1
|
Arciszewska K, Kowalska E, Bartnicki F, Bonarek P, Banaś AK, Strzałka W. DNA aptamer-based affinity chromatography system for purification of recombinant proteins tagged with lysine tag. J Chromatogr A 2023; 1692:463846. [PMID: 36780846 DOI: 10.1016/j.chroma.2023.463846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Affinity chromatography (AC) is one of the techniques widely used for the purification of recombinant proteins. In our previous study, we presented a successful application of the Argi system [1] for the purification of recombinant proteins, based on the specific interaction between an arginine tag and a DNA aptamer. Exploring the possible application of positively charged peptide tags in the purification of recombinant proteins, in this study we developed and characterized an AC system based on the specific and reversible interaction between a DNA aptamer and a lysine tag (Lys-tag) comprising five lysine residues (5 K). We optimized the length of both the selected DNA aptamer and Lys-tag which were named B5K aptamer and 5K-tag, respectively. The results showed that the stability of the B5K aptamer and 5K-tag was dependent on the presence of potassium ions. The conditions for mild elution of 5K-tagged protein from B5K aptamer were determined. Our study proved that the developed system can be used for the purification of recombinant proteins from Escherichia coli total protein extracts.
Collapse
Affiliation(s)
- Klaudia Arciszewska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
2
|
Stawicki CM, Rinker TE, Burns M, Tonapi SS, Galimidi RP, Anumala D, Robinson JK, Klein JS, Mallick P. Modular fluorescent nanoparticle DNA probes for detection of peptides and proteins. Sci Rep 2021; 11:19921. [PMID: 34620912 PMCID: PMC8497506 DOI: 10.1038/s41598-021-99084-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Fluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher Scientific FluoSpheres, were used in these proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from - 43 to - 15 mV. A conjugation-annealing handle and DNA aptamer probe were attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 3 to 12 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use nanoparticles in biological experiments.
Collapse
Affiliation(s)
| | - Torri E Rinker
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA.
| | - Markus Burns
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Sonal S Tonapi
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Rachel P Galimidi
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Deepthi Anumala
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Julia K Robinson
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Joshua S Klein
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| | - Parag Mallick
- Nautilus Biotechnology, 201 Industrial Rd #310, San Carlos, CA, 94070, USA
| |
Collapse
|
3
|
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122332. [PMID: 32871378 PMCID: PMC7584770 DOI: 10.1016/j.jchromb.2020.122332] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Morgan Walters
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Shae Lott
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
4
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A 2020; 1629:461505. [DOI: 10.1016/j.chroma.2020.461505] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022]
|
6
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
7
|
Matos MJB, Pina AS, Roque ACA. Rational design of affinity ligands for bioseparation. J Chromatogr A 2020; 1619:460871. [PMID: 32044126 DOI: 10.1016/j.chroma.2020.460871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
Affinity adsorbents have been the cornerstone in protein purification. The selective nature of the molecular recognition interactions established between an affinity ligands and its target provide the basis for efficient capture and isolation of proteins. The plethora of affinity adsorbents available in the market reflects the importance of affinity chromatography in the bioseparation industry. Ligand discovery relies on the implementation of rational design techniques, which provides the foundation for the engineering of novel affinity ligands. The main goal for the design of affinity ligands is to discover or improve functionality, such as increased stability or selectivity. However, the methodologies must adapt to the current needs, namely to the number and diversity of biologicals being developed, and the availability of new tools for big data analysis and artificial intelligence. In this review, we offer an overview on the development of affinity ligands for bioseparation, including the evolution of rational design techniques, dating back to the years of early discovery up to the current and future trends in the field.
Collapse
Affiliation(s)
- Manuel J B Matos
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana S Pina
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Kowalska E, Bartnicki F, Fujisawa R, Bonarek P, Hermanowicz P, Tsurimoto T, Muszynska K, Strzalka W. Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex. Nucleic Acids Res 2019; 46:25-41. [PMID: 29186524 PMCID: PMC5758903 DOI: 10.1093/nar/gkx1184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed.
Collapse
Affiliation(s)
- Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Ryo Fujisawa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Pawel Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.,Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow 30-387, Poland
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Klaudia Muszynska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
9
|
Beloborodov SS, Bao J, Krylova SM, Shala-Lawrence A, Johnson PE, Krylov SN. Aptamer facilitated purification of functional proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:201-206. [PMID: 29287247 DOI: 10.1016/j.jchromb.2017.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies.
Collapse
Affiliation(s)
- Stanislav S Beloborodov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jiayin Bao
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Agnesa Shala-Lawrence
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
10
|
Perret G, Boschetti E. Aptamer affinity ligands in protein chromatography. Biochimie 2017; 145:98-112. [PMID: 29054800 DOI: 10.1016/j.biochi.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The present review deals with the place of single chain oligonucleotide ligands (aptamers) in affinity chromatography applied to proteins. Aptamers are not the only affinity ligands available but they represent an emerging and highly promising route that advantageously competes with antibodies in immunopurification processes. A historical background of affinity chromatography from the beginning of the discipline to the most recent outcomes is first presented. Then the focus is centered on aptamers which represent the last step so far to the long quest for affinity ligands associating very high specificity, availability and strong stability against most harsh cleaning agents required in chromatography. Then technologies of ligand selection from large libraries followed by the most appropriate chemical grafting approaches are described and supported by a number of bibliographic references. Experimental results assembled from relevant published paper are reported; they are selected by their practical applicability and potential use at large scale. The review concludes with specific remarks and future developments that are expected in the near future to turn this technology into a large acceptance for preparative applications.
Collapse
|
11
|
Bartnicki F, Bonarek P, Kowalska E, Strzalka W. The Argi system: one-step purification of proteins tagged with arginine-rich cell-penetrating peptides. Sci Rep 2017; 7:2619. [PMID: 28572575 PMCID: PMC5453957 DOI: 10.1038/s41598-017-02432-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/11/2017] [Indexed: 12/04/2022] Open
Abstract
The discovery of cell penetrating peptides (CPPs) opened new perspectives for the delivery of proteins into human cells. It is considered that in the future CPP-mediated transport of therapeutic proteins may find applications in the treatment of human diseases. Despite this fact a fast and simple method for the purification of CPP-tagged proteins, free of additional tags, was not available to date. To fill this gap we developed the Argi system for one-step purification of proteins tagged with arginine rich CPPs.
Collapse
Affiliation(s)
- Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Forier C, Boschetti E, Ouhammouch M, Cibiel A, Ducongé F, Nogré M, Tellier M, Bataille D, Bihoreau N, Santambien P, Chtourou S, Perret G. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources. J Chromatogr A 2017; 1489:39-50. [PMID: 28179082 DOI: 10.1016/j.chroma.2017.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general.
Collapse
Affiliation(s)
| | | | | | | | - Frédéric Ducongé
- CEA, I2BM, MIRCen, UMR 9199, Université Paris Saclay, Fontenay aux Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Citartan M, Ch'ng ES, Rozhdestvensky TS, Tang TH. Aptamers as the ‘capturing’ agents in aptamer-based capture assays. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|