1
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
2
|
Tangpromphan P, Palitsakun S, Jaree A. Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds. Heliyon 2023; 9:e21340. [PMID: 37964825 PMCID: PMC10641175 DOI: 10.1016/j.heliyon.2023.e21340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Spent Coffee Grounds (SCG) is an agricultural residue obtained in a large quantity from local cafes in Thailand. In order to handle this waste effectively, the valorization of SCG is essential. SCG consists of beneficial phenolic compounds with antioxidative properties and caffeine, which can be recovered through extraction followed by separation and purification processes. In this work, water extraction of SCG was carried out. The volumetric composition of the liquid extract of SCG was then adjusted with an organic solvent, and the obtained mixture was used as the feed for subsequent separation. For the separation method of the SCG extract, a single chromatographic column was employed to separate a group of phenolic compounds (represented by chlorogenic acid) and a group of contaminants (represented by caffeine). The volumetric composition of the mobile phase was varied to determine the condition suitable for the separation of chlorogenic acid and caffeine in a C18 column. Adsorption parameters were determined and used to formulate the mathematical models describing the adsorption dynamics of those two bioactive compounds in the experimental breakthrough curves of standard solutions and the liquid extract of SCG. Furthermore, the three-zone simulated moving bed system (TZ-SMB) was designed to continuously separate fractions of chlorogenic acid and caffeine in the liquid extract of SCG. The adsorption parameters were employed in the optimization of TZ-SMB operating conditions using triangle theory, conducted via computer simulation. The experimental result of water extraction revealed that the yields of chlorogenic acid and caffeine were 0.292 and 0.583 mg/g dried SCG, respectively, using solid-to-liquid ratio of 1 g: 30 mL and temperature of 75 °C. The separation result in a single chromatographic column showed that the mobile phase consisting of acetonitrile, water, and formic acid (10: 90: 1.5 vol%) provided the linear adsorption isotherms for both chlorogenic acid and caffeine, and the chromatographic peaks of all compounds in the liquid extract of SCG were well separated. The simulated results of TZ-SMB at the optimal point revealed that the flow rates of desorbent, feed, extract product, and raffinate product were 0.626, 0.115, 0.081, and 0.593 mL/min, respectively, with the switching time of 20 min. At this point, the relative purities of caffeine in the extract product and chlorogenic acid in the raffinate product were 99.45 % and 98.88 %, respectively, with the maximum productivity of 0.045 mg/mL⋅h. In addition, for demonstration purposes, the lab-scale TZ-SMB experiment was conducted to show the separation of chlorogenic acid and caffeine in the liquid extract of SCG. The operating point from the triangle separation region was chosen based on the sensitivity of flow rate that ensured the criteria of purity. The experimental results showed that the relative purities of caffeine in extract product and chlorogenic acid in raffinate product were both 100 %, verifying the successful separation.
Collapse
Affiliation(s)
- Preuk Tangpromphan
- Department of Biotechnology, Faculty of Agro-industry, Kasetsart University, Bangkok 10900, Thailand
- Center for High-Value Products from Bioresources: HVPB. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Supaphorn Palitsakun
- Central of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Attasak Jaree
- Central of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- Center for High-Value Products from Bioresources: HVPB. Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Diehm J, Ballweg T, Franzreb M. Development of a 3D Printed Micro Simulated Moving Bed Chromatography System. J Chromatogr A 2023; 1695:463928. [PMID: 36966603 DOI: 10.1016/j.chroma.2023.463928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
In the 1960s, chromatography processes were revolutionized by the invention of simulated moving bed chromatography. This method not only enhances the separation performance and resin utilization in comparison to batch-chromatography, it has also a much lower buffer consumption. While simulated moving bed chromatography nowadays is applied for a wide range of industrial applications, it was never transferred to the micro-scale (in regards to column and system volume). In our opinion a micro simulated moving bed chromatography system (µSMB) would be a useful tool for many applications, ranging from early process development and long term studies to downstream processing of speciality products. We implemented such a µSMB with a 3D printed central rotary valve and a microfluidic flow controller as flow source. We tested the system with a four zone open loop setup for the separation of bovine serum albumin and ammonium sulfate with size exclusion chromatography. We used four process points and could achieve desalting levels of BSA ranging from 94% to 99%, with yields ranging form 65% to 88%. Thus, we were able to achieve comparable results to common lab scale processes. With a total dead volume of 358 µL, including all sensors, connections and the valve, this is, to the best of our knowledge, the smallest SMB system that was ever built and we were able to perform experiments with feed flow rates reaching as low as 15 µL/min.
Collapse
|
4
|
Research Progress on the Typical Variants of Simulated Moving Bed: From the Established Processes to the Advanced Technologies. Processes (Basel) 2023. [DOI: 10.3390/pr11020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Simulated moving bed (SMB) chromatography is a highly efficient adsorption-based separation technology with various industrial applications. At present, its application has been successfully extended to the biochemical and pharmaceutical industrial sectors. SMB possesses the advantages of high product purity and yield, large feed treatment capacity, and simple process control due to the continuous operation mode and the efficient separation mechanism, particularly for difficult separation. Moreover, SMB performs well, particularly for multi-component separation or complicated systems’ purification processes in which each component exhibits similar properties and low resolution. With the development of the economy and technology, SMB technology needs to be improved and optimized to enhance its performance and deal with more complex separation tasks. This paper summarizes the typical variants or modifications of the SMB process through three aspects: zone variant, gradient variant, and feed or operation variant. The corresponding modification principles, operating modes, advantages, limitations, and practical application areas of each variant were comprehensively investigated. Finally, the application prospect and development direction were summarized, which could provide valuable recommendations and guidance for future research in the SMB area.
Collapse
|
5
|
Separation of nadolol racemates by high pH reversed-phase fixed-bed and simulated moving bed chromatography. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Tangpromphan P, Duangsrisai S, Jaree A. Development of separation method for Alpha-Tocopherol and Gamma-Oryzanol extracted from rice bran oil using Three-Zone simulated moving bed process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
He QL, Zhao L. Bayesian inference based process design and uncertainty analysis of simulated moving bed chromatographic systems. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
|
9
|
He QL, von Lieres E, Sun Z, Zhao L. Model-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.106851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Hwang S, Song JR, Mai NL, Koo YM. Enhanced separation performance of three-zone simulated moving bed chromatography with ModiCon strategy. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Li Y, Ding Z, Wang J, Xu J, Yu W, Ray AK. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Mota IF, Pinto PR, Loureiro JM, Rodrigues AE. Purification of syringaldehyde and vanillin from an oxidized industrial kraft liquor by chromatographic processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Han HS, Kim KM, Han KW, Kim SI, Bae YS. Total-recycling partial-discard strategy for improved performance of simulated moving-bed chromatography. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Optimization strategies for chiral separation by true moving bed chromatography using Particles Swarm Optimization (PSO) and new Parallel PSO variant. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wei F, Shi L, Wang Q, Zhao Y. Fast and accurate separation of the paclitaxel from yew extracum by a pseudo simulated moving bed with solvent gradient. J Chromatogr A 2018; 1564:120-127. [PMID: 29895410 DOI: 10.1016/j.chroma.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
A pseudo simulated moving bed (SMB) with solvent gradient was used to trap and separate paclitaxel from yew extracum. This SMB process consisted of three steps: feeding, purification and recovery. In comparison with methanol/water as an eluent, acetonitrile/water could give a better separation but had a poor dissolubility of the yew extracum, and therefore methanol/water was used in the feeding followed by acetonitrile/water in the purification. In the first two steps, water was deliberately added into zone III to modulate the eluotropic strength of the liquid entering zone III, so as to make paclitaxel separation from impurities be more efficient. Once most of impurities discarded, the columns were in turn eluted to recover the trapped paclitaxel of 98% yield with a purity of 78% from the yew extracum containing 1.5% paclitaxel. Afterward, an additional operation of crystallization improved the purity further to 97.8% with the yield of 95%.
Collapse
Affiliation(s)
- Feng Wei
- Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang, 315100, China.
| | - Licheng Shi
- Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Qiang Wang
- Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Yingxian Zhao
- Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
18
|
He QL, Leweke S, von Lieres E. Efficient numerical simulation of simulated moving bed chromatography with a single-column solver. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2017.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.08.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Advanced Operating Strategies to Extend the Applications of Simulated Moving Bed Chromatography. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201700206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
|
22
|
Hughson MD, Cruz TA, Carvalho RJ, Castilho LR. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins. Biotechnol Prog 2017; 33:931-940. [DOI: 10.1002/btpr.2501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Michael D. Hughson
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
| | - Thayana A. Cruz
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
- Federal University of Rio de Janeiro (UFRJ), IQ, Biochemistry Program; Ilha do Fundao Rio de Janeiro 21941-909 Brazil
| | - Rimenys J. Carvalho
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
| | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
- Federal University of Rio de Janeiro (UFRJ), IQ, Biochemistry Program; Ilha do Fundao Rio de Janeiro 21941-909 Brazil
| |
Collapse
|
23
|
Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 2016; 47 Suppl 1:51-63. [PMID: 27838289 PMCID: PMC5156500 DOI: 10.1016/j.bjm.2016.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
The use of biopharmaceuticals dates from the 19th century and within 5–10 years, up to 50% of all drugs in development will be biopharmaceuticals. In the 1980s, the biopharmaceutical industry experienced a significant growth in the production and approval of recombinant proteins such as interferons (IFN α, β, and γ) and growth hormones. The production of biopharmaceuticals, known as bioprocess, involves a wide range of techniques. In this review, we discuss the technology involved in the bioprocess and describe the available strategies and main advances in microbial fermentation and purification process to obtain biopharmaceuticals.
Collapse
|
24
|
Johnson SA, Brown MR, Lute SC, Brorson KA. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol Bioeng 2016; 114:21-32. [DOI: 10.1002/bit.26060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah A. Johnson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Matthew R. Brown
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Scott C. Lute
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Kurt A. Brorson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| |
Collapse
|
25
|
Steinebach F, Müller-Späth T, Morbidelli M. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol J 2016; 11:1126-41. [PMID: 27376629 DOI: 10.1002/biot.201500354] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/21/2015] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies.
Collapse
Affiliation(s)
- Fabian Steinebach
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|