201900694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/12/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022]
Abstract
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene-based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π-π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state-of-the-art synthetic strategies and properties of organic-functionalized graphene-based materials, and then, present the prospective applications of organic-functionalized graphene-based materials in sample preparation.
Collapse
Affiliation(s)
- Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Zhengyi Chen
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China.,Pharmacy School, Guilin Medical University, Guangxi, P. R. China
| | - Huamei Yuan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| | - Fuyou Du
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, P. R. China
| |
Collapse
|
11
|
Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M. Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902023. [PMID: 31502719 DOI: 10.1002/adma.201902023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
High-performance liquid chromatography integrated with tandem mass spectrometry (HPLC-MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the "heart" of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow-through pores, are regarded as an alternative to particle-packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next-generation separation materials for high-throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F, Li J. Novel porous carbon composites derived from a graphene-modified high-internal- phase emulsion for highly efficient separation and enrichment of triazine herbicides. Anal Chim Acta 2019; 1071:17-24. [DOI: 10.1016/j.aca.2019.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
13
|
Corti M, Calleri E, Perteghella S, Ferrara A, Tamma R, Milanese C, Mandracchia D, Brusotti G, Torre ML, Ribatti D, Auricchio F, Massolini G, Tripodo G. Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110060. [PMID: 31546370 DOI: 10.1016/j.msec.2019.110060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
The paper focuses on the preparation of polyacrylate based biomaterials designed as patches for dermal/transdermal drug delivery using materials obtained by the high internal phase emulsion (HIPE) technique. In particular, butyl acrylate and glycidyl methacrylate were selected, respectively, as backbone and functional monomer while two different crosslinkers, bifunctional or trifunctional, were used to form the covalent network. The influence of PEG on the main properties of the materials was also investigated. The obtained materials show a characteristic and interconnected internal structure as confirmed by SEM studies. By an industrial point of view, an interesting feature of this system is that it can be shaped as needed, in any form and thickness. The physiochemically characterized materials showed a tailorable curcumin (model of hydrophobic drugs) drug release, effective mechanical properties and cell viability and resulted neither pro nor anti-angiogenic as demonstrated in vivo by the chick embryo choriallantoic membrane (CAM) assay. Based on these results, the obtained polyHIPEs could be proposed as devices for dermal/transdermal drug delivery and/or for the direct application on wounded skin.
Collapse
Affiliation(s)
- Marco Corti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy
| | - Anna Ferrara
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, Pavia 27100, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare 11, Bari 70100, Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, Pavia 27100, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, Bari 70125, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare 11, Bari 70100, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, Pavia 27100, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12-14, Pavia 27100, Italy.
| |
Collapse
|
14
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|
15
|
Magnetic stir cake sorptive extraction of trace tetracycline antibiotics in food samples: preparation of metal–organic framework-embedded polyHIPE monolithic composites, validation and application. Anal Bioanal Chem 2019; 411:2239-2248. [DOI: 10.1007/s00216-019-01660-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 01/23/2023]
|
16
|
Lee A, Langford CR, Rodriguez-Lorenzo LM, Thissen H, Cameron NR. Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D. Biomater Sci 2018; 5:2035-2047. [PMID: 28726876 DOI: 10.1039/c7bm00292k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emulsion-templated (polyHIPE) scaffolds for bone tissue engineering were produced by photopolymerisation of a mixture of trimethylolpropane tris(3-mercaptopropionate) and dipentaerythritol penta-/hexa-acrylate in the presence of hydroxyapatite (HA) or strontium-modified hydroxyapatite (SrHA) nanoparticles. Porous and permeable polyHIPE materials were produced regardless of the type or incorporation level of the bioceramic, although higher loadings resulted in a larger average pore diameter. Inclusion of HA and SrHA into the scaffolds was confirmed by EDX-SEM, FTIR and XPS and quantified by thermogravimetry. Addition of HA to polyHIPE scaffolds significantly enhanced compressive strength (148-216 kPa) without affecting compressive modulus (2.34-2.58 MPa). The resulting materials were evaluated in vitro as scaffolds for the 3D culture of MG63 osteoblastic cells vs. a commercial 3D cell culture scaffold (Alvetex®). Cells were able to migrate throughout all scaffolds, achieving a high density by the end of the culture period (21 days). The presence of HA and in particular SrHA gave greatly enhanced cell proliferation, as determined by staining of histological sections and total protein assay (Bradford). Furthermore, Von Kossa and Alizarin Red staining demonstrated significant mineralisation from inclusion of bioceramics, even at the earliest time point (day 7). Production of alkaline phosphatase (ALP), an early osteogenic marker, was used to investigate the influence of HA and SrHA on cell function. ALP levels were significantly reduced on HA- and SrHA-modified scaffolds by day 7, which agrees with the observed early onset of mineralisation in the presence of the bioceramics. The presented data support our conclusions that HA and SrHA enhance osteoblastic cell proliferation on polyHIPE scaffolds and promote early mineralisation.
Collapse
Affiliation(s)
- Aaron Lee
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| | | | | | | | | |
Collapse
|
17
|
Tailoring the morphology and epoxy group content of glycidyl methacrylate-based polyHIPE monoliths via radiation-induced polymerization at room temperature. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4307-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Huang Y, Zhang W, Ruan G, Li X, Cong Y, Du F, Li J. Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3661-3668. [PMID: 29502419 DOI: 10.1021/acs.langmuir.8b00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.
Collapse
Affiliation(s)
- Yipeng Huang
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
| | - Wenjuan Zhang
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
| | - Guihua Ruan
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection , Guangxi 541004 , China
| | - Xianxian Li
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
| | - Yongzheng Cong
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection , Guangxi 541004 , China
| | - Fuyou Du
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection , Guangxi 541004 , China
| | - Jianping Li
- College of Chemistry and Bioengineering , Guilin University of Technology , Guangxi 541004 , China
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection , Guangxi 541004 , China
| |
Collapse
|
19
|
Tripodo G, Marrubini G, Corti M, Brusotti G, Milanese C, Sorrenti M, Catenacci L, Massolini G, Calleri E. Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: from computationally-assisted synthesis to pharmaceutical applications. Polym Chem 2018. [DOI: 10.1039/c7py01626c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PolyHIPE functional materials were chemically conjugated with a model enzyme. It retained its activity upon flow as demonstrated by the conversion of a specific substrate.
Collapse
Affiliation(s)
- G. Tripodo
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Marrubini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - M. Corti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Brusotti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - C. Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | - M. Sorrenti
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - L. Catenacci
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - G. Massolini
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - E. Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| |
Collapse
|
20
|
Khodabandeh A, Arrua RD, Coad BR, Rodemann T, Ohigashi T, Kosugi N, Thickett SC, Hilder EF. Morphology control in polymerised high internal phase emulsion templated via macro-RAFT agent composition: visualizing surface chemistry. Polym Chem 2018. [DOI: 10.1039/c7py01770g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of polymerized high internal phase emulsion (polyHIPE) materials have been prepared by using a water in oil emulsion stabilized by a macro-RAFT agent, 2-(butylthiocarbonothioylthio)-2-poly(styrene)-b-poly(acrylic acid), acting as a polymeric surfactant.
Collapse
Affiliation(s)
- A. Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS)
- University of Tasmania
- Tasmania
- Australia
- Future Industries Institute
| | - R. D. Arrua
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
| | - B. R. Coad
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
- School of Agriculture
| | - T. Rodemann
- Central Science Laboratory
- University of Tasmania
- Hobart 7001
- Australia
| | - T. Ohigashi
- UVSOR Synchrotron
- Institute for Molecular Science
- Okazaki
- 444-8585 Japan
| | - N. Kosugi
- UVSOR Synchrotron
- Institute for Molecular Science
- Okazaki
- 444-8585 Japan
| | - S. C. Thickett
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| | - E. F. Hilder
- Future Industries Institute
- University of South Australia
- Adelaide, SA 5001
- Australia
| |
Collapse
|
21
|
Wan X, Azhar U, Wang Y, Chen J, Xu A, Zhang S, Geng B. Highly porous and chemical resistive P(TFEMA–DVB) monolith with tunable morphology for rapid oil/water separation. RSC Adv 2018; 8:8355-8364. [PMID: 35542035 PMCID: PMC9078523 DOI: 10.1039/c8ra00501j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 11/27/2022] Open
Abstract
A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper. The foams have adjustable morphology utilizing a suitable commercial surfactant, Hypermer B246, as stabilizer, and were compared with traditional organic surfactants or macromolecular block-polymers. Combining the porous properties and advantages of fluorine atoms, this type of fluoropolymer exhibited superb chemical stability and hydrophobicity performances with high porosity. These porous fluoro-monoliths preserved their regular porous structure without any degradation after immersion into strong acidic or basic solution for three days, hence demonstrating an excellent potential to deal with environmental pollution caused by oil spillages in severe environments. The tunable morphology (open and closed pores) and pore sizes were achieved by investigating various parameters like surfactant concentration, amount of external crosslinker, and aqueous phase volume. Droplet sizes of HIPEs were characterized using an optical microscope under different experimental conditions. The influence of pore structure and surface properties of polyHIPE on water contact angle and oil adsorption capacity was also explored. The results indicated that the porous material has an excellent oleophilicity and hydrophobicity, with water contact angles (WCA) up to 146.4°. Additionally, the results presented a noticeable adsorption with a very fast rate towards organic oils from either a water surface or bottom with adsorption saturation achieved in about 120 s. The prepared polyHIPEs showed a good recycling ability; even after 10 adsorption–centrifugation experiments, the adsorption capacity was still more than 85%. A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper.![]()
Collapse
Affiliation(s)
- Xiaozheng Wan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yongkang Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bing Geng
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
22
|
Graphene Oxide Nanoparticles and Their Influence on Chromatographic Separation Using Polymeric High Internal Phase Emulsions. SEPARATIONS 2017. [DOI: 10.3390/separations4010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
XI J, ZHANG J, ZHAO H. Novel Uniform Fe 3O 4 Hollow Spheres for Magnetic Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons. ANAL SCI 2017; 33:999-1005. [DOI: 10.2116/analsci.33.999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jiangbo XI
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
| | - Juan ZHANG
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
| | - Haiyan ZHAO
- School of Pharmaceutical Sciences, South-central University for Nationalities
| |
Collapse
|
24
|
Pang L, Zhang W, Zhang W, Chen P, Yu J, Zhu GT, Zhu S. Magnetic graphene solid-phase extraction in the determination of polycyclic aromatic hydrocarbons in water. RSC Adv 2017. [DOI: 10.1039/c7ra10551g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic graphene nanocomposite was fabricated and applied to the extraction of PAHs in water, followed by GC-MS. The method showed a good linearity. The limits of detection (S/N = 3) were in a range between 0.02–14.3 ng L−1.
Collapse
Affiliation(s)
- Liling Pang
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan
- PR China
| | - Wanfeng Zhang
- State Key Laboratory of Isotope Geochemistry
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
| | - Weiya Zhang
- Testing & Technology Centre for Industrial Products
- Shenzhen Entry-exit Inspection and Quarantine Bureau
- PR China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan
- PR China
| | - Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan
- PR China
| | - Gang-Tian Zhu
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan
- PR China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology
- China University of Geosciences
- Wuhan
- PR China
| |
Collapse
|
25
|
High Internal Phase Emulsion Polymeric Monolith Extraction Coupling with High-Performance Liquid Chromatography for the Determination of Para Red and Sudan Dyes in Chilli Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Carranza A, Pérez-García MG, Song K, Jeha GM, Diao Z, Jin R, Bogdanchikova N, Soltero AF, Terrones M, Wu Q, Pojman JA, Mota-Morales JD. Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31295-31303. [PMID: 27779385 DOI: 10.1021/acsami.6b09589] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CNX) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CNX concentration (less than 0.2 wt % to the internal phase) produced important changes in the macroporous monolith functionalization, which in turn led to increased monolith hydrophobicity and pore openness. These materials displayed great oleophilicity with water contact angles as high as 140° making them apt for biodiesel, diesel, and gasoline fuel sorption applications. Overall, styrene divinylbenzene (StDvB) based poly(HIPEs) showed hydrophobicity and fuel sorption capacities as high as 4.8 (g/g). Pore hierarchy, namely pore openness, regulated sorption capacity, and sorption times where greater openness resulted in faster sorption and increased sorption capacity. Monoliths were subject to 20 sorption-desorption cycles demonstrating recyclability and stable sorption capacity. Finally, CNX/surfactant hybrids made it possible to reduce surfactant requirements for successful HIPE formation and stabilization during polymerization. All poly(HIPEs) retained acceptable conversion as a function of CNX loading nearing 90% or better with thermal stability as high as 283 °C.
Collapse
Affiliation(s)
- Arturo Carranza
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - María G Pérez-García
- Centro Universitario de Tonalá, Universidad de Guadalajara , Tonalá, Jalisco 45425, México
| | - Kunlin Song
- School of Renewable Natural Resources, Louisiana State University Agricultural Center , Baton Rouge, Louisiana 70803, United States
| | - George M Jeha
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Zhenyu Diao
- Department of Physics & Astronomy, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Rongying Jin
- Department of Physics & Astronomy, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México , Ensenada, Baja California 22860, México
| | - Armando F Soltero
- Departamento de Ingeniería Química, Universidad de Guadalajara , Guadalajara, Jalisco 44430, México
| | - Mauricio Terrones
- Department of Physics and Center for 2-Dimensional and Layered Materials, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center , Baton Rouge, Louisiana 70803, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70820, United States
| | - Josué D Mota-Morales
- CONACYT-Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México , Ensenada, Baja California 22860, México
| |
Collapse
|
27
|
Fresco-Cala B, Cárdenas S, Valcárcel M. Preparation and evaluation of micro and meso porous silica monoliths with embedded carbon nanoparticles for the extraction of non-polar compounds from waters. J Chromatogr A 2016; 1468:55-63. [PMID: 27692641 DOI: 10.1016/j.chroma.2016.09.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022]
Abstract
A novel hybrid micro and meso porous silica monolith with embedded carbon nanoparticles (Si-CNPs monolith) was prepared inside a fused silica capillary (3cm in length) and used as a sorbent for solid-phase microextraction. The hybrid monolithic capillary was synthetized by hydrolysis and polycondensation of a mixture of tetraethoxysilane (TEOS), ethanol, and three different carbon nanoparticles such as carboxylated single-walled carbon nanotubes (c-SWCNTs), carboxylated multi-walled carbon nanotubes (c-MWCNTs), and oxidized single-walled carbon nanohorns (o-SWNHs) via a two-step catalytic sol-gel process. Compared with silica monolith without carbon nanoparticles, the developed monolithic capillary column exhibited a higher extraction efficiency towards the analytes which can be ascribed to the presence of the carbon nanoparticles. In this regard, the best performance was achieved for silica monolith with embedded c-MWCNTs. The resulted monolithic capillaries were also characterized by scanning electron microscopy (SEM), elemental analysis and nitrogen intrusion porosimetry. Variables affecting to the preparation of the sorbent phase including three different carbon nanoparticles and extraction parameters were studied in depth using polycyclic aromatic hydrocarbons (PAHs) as target analytes. Gas chromatography-mass spectrometry was selected as instrumental technique. Detection limits range from 0.1 to 0.3μgL-1, and the inter-extraction units precision (expressed as relative standard deviation) is between 5.9 and 14.4%.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanotechnology, Marie Curie Building, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - Soledad Cárdenas
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanotechnology, Marie Curie Building, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - Miguel Valcárcel
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanotechnology, Marie Curie Building, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
28
|
Choudhury S, Connolly D, White B. Application of polymeric high-internal-phase-emulsion-coated stationary-phase columns in open-tubular capillary electrochromatography. J Appl Polym Sci 2016. [DOI: 10.1002/app.44237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sidratul Choudhury
- School of Chemical Sciences; Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University; Dublin 9 Ireland
| | - Damian Connolly
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology; Waterford Ireland
| | - Blánaid White
- School of Chemical Sciences; Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University; Dublin 9 Ireland
| |
Collapse
|
29
|
Bunkoed O, Rueankaew T, Nurerk P, Kanatharana P. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples. J Sep Sci 2016; 39:2332-9. [DOI: 10.1002/jssc.201600285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Opas Bunkoed
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Thanaschaphorn Rueankaew
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Piyaluk Nurerk
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center; Prince of Songkla University; Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| |
Collapse
|
30
|
Brusotti G, Calleri E, Milanese C, Catenacci L, Marrubini G, Sorrenti M, Girella A, Massolini G, Tripodo G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym Chem 2016. [DOI: 10.1039/c6py01992g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylate-based materials rationally designed by high internal phase emulsion (polyHIPE) are reported.
Collapse
Affiliation(s)
| | - Enrica Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | | | | - Alessandro Girella
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | |
Collapse
|
31
|
Su R, Ruan G, Chen Z, Du F, Li J. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II). J Sep Sci 2015; 38:4262-8. [DOI: 10.1002/jssc.201500580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Rihui Su
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Zhengyi Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering; Guilin University of Technology; Guangxi China
| |
Collapse
|
32
|
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci 2015; 39:51-68. [DOI: 10.1002/jssc.201501011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|