1
|
Zajickova Z. Review of recent advances in development and applications of organic-silica hybrid monoliths. J Sep Sci 2023; 46:e2300396. [PMID: 37582653 DOI: 10.1002/jssc.202300396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Organic-silica hybrid monoliths attracted attention as an alternative to extensively researched organic polymer-based and silica-based counterparts. The development and applications of these materials as extraction and separation media in capillary liquid chromatography and capillary electrochromatography were previously reviewed in several manuscripts. In this review, we will concentrate on work published since mid-2016 focusing on advances in their development using sol-gel chemistry of tetra- and trialkoxysilanes and subsequent surface modification with organic monomers, and "one-pot" strategy incorporating sol-gel chemistry of alkoxysilanes and free-radical polymerization, ring-opening polymerization, or thiol-based click polymerization with organic monomers. Approaches adapted to the preparation of hybrid monoliths made with polyhedral oligomeric silsesquioxanes will be covered as well.
Collapse
Affiliation(s)
- Zuzana Zajickova
- Department of Chemistry and Physics, Barry University, Miami, Florida, USA
| |
Collapse
|
2
|
Si H, Wang Q, Guo Y, Zhao Y, Li H, Li S, Wang S, Zhu B. Functionalized monolithic columns: Recent advancements and their applications for high-efficiency separation and enrichment in food and medicine. Front Chem 2022; 10:951649. [PMID: 35991596 PMCID: PMC9388943 DOI: 10.3389/fchem.2022.951649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The chromatographic column is the core of a high-performance liquid chromatography (HPLC) system, and must have excellent separation efficiency and selectivity. Therefore, functional modification materials for monolithic columns have been rapidly developed. This study is a systematic review of the recently reported functionalized monolithic columns. In particular, the study reviews the types of functional monomers under different modification conditions, as well as the separation and detection techniques combined with chromatography, and their development prospects. In addition, the applications of functionalized monolithic columns in food analysis, biomedicine, and the analysis of active ingredient of Chinese herbal medicines in recent years are also discussed. Also reviewed are the functionalized monolithic columns for qualitative and quantitative analysis. It provided a reference for further development and application of organic polymer monolithic columns.
Collapse
Affiliation(s)
- Helong Si
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
| | - Quan Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
- *Correspondence: Quan Wang,
| | - Yuanyuan Guo
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Yuxin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Hongya Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuna Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuxiang Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Baocheng Zhu
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| |
Collapse
|
3
|
Zhao Y, Zhu X, Jiang W, Liu H, Wang J, Sun B. Natural and Artificial Chiral-Based Systems for Separation Applications. Crit Rev Anal Chem 2021; 53:27-45. [PMID: 34152894 DOI: 10.1080/10408347.2021.1932408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral separation has attracted much attention for basic research and industrial applications in analytical chemistry. Generally, chiral separations use natural or artificial chiral-based materials as adsorbents. To improve the precision and efficiency of chiral separation, focus has shifted from natural and synthetic adsorbents to binary combinations of materials. This review specifically summarizes the significant advancements made in natural and artificial chiral adsorbents as promising candidates for diverse drug and biomolecule separation applications as well as the remaining drawbacks and challenges for research on chiral separations. The mechanisms of chiral-based recognition and separation and history and development of natural and artificial chiral-based systems are the focus of this review. Future directions in natural and artificial chiral-based systems for practical separations and other applications are also presented.
Collapse
Affiliation(s)
- Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Berkecz R, Tanács D, Péter A, Ilisz I. Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules 2021; 26:molecules26113380. [PMID: 34205002 PMCID: PMC8199854 DOI: 10.3390/molecules26113380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous chemical compounds of high practical importance, such as drugs, fertilizers, and food additives are being commercialized as racemic mixtures, although in most cases only one of the isomers possesses the desirable properties. As our understanding of the biological actions of chiral compounds has improved, the investigation of the pharmacological and toxicological properties has become more and more important. Chirality has become a major issue in the pharmaceutical industry; therefore, there is a continuous demand to extend the available analytical methods for enantiomeric separations and enhance their efficiency. Direct liquid chromatography methods based on the application of chiral stationary phases have become a very sophisticated field of enantiomeric separations by now. Hundreds of chiral stationary phases have been commercialized so far. Among these, macrocyclic glycopeptide-based chiral selectors have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance. This review focuses on direct liquid chromatography-based enantiomer separations, applying macrocyclic glycopeptide-based chiral selectors. Special attention is paid to the characterization of the physico-chemical properties of these macrocyclic glycopeptide antibiotics providing detailed information on their applications published recently.
Collapse
|
5
|
Grodner B, Napiórkowska M. Dual 2-Hydroxypropyl-β-Cyclodextrin and 5,10,15,20-Tetrakis (4-Hydroxyphenyl) Porphyrin System as a Novel Chiral-Achiral Selector Complex for Enantioseparation of Aminoalkanol Derivatives with Anticancer Activity in Capillary Electrophoresis. Molecules 2021; 26:molecules26040993. [PMID: 33668491 PMCID: PMC7918572 DOI: 10.3390/molecules26040993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a complex consisting of 2-hydroxypropyl-β-cyclodextrin and 5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin, (named dual chiral-achiral selector complex) was used for the determination of two novel potential anticancer agents of (I) and (II) aminoalkanol derivatives. This work aimed at developing an effective method that can be utilized for the determination of I (S), I (R), and II (S) and II (R) enantiomers of (I) and (II) compounds through the use of a dual chiral-achiral selector complex consisting of hydroxypropyl-β-cyclodextrin and 5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin system by applying capillary electrophoresis. This combination proved to be beneficial in achieving high separation selectivity due to the combined effects of different modes of chiral discrimination. The enantiomers of (I) and (II) compounds were separated within a very short time of 3.6–7.2 min, in pH 2.5 phosphate buffer containing 2-hydroxypropyl-β-cyclodextrin and 5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin system at a concentration of 5 and 10 mM, respectively, at 25 °C and +10 kV. The detection wavelength of the detector was set at 200 nm. The LOD for I (S), I (R), II (S), and II (R) was 65.2, 65.6, 65.1, and 65.7 ng/mL, respectively. LOQ for I (S), I (R), II (S), and II (R) was 216.5, 217.8, 217.1, and 218.1 ng/mL, respectively. Recovery was 94.9–99.9%. The repeatability and reproducibility of the method based on the values of the migration time, and the area under the peak was 0.3–2.9% RSD. The stability of the method was determined at 0.1–4.9% RSD. The developed method was used in the pilot studies for determining the enantiomers I (S), I (R), II (S), and II (R) in the blood serum.
Collapse
Affiliation(s)
- Błażej Grodner
- Chair and Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: or
| | - Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
6
|
Fanali S, Chankvetadze B. History, advancement, bottlenecks, and future of chiral capillary electrochromatography. J Chromatogr A 2020; 1637:461832. [PMID: 33383238 DOI: 10.1016/j.chroma.2020.461832] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Capillary electrochromatography (CEC) represents a technique with less than 30 years of intense development and in this period this technique has seen huge promise, fast development, stagnation, and significant decline of innovative activity. The major goal of the present overview is not to present an extensive review of the literature on chiral CEC but to analyze the reasons for this dramatic development and attempting to answer questions such as: 1) Was the potential of CEC reasonably evaluated in 1990s before starting the explosive development in this field? 2) Did the development of this technique take the right track? 3) What other developments and competitive trends led to stagnation in the advancement of CEC? 4) Why is the activity in this field currently decreasing? 5) What are the current challenges and promises and what is the future of chiral CEC?
Collapse
Affiliation(s)
- Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Strada Le Grazie, 15, 37129 Verona, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia.
| |
Collapse
|
7
|
Fang L, Zhao Y, Wang C, Wang C, Han X, Chen P, Zhao L, Wang J, Li S, Jiang Z. Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations. J Sep Sci 2020; 43:2209-2216. [PMID: 32160391 DOI: 10.1002/jssc.201901323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022]
Abstract
Inspired by the distinct chemical and physical properties of nanoparticles, here a novel open-tubular capillary electrochromatography column was prepared by electrostatic assembly of poly(diallydimethylammonium chloride) onto the inner surface of a fused-silica capillary, followed by self-adsorption of negatively charged SH-β-cyclodextrin/gold nanoparticles. The formation of the SH-β-cyclodextrin/gold nanoparticles coated capillary was confirmed and characterized by scanning electron microscopy and energy dispersive spectrometry. The results of scanning electron microscopy and energy dispersive spectrometry studies indicated that SH-β-cyclodextrin/gold nanoparticles were successfully coated on the inner wall of the capillary column. The performance of the SH-β-cyclodextrin/gold nanoparticles coated capillary was validated by the analysis of six pairs of chiral drugs, namely zopiclone, carvedilol, salbutamol, terbutaline sulfate, phenoxybenzamine hydrochloride, and ibuprofen. Satisfactory enantioseparation results were achieved, confirming the use of gold nanoparticles as the support could enhance the phase ratio of the open-tubular capillary column. Additionally, the stability and reproducibility of the SH-β-cyclodextrin/gold nanoparticles coated capillary column were also investigated. Then, this proposed method was well validated with good linearity (≥0.999), recovery (90.0-93.5%) and repeatability, and was successfully used for enantioseparation of ibuprofen in spiked plasma samples, which indicated the new column's potential usage in biological analysis.
Collapse
Affiliation(s)
- Linlin Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.,College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Yanyan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, P. R. China
| | - Changyuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xu Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Pengjun Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lizhu Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, P. R. China
| | - Jingping Wang
- College of Pharmacy, Harbin University of Commerce, Harbin, P. R. China
| | - Shuang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zhen Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
8
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
|
11
|
Zhao S, Yu T, Du Y, Sun X, Feng Z, Ma X, Ding W, Chen C. An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides. Mikrochim Acta 2019; 186:636. [PMID: 31432257 DOI: 10.1007/s00604-019-3723-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
The preparation of an organic polymer monolithic column modified with an amino acid ionic liquid and graphene oxide (AAIL-GO) and its application to capillary electrochromatography (CEC) was described. The AAIL tetramethylammonium-L-arginine was bonded to a monolithic column that was previously modified with graphene oxide by using an hydrochloride/N-hydroxysuccinimide coupling reaction. The morphology of a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was examined by scanning electron microscopy. The incorporation of AAIL and graphene oxide was detected by infrared spectroscopy and elemental analysis. The resulting monolithic column produced a strong and stable electroosmotic flow from the anode to the cathode in the pH range from 3 to 9. Compared with a column modified with AAIL or graphene oxide only, the AAIL-GO-modified column has a better separation ability for amino acids, β-blockers, and nucleotides (the resolution of three amino acids: 2.231 and 2.036, β-blockers: 2.779 and 2.470 and nucleotides: 8.345 and 3.321). Molecular modeling was applied to demonstrate the separation mechanism of small molecules which showed a good support for experimental results. Graphical abstract Schematic representation of capillary electrochromatography (CEC) systems with an amino acid ionic liquid-graphene oxide modified organic polymer monolithic column as stationary phases for separation of amino acids, β-blockers, and nucleotides.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Tao Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| |
Collapse
|
12
|
|
13
|
Kim MY, Park JH. Enantiomer Separation of Acidic Chiral Compounds on a Clarithromycin-Zirconia Hybrid Monolith by Capillary Electrochromatography. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Yeon Kim
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Korea
| | - Jung Hag Park
- Department of Chemistry; Yeungnam University; Gyeongsan 38541 Korea
| |
Collapse
|
14
|
Greño M, Castro-Puyana M, García MÁ, Marina ML. Analysis of antibiotics by CE and CEC and their use as chiral selectors: An update. Electrophoresis 2017; 39:235-259. [PMID: 28941242 DOI: 10.1002/elps.201700306] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
Abstract
Natural, synthetic or semisynthetic antibiotics are highly used to prevent or treat diseases in humans and animals, and to promote animal growth. This fact makes that antibiotics residues or their transformation products may be present in food or in the environment after human or animal excretion. For this reason, it is imperative to develop reliable and sensitive analytical methodologies for their analysis. The main aim of this work is to present and discuss the most recent applications of capillary electromigration methods for the analysis of antibiotics, including the developments and applications of their use as chiral selectors in CE. The literature published from June 2015 to June 2017 is included following the previous review by Domínguez-Vega et al. (Electrophoresis, 2016, 37, 189-211). Information about the use of different detection systems, off-line and on-line strategies to improve sensitivity, and microchip devices for the analysis of antibiotics is provided and properly discussed.
Collapse
Affiliation(s)
- Maider Greño
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Ángeles García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
15
|
|
16
|
Dixit S, Lee IS, Park JH. Carbamoylated azithromycin incorporated zirconia hybrid monolith for enantioseparation of acidic chiral drugs using non-aqueous capillary electrochromatography. J Chromatogr A 2017; 1507:132-140. [PMID: 28558906 DOI: 10.1016/j.chroma.2017.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
Carbamoylated derivatives of two antibiotics, namely, clindamycin phosphate (CLIP) and erythromycin (ERY) were successfully employed as co-precursors, in combination of zirconium tetrabutoxide as a precursor, to prepare chiral organic-zirconia hybrid monoliths (i.e., CLIP-ZHMs and ERY-ZHMs, respectively) via a single-step in-situ sol-gel approach in our previous works. Their superiority over chiral organic-zirconia/silica monoliths, prepared by post-modification approach, in terms of better enantioresolution and enhanced stability inspired us to prepare ZHMs based on an another antibiotic, azithromycin (i.e., AZI-ZHMs). Monolithic columns were employed for capillary electrochromatographic enantioseparation of acidic chiral drugs in mobile phases consisting of acetonitrile (ACN) and methanol (MeOH) as organic modifiers, and acetic acid (AcOH) and triethylamine (TEA) as electrolytes. The effects of composition of mobile phase and applied voltage on chiral separation were investigated by using ketoprofen as a representative analyte. Baseline resolutions were obtained for six acidic drugs in mobile phase consisting of 80/20 (v/v) ACN/MeOH with 300mM AcOH and 10mM TEA at a 10kV applied voltage and 25°C capillary temperature. The relative standard deviations for resolution values regarding column to column and batch to batch repeatability were less than 2.5% (for n=3) under optimized conditions, indicating satisfactory stability of the columns and reproducibility of the column preparation process.
Collapse
Affiliation(s)
- Shuchi Dixit
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, South Korea
| | - Il Seung Lee
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jung Hag Park
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
17
|
Fang LL, Wang P, Wen XL, Guo X, Luo LD, Yu J, Guo XJ. Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Talanta 2017; 167:158-165. [DOI: 10.1016/j.talanta.2017.01.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/21/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
|
18
|
Miao C, Bai R, Xu S, Hong T, Ji Y. Carboxylated single-walled carbon nanotube-functionalized chiral polymer monoliths for affinity capillary electrochromatography. J Chromatogr A 2017; 1487:227-234. [PMID: 28117122 DOI: 10.1016/j.chroma.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
Carboxylated single-walled carbon nanotubes (c-SWNTs) were incorporated into poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EDMA)] monoliths to develop a novel monolithic stationary phase for capillary electrochromatography. The prepared monoliths were characterized by scanning electron microscopy and nitrogen adsorption. Additionally, pepsin, which is a chiral selector, was bonded to the c-SWNT-incorporated monoliths via epoxide groups as reactive sites and glutaraldehyde as the spacer. The effects of the c-SWNT concentration on chiral separation were investigated, and the results suggested that the c-SWNTs played a significant role in improving the separation efficiency, although pepsin was the dominant element in determining the chiral recognition ability of the monolith. Moreover, the influences of buffer pH, operating voltage and sample volume were also studied with (±)-nefopam as a model drug. Under the optimized conditions, the pepsin-modified poly(GMA-c-SWNTs-EDMA) monolith exhibited excellent enantioseparation performance for ten pairs of basic chiral drugs and extended the scope of chiral separation of drug enantiomers.
Collapse
Affiliation(s)
- Chunyue Miao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruihan Bai
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Shujuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Hong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
19
|
Zajickova Z. Advances in the development and applications of organic–silica hybrid monoliths. J Sep Sci 2016; 40:25-48. [DOI: 10.1002/jssc.201600774] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences Barry University Miami Shores FL USA
| |
Collapse
|
20
|
Yin Q, Wang L, Sun C. Rapid identification of miglitol and its isomers by electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:155-161. [PMID: 27539431 DOI: 10.1002/rcm.7618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Miglitol (1) derived from 1-deoxynojirimycin is an iminosugar that is useful in the treatment of type 2 diabetes mellitus. Isomers (2, 3, 4) that differ at the C2 and C3 positions of hydroxyl groups from miglitol are impurities resulting from the synthesis of miglitol. The impurity profile of a drug substance is critical to its safety assessment and is important for monitoring the manufacturing process. Therefore, developing a fast and simple method that can rapidly identify the configuration of miglitol and its isomers (2, 3, 4) is necessary. METHODS Miglitol (1) and its isomers 2-4 were derivatized with benzoboroxole (o-hydroxymethyl phenylboronic acid) at room temperature, and the cyclic boronate esters of different configurations were generated. Protonated miglitol and its isomers 2-4, as well as their derivatives, were subjected to collision-induced dissociation (CID) experiments by using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Elemental compositions of all the ions were verified by electrospray ion-trap time-of-flight mass spectrometry. RESULTS Fragmentation of the protonated miglitol and its isomers gave the same fragment ions at m/z 190 and m/z 146. Both their fragmentation behavior and abundances were similar. Whereas the CID mass spectra of the precursor ions (m/z 322) of cyclic boronate esters showed four characteristic fragment ions, m/z 214 ([M-C7 H8 O](-) ), m/z 196 ([M-C7 H8 O-H2 O](-) ), m/z 151 ([M-C8 H13 NO3 ](-) ), and m/z 133 ([M-C8 H15 NO4 ](-) ). The abundances of these fragments are different which are related to the stereostructure of miglitol and its isomers. CONCLUSIONS A facile method was established for the differentiation of the spatial configuration of miglitol and its isomers using the relative abundances of the fragment ions of boronate esters generated from in-situ reaction between analytes and benzoboroxole by ESI-MS/MS. This approach could be used to rapidly identify the stereoisomers and monitor the epimerization of miglitol and its isomers in chemical reactions and manufacturing processes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qiuhong Yin
- Institute of Drug Metabolism and Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lin Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Cuirong Sun
- Institute of Drug Metabolism and Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|