1
|
Waheed A, Akram S, Butt FW, Liaqat Z, Siddique M, Anwar F, Mushtaq M. Synthesis and applications of ionic liquids for chromatographic analysis. J Chromatogr A 2025; 1739:465503. [PMID: 39566285 DOI: 10.1016/j.chroma.2024.465503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Ionic liquids (ILs) have emerged as more desirable liquids than conventional solvents for chemistry, material science, engineering and environmental science. The scientific literature reveals an exponential increase in the number of research projects aimed at exploring the chromatographic features of ionic liquids. The review provides sound scientific data to examine the structural characteristics of ionic liquids that make them ideal for use in chromatography. This contribution is distinctive since it integrates the synthesis, benefits, drawbacks, and possible uses of ionic liquids in several chromatographic separation processes. Keeping the cation the same, the introduction of different anions is also possible, and this strategy leads to the synthesis of a series of different ionic liquids with varying properties. A detailed probe is given on the influence of ionic liquid structure and properties on their chromatographic behavior, both as stationary phase and mobile phase and/or mobile phase additives. Ionic liquid based immobilized stationary phases and their analyte retention mechanisms (hydrogen bonding, electrostatic forces of attraction, π-π stacking, ion exchange, and hydrophilic interactions, etc.) are critically discussed. Finally, a thorough analysis of the literature suggests that IL-based stationary phases may undergo multi-mode and more flexible retention mechanisms. Their dual polarity can facilitate interaction with both polar and non-polar compounds. Similarly, using IL as a mobile phase can offer more pragmatic and sustainable options for enantiomer separation.
Collapse
Affiliation(s)
- Ammara Waheed
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Zainab Liaqat
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Maria Siddique
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Faculty of Health Sciences, Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| | - Muhammad Mushtaq
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan.
| |
Collapse
|
2
|
Yang H, Peng J, Peng H, Zeng H, Yu J, Wu J, Wang X. Dicationic imidazole ionic liquid stationary phase for preservative detection and its application under mixed mode of HILIC/RPLC/IEC. Anal Chim Acta 2024; 1303:342504. [PMID: 38609259 DOI: 10.1016/j.aca.2024.342504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Food safety has always been a great concern, and the detection of additives is vital to ensuring food safety. Therefore, there is a necessity to develop a method that can quickly and efficiently separate and detect additives in food. High performance liquid chromatography is widely used in the analysis and testing of food additives. Ionic liquids have attracted wide attention in the preparation of high performance liquid chromatography stationary phases owing to their high stability, low vapor pressure and adjustable structure. RESULTS We developed a novel dicationic imidazole ionic liquid stationary phase for the simultaneous determination of organic preservatives (sodium benzoate, potassium sorbate) and inorganic preservatives (nitrate and nitrite) in foodstuffs under mixed-mode chromatography. The method had the advantages of easy operation, high reproducibility, good linearity and precision. In the detection of these four preservatives, the limit of detection ≤0.4740 mg⋅L-1 and the limit of quantification ≤1.5800 mg⋅L-1. The intra-day and inter-day precision were less than 4.02%, and the recovery rate was 95.90∼100.19 %. At the same time, we also characterized the stationary phase, explored the mechanism and evaluated the chromatographic performance. The stationary phase was able to operate under the mixed mode of reversed phase/hydrophilic interaction/ion exchange chromatography, and it was capable of separating hydrophilic substances, hydrophobic substances, acids, and inorganic anionic substances with good separation efficiency and had high column efficiency. SIGNIFICANCE In summary, the stationary phase has a promising application in the routine analysis of organic and inorganic preservatives in food. In addition, the stationary phase has good separation ability for hydrophilic, hydrophobic, ionic substances and complex samples, making it a prospective material for chromatographic separation.
Collapse
Affiliation(s)
- Hanqi Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanlin Zeng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiayu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiajia Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Yang Y, Li Y, Long Z, Han L, Quan K, Chen J, Liu X, Qiu H. A C4-modified bipyridinium multi-mode stationary phase for reversed phase, hydrophilic interaction and ion exchange chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6286-6293. [PMID: 37965679 DOI: 10.1039/d3ay01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A novel C4-modified bipyridinium stationary phase (Sil-DPC4) was prepared and characterized by elemental analysis (EA) and Fourier transform infrared spectrometry (FT-IR) and further investigated for multi-mode liquid chromatography. The chromatographic performances of Sil-DPC4 were evaluated by reversed-phase chromatography using polycyclic aromatic hydrocarbons (PAHs), phenylamines and phenols, hydrophilic interaction chromatography using nucleosides and nucleobases, and ion exchange chromatography using inorganic ions and organic ions. The effects of the acetonitrile content, salt concentration and pH value of the mobile phase on the retention of Sil-DPC4 were also investigated. Sil-DPC4 showed multiple retention mechanisms including π-π, hydrophobic and electrostatic interactions for PAHs, phenylamines and phenols compared with a dipyridine modified silica stationary phase (Sil-DP) and C18 in RPLC, faster separation for nucleosides and nucleobases compared with Sil-DP, and higher hydrophilicity than HILIC in HILIC, and stronger retention and better separation ability for inorganic ions and organic ions in comparison to Sil-DP in IEC. Besides, Sil-DPC4 was used successfully to detect iodide in artificial seawater and had the potential to analyze radionuclide iodine-131 in seawater. In conclusion, multiple retention mechanisms of Sil-DPC4 could make it have potential applications in complex samples.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Zelong Long
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Lingling Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Hu Y, Kadotani J, Kuwahara Y, Ihara H, Takafuji M. Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. J Chromatogr A 2023; 1693:463885. [PMID: 36848731 DOI: 10.1016/j.chroma.2023.463885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
We described two novel zwitterionic polymer-terminated porous silica stationary phases containing the same pyridinium cation and anions of different side chains (carboxylate and phosphonate groups) for use in hydrophilic interaction liquid chromatography (HILIC). These two novel columns were prepared by polymerizing 4-vinylpyridine and grafting it onto a silica surface, followed by quaternization reaction with 3-bromopropionic acid (Sil-VPC24) and (3-bromopropyl) phosphonic acid (Sil-VPP24), which possess positively charged pyridinium groups, and negatively charged carboxylate and phosphonate groups, respectively. The products obtained were verified through relevant characterization techniques such as elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric analysis, Zeta potential analysis, and Brunauer-Emmett-Teller analysis. The retention properties and mechanisms of different types of compounds (neutral, cationic, and anionic) on the two zwitterionic-modified silica stationary phases were studied by varying the buffer salt concentration and pH of the eluent. The separation of phenol and aromatic acids, disubstituted benzene isomers, sulfonamide drugs, as well as nucleosides/nucleobases were investigated on the two packed novel columns and a commercial zwitterionic column in identical HILIC mode, ensuring a thorough comparison between both novel columns and with a commercial standard. The results illustrated that various compounds could be separated up to various efficiencies based on the mechanism of hydrophilic interaction-based retention between the solutes and the two zwitterionic polymer stationary phases. The Sil-VPP24 column demonstrated the best separation performance out of the three, as well as flexible selectivity and excellent resolution. Both novel columns exhibited excellent stability and chromatographic repeatability for the separation of seven nucleosides and bases.
Collapse
Affiliation(s)
- Yongxing Hu
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jun Kadotani
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; National Institute of Technology, Okinawa College, 905, Henoko, Okinawa 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
5
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Ionic liquid-functionalized dendrimer grafted silica for mixed-mode chromatographic separation and online solid-phase extraction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Preparation of polar embedded C18 stationary phase for efficient separation of peptides and proteins in high performance liquid chromatography. J Chromatogr A 2022; 1684:463534. [DOI: 10.1016/j.chroma.2022.463534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
|
7
|
Effect of spacer alkyl chain length on retention among three imidazolium stationary phases under various modes in high performance liquid chromatography. J Chromatogr A 2022; 1685:463646. [DOI: 10.1016/j.chroma.2022.463646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
8
|
Preparation and evaluation of an ionic liquid embedded C18 and cellulose co-functionalized stationary phase with mixed-mode and chiral separation abilities. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
10
|
Characterization and applications of a trioctyl(3/4-vinylbenzyl)phosphonium stationary phase for use in capillary liquid chromatography. J Chromatogr A 2022; 1666:462866. [DOI: 10.1016/j.chroma.2022.462866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
|
11
|
Kawamoto N, Hu Y, Kuwahara Y, Ihara H, Takafuji M. A Molecular Shape Recognitive HPLC Stationary Phase Based on a Highly Ordered Amphiphilic Glutamide Molecular Gel. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1574. [PMID: 34203819 PMCID: PMC8232745 DOI: 10.3390/nano11061574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
Chiral glutamide-derived lipids form self-assembled fibrous molecular gels that can be used as HPLC organic phases. In this study, HPLC separation efficiency was improved through the addition of branched amphiphilic glutamide lipids to the side chains of a terminally immobilized flexible polymer backbone. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto the surface of porous silica particles (Sil-VP15, polymerization degree = 15), and the pyridyl side chains were quaternized with a glutamide lipid having a bromide group (BrG). Elemental analysis indicated that the total amount of the organic phase of the prepared stationary phase (Sil-VPG15) was 38.0 wt%, and the quaternization degree of the pyridyl groups was determined to be 32.5%. Differential scanning calorimetric analysis of a methanol suspension of Sil-VPG15 indicated that the G moieties formed a highly ordered structure below the phase transition temperature even on the silica surface, and the ordered G moieties exhibited a gel-to-liquid crystalline phase transition. Compared with a commercially available octadecylated silica column, the Sil-VPG15 stationary phase showed high selectivity toward polycyclic aromatic hydrocarbons, and particularly excellent separations were obtained for geometrical and positional isomers. Sil-VPG15 also showed highly selective separation for phenol derivatives, and bio-related molecules containing phenolic groups such as steroids were successfully separated. These separation abilities are probably due to multiple interactions between the elutes and the highly ordered functional groups, such as the pyridinium and amide groups, on the highly ordered molecular gel having self-assembling G moieties.
Collapse
Affiliation(s)
- Naoki Kawamoto
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; (N.K.); (Y.H.); (Y.K.)
| | - Yongxing Hu
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; (N.K.); (Y.H.); (Y.K.)
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; (N.K.); (Y.H.); (Y.K.)
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; (N.K.); (Y.H.); (Y.K.)
- National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; (N.K.); (Y.H.); (Y.K.)
| |
Collapse
|
12
|
Static vs. Dynamic Electrostatic Repulsion Reversed Phase Liquid Chromatography: Solutions for Pharmaceutical and Biopharmaceutical Basic Compounds. SEPARATIONS 2021. [DOI: 10.3390/separations8050059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many efforts have been made to separate basic compounds, which are challenging to resolve in reversed phase liquid chromatography. In this process, they are strongly retained and the peak shape undergoes significant distortion. The principal origin of this has been identified with the non-negligible interaction with residual deprotonated silanols. Consequently, all solutions that efficiently shield silanols are being sought. This review is an upgrade on the use of the electrostatic repulsion reversed phase (ERRP) approach: retention of bases, in protonated form, can be achieved by modulating the charge repulsion caused by the presence of positive charges in the chromatographic system. This study successfully (i) introduced fixed positive charges in the structure of stationary phases, (ii) used cationic and hydrophobic additives in the mobile phase, and (iii) used the ERRP-like approach employed at the preparative level for peptide purification.
Collapse
|
13
|
Kartsova LA, Somova VD, Bessonova EA. Determination of Zoledronic Acid and Creatinine by Hydrophilic Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821020106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Paranamana N, El Rassi Z. Imidazolium ionic liquid bonded silica stationary phases. Part II. 1-Ethylimidazolium stationary phase. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1827427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nilushi Paranamana
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
15
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
16
|
Guo D, Yang C, Qiu R, Huang S. A novel imidazolium bonding stationary phase derived from N-(3-aminopropyl)-imidazole for hydrophilic interaction liquid chromatography. J Chromatogr A 2020; 1625:461331. [DOI: 10.1016/j.chroma.2020.461331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/16/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
|
17
|
Mompó-Roselló O, Ribera-Castelló A, Simó-Alfonso EF, Ruiz-Angel MJ, García-Alvarez-Coque MC, Herrero-Martínez JM. Extraction of β-blockers from urine with a polymeric monolith modified with 1-allyl-3-methylimidazolium chloride in spin column format. Talanta 2020; 214:120860. [PMID: 32278420 DOI: 10.1016/j.talanta.2020.120860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
A glycidyl methacrylate-based monolith was modified with imidazolium-based ionic liquid (IL) to be used as stationary phase for solid-phase extraction (SPE). The host monolithic support was prepared by in-situ UV polymerization in spin column format. Two approaches were developed to incorporate the IL into the polymeric monolithic matrix: generation of IL onto the surface monolith, and copolymerization by addition of the IL to the polymerization mixture, which gave the best results. The resulting sorbent materials were morphologically characterized and used for the isolation of five β-blockers from human urine samples. All SPE steps were accomplished by centrifugation, which reduces significantly costs and time in sample treatment. Under optimal conditions, β-blockers were quantitatively retained in the modified monolith at pH 12, and desorbed with a water-methanol mixture, to be subsequently determined via HPLC with UV detection. The limits of detection ranged between 1.4 and 40 μg L-1, and the reproducibility among extraction units (expressed as relative standard deviation) was below 8.2%. The novel phase was successfully applied to the extraction of propranolol in urine samples with recoveries above 90%.
Collapse
Affiliation(s)
- Oscar Mompó-Roselló
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Ana Ribera-Castelló
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - María José Ruiz-Angel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - María Celia García-Alvarez-Coque
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
18
|
Flieger J, Feder-Kubis J, Tatarczak-Michalewska M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques. Int J Mol Sci 2020; 21:E4253. [PMID: 32549300 PMCID: PMC7352568 DOI: 10.3390/ijms21124253] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Ionic liquids (ILs) are chemical compounds composed of ions with melting points below 100 °C exhibiting a design feature. ILs are commonly used as the so-called green solvents, reagents or highly efficient catalysts in varied chemical processes. The huge application potential of ionic liquids (IL) justifies the growing interest in these compounds. In the last decade, increasing attention has been devoted to the development of new methods in the synthesis of stable chiral ionic liquids (CILs) and their application in various separation techniques. The beginnings of the successful use of CILs to separate enantiomers date back to the 1990 s. Most chiral ILs are based on chiral cations or chiral anions. There is also a limited number of CILs possessing both a chiral cation and a chiral anion. Due to the high molecular diversity of both ions, of which at least one has a chiral center, we have the possibility to design a large variety of optically active structures, thus expanding the range of CIL applications. Research utilizing chiral ionic liquids only recently has become more popular. However, it is the area that still has great potential for future development. This review aimed to describe the diversity of structures, properties and examples of applications of chiral ionic liquids as new chiral solid materials and chiral components of the anisotropic environment, providing chiral recognition of enantiomeric analytes, which is useful in liquid chromatography, countercurrent chromatography and other various CIL-based extraction techniques including aqueous biphasic (ABS) extraction systems, solid-liquid two-phase systems, liquid-liquid extraction systems with hydrophilic CILs, liquid-liquid extraction systems with hydrophobic CILs, solid-phase extraction and induced-precipitation techniques developed in the recent years. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs highlighting them as affordable and environmentally friendly both chiral selectors and solvents.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Feder-Kubis
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | | |
Collapse
|
19
|
Ferri M, Bäurer S, Carotti A, Wolter M, Alshaar B, Theiner J, Ikegami T, West C, Lämmerhofer M. Fragment-based Design of Zwitterionic, Strong Cation- and Weak Anion-Exchange Type Mixed-mode Liquid Chromatography Ligands and their Chromatographic Exploration. J Chromatogr A 2020; 1621:461075. [DOI: 10.1016/j.chroma.2020.461075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
20
|
Manousi N, Rosenberg E, Deliyanni EA, Zachariadis GA. Sample Preparation Using Graphene-Oxide-Derived Nanomaterials for the Extraction of Metals. Molecules 2020; 25:E2411. [PMID: 32455827 PMCID: PMC7287798 DOI: 10.3390/molecules25102411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/16/2022] Open
Abstract
Graphene oxide is a compound with a form similar to graphene, composed of carbon atoms in a sp2 single-atom layer of a hybrid connection. Due to its significant surface area and its good mechanical and thermal stability, graphene oxide has a plethora of applications in various scientific fields including heterogenous catalysis, gas storage, environmental remediation, etc. In analytical chemistry, graphene oxide has been successfully employed for the extraction and preconcentration of organic compounds, metal ions, and proteins. Since graphene oxide sheets are negatively charged in aqueous solutions, the material and its derivatives are ideal sorbents to bind with metal ions. To date, various graphene oxide nanocomposites have been successfully synthesized and evaluated for the extraction and preconcentration of metal ions from biological, environmental, agricultural, and food samples. In this review article, we aim to discuss the application of graphene oxide and functionalized graphene oxide nanocomposites for the extraction of metal ions prior to their determination via an instrumental analytical technique. Applications of ionic liquids and deep eutectic solvents for the modification of graphene oxide and its functionalized derivatives are also discussed.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technology and Analytics, Vienna University of Technology, 1060 Vienna, Austria;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 2020; 1103:11-31. [DOI: 10.1016/j.aca.2019.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
22
|
Peng Q, Wu Y, Cong H, Shen Y, Mahmood K, Yu B. Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC. Talanta 2020; 208:120462. [DOI: 10.1016/j.talanta.2019.120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
23
|
Marcinkowski Ł, Eichenlaub J, Ghasemi E, Polkowska Ż, Kloskowski A. Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes in the Ionic Liquids N-Ethyl- and N-Octyl- N-methylmorpholinium Bis(trifluoromethanesulfonyl)imide. A Useful Tool for Solvent Selection. Molecules 2020; 25:E634. [PMID: 32024162 PMCID: PMC7037026 DOI: 10.3390/molecules25030634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, many papers describing ionic liquids (IL) as promising solvents in separation techniques have been published. The conscious choice of appropriate ionic liquid as absorption media in effective extraction of selected types of analytes requires deeper understanding of the analyte-IL interactions. Therefore, intensive research is conducted to determine the values of activity coefficient at infinite dilution, which allows us to characterize the nature of these interactions. Based on the inverse gas chromatography retention data, activity coefficients at infinite dilution γ 13 ∞ of 48 different organic compounds in the ionic liquids N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C2C1Mor][TFSI] and N-octyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C8C1Mor][TFSI] were determined. The measurements covered a broad range of volatile organic compounds, including n-alkanes, n-alkenes, n-alkynes, alcohols, aldehydes, ketones, aromatic compounds and common polar solvents, representing different types of interactions. Activity coefficients at infinite dilution were measured in the temperature range from 313.15 to 363.15 K. The excess partial molar enthalpies and entropies at infinite dilution were determined. Selectivity at infinite dilution was also calculated for exemplary separation processes in the hexane/benzene system. The obtained results were analyzed and compared with literature data for ionic liquids containing the same anion [TFSI]¯ and different cations. The study results indicate that some potential applications of the investigated ionic liquids in separation problems exist.
Collapse
Affiliation(s)
- Łukasz Marcinkowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| | - Joachim Eichenlaub
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| | - Elham Ghasemi
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (E.G.); (Ż.P.)
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (E.G.); (Ż.P.)
| | - Adam Kloskowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| |
Collapse
|
24
|
A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids. Mikrochim Acta 2019; 187:67. [DOI: 10.1007/s00604-019-3894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
|
25
|
Wen XZ, Yu H, Ma YJ. Separation and indirect ultraviolet detection of ferrous and trivalent iron ions by using ionic liquids in ion chromatography. J Sep Sci 2019; 42:3432-3438. [PMID: 31538702 DOI: 10.1002/jssc.201900756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022]
Abstract
A method of simultaneous separation and indirect ultraviolet detection of different valence iron ions Fe2+ and Fe3+ by using ionic liquids as mobile phase additives and ultraviolet absorption reagents on a cation exchange column functionalized with carboxylic acid group was developed. The effects of ionic liquids, organic acids, detection wavelength, etc. on separation and detection of Fe2+ and Fe3+ were investigated and the mechanism was discussed. The pyridinium and imidazolium ionic liquids were not only ultraviolet absorption reagents of indirect ultraviolet detection but also effective components for separating Fe2+ and Fe3+ . The separation and detection of Fe2+ and Fe3+ can be achieved using 0.5 mmol/L pyridinium ionic liquid-1.2 mmol/L methanesulfonic acid as the mobile phase. The determination of Fe2+ and Fe3+ had a good linear relationship in the concentration range of 1-100 mg/L. The limits of detection of Fe2+ and Fe3+ were 0.12 and 0.09 mg/L, respectively. This method was applied to the actual sample detection in the field of medical analysis. The spiked recoveries were between 97.3 and 99.5%, and the relative standard deviations were less than 0.6%. The method is simple, accurate, and reliable, and is an analytical method with universal and practical value.
Collapse
Affiliation(s)
- Xin-Zhu Wen
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Hong Yu
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| | - Ya-Jie Ma
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, P. R. China
| |
Collapse
|
26
|
|
27
|
Stable-bond polymeric reversed-phase/weak anion-exchange mixed-mode stationary phases obtained by simultaneous functionalization and crosslinking of a poly(3-mercaptopropyl)methylsiloxane-film on vinyl silica via thiol-ene double click reaction. J Chromatogr A 2019; 1593:110-118. [DOI: 10.1016/j.chroma.2019.01.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
28
|
Cui G, Yu H, Ma Y. Ionic liquids as mobile phase additives for determination of thiocyanate and iodide by liquid chromatography. J Sep Sci 2019; 42:1733-1739. [DOI: 10.1002/jssc.201801277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ge Cui
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Hong Yu
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| |
Collapse
|
29
|
Aydoğan C, Gökaltun A, Denizli A, El‐Rassi Z. Organic polymer‐based monolithic capillary columns and their applications in food analysisψ. J Sep Sci 2019; 42:962-979. [DOI: 10.1002/jssc.201801051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Cemil Aydoğan
- Department of Food EngineeringBingöl University Bingöl Turkey
| | - Aslıhan Gökaltun
- Department of Chemical EngineeringHacettepe University Ankara Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe University Ankara Turkey
| | - Ziad El‐Rassi
- Department of ChemistryOklahoma State University Stillwater OK USA
| |
Collapse
|
30
|
Zhao X, Cai P, Sun C, Pan Y. Application of ionic liquids in separation and analysis of carbohydrates: State of the art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Chen R, Zhou H, Liu M, Yan H, Qiao X. Ionic liquids-based monolithic columns: Recent advancements and their applications for high-efficiency separation and enrichment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Abstract
The high performance of chemically-modified silica gel packing materials is based on the utilization of pure silica gels. Earlier silica gels used to be made from inorganic silica; however, nowadays, silica gels are made from organic silanes. The surface smoothness and lack of trace metals of new silica gels permits easy surface modifications (chemical reactions) and improves the reproducibility and stability. Sharpening peak symmetry is based on developing better surface modification methods (silylation). Typical examples can be found in the chromatography of amitriptyline for silanol testing and that of quinizarin for trace metal testing. These test compounds were selected and demonstrated sensitive results in the measurement of trace amounts of either silanol or trace metals. Here, we demonstrate the three-dimensional model chemical structures of bonded-phase silica gels with surface electron density for easy understanding of the molecular interaction sites with analytes. Furthermore, a quantitative explanation of hydrophilic and hydrophobic liquid chromatographies was provided. The synthesis methods of superficially porous silica gels and their modified products were introduced.
Collapse
|
33
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
34
|
Hu Y, Cai T, Zhang H, Chen J, Li Z, Qiu H. Poly(itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 2019; 191:265-271. [DOI: 10.1016/j.talanta.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023]
|
35
|
Kalíková K, Voborná M, Tesařová E. Chromatographic behavior of new deazapurine ribonucleosides in hydrophilic interaction liquid chromatography. Electrophoresis 2018; 39:2144-2151. [PMID: 29797591 DOI: 10.1002/elps.201800141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide- and cyclofructan-based stationary phases. The effects of buffer concentration, pH and acetonitrile-to-aqueous-part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan-based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan-based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.
Collapse
Affiliation(s)
- Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Markéta Voborná
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
37
|
V. Soares Maciel E, de Toffoli AL, Lanças FM. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis 2018; 39:1582-1596. [DOI: 10.1002/elps.201800009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos SP Brazil
| | | |
Collapse
|
38
|
Zhang B, Lei X, Deng L, Li M, Yao S, Wu X. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds. Mikrochim Acta 2018; 185:318. [DOI: 10.1007/s00604-018-2847-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
|
39
|
Moravcová D, Planeta J, King AWT, Wiedmer SK. Immobilization of a phosphonium ionic liquid on a silica monolith for hydrophilic interaction chromatography. J Chromatogr A 2018; 1552:53-59. [PMID: 29653778 DOI: 10.1016/j.chroma.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Abstract
A methodology for preparing phosphonium-based ionic liquid modified silica-based monolithic capillary columns is presented. The silica monolithic columns with dimensions of 150 × 0.1 mm were modified by a phosphonium-based ionic liquid (trioctyl(3/4-vinylbenzyl)phosphonium chloride) via 3-(trimethoxysilyl)propyl methacrylate. The prepared columns were evaluated under hydrophilic interaction liquid chromatography separation conditions, employing a sample mixture containing purine and pyrimidine bases and nucleosides. Detection was made by UV. The high efficiency of the original silica monolith was preserved even after modification, and it reached values in the range of 98,000-174,000 theoretical plates/m. The effects of the concentration of acetonitrile in the mobile phase, the presence of additives in the mobile phase, such as, acetic acid or ammonium acetate, and the pH of the mobile phase on the separation of some selected analytes were investigated. The prepared columns showed different separation selectivity compared to silica, phenyl and sulfobetaine stationary phases.
Collapse
Affiliation(s)
- Dana Moravcová
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveri 97, Brno, 60200, Czech Republic.
| | - Josef Planeta
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveri 97, Brno, 60200, Czech Republic
| | - Alistair W T King
- Department of Chemistry, POB 55, 00014, University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, POB 55, 00014, University of Helsinki, Finland
| |
Collapse
|
40
|
Liu W, Quan J. Prediction of Dispersive Liquid–Liquid Microextraction Enrichment Effect of Aromatic Organics by [OMIM] [PF6] Ionic Liquid Based on Atom-Type Electrotopological State Indices. Chromatographia 2018. [DOI: 10.1007/s10337-018-3492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017; 1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
Abstract
With an enormous growth in the application of hydrophilic interaction liquid chromatography (HILIC), there has also been significant progress in HILIC method development. HILIC is a chromatographic method that utilises hydro-organic mobile phases with a high organic content, and a hydrophilic stationary phase. It has been applied predominantly in the determination of small polar compounds. Theoretical studies in computer-aided modelling tools, most importantly the predictive, quantitative structure retention relationship (QSRR) modelling methods, have attracted the attention of researchers and these approaches greatly assist the method development process. This review focuses on the application of computer-aided modelling tools in understanding the retention mechanism, the classification of HILIC stationary phases, prediction of retention times in HILIC systems, optimisation of chromatographic conditions, and description of the interaction effects of the chromatographic factors in HILIC separations. Additionally, what has been achieved in the potential application of QSRR methodology in combination with experimental design philosophy in the optimisation of chromatographic separation conditions in the HILIC method development process is communicated. Developing robust predictive QSRR models will undoubtedly facilitate more application of this chromatographic mode in a broader variety of research areas, significantly minimising cost and time of the experimental work.
Collapse
Affiliation(s)
- Maryam Taraji
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia.
| | - Ruth I J Amos
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Mohammad Talebi
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Roman Szucs
- Pfizer Global Research and Development, CT13 9NJ, Sandwich, UK
| | - John W Dolan
- LC Resources, 1795 NW Wallace Rd., McMinnville, OR 97128, USA
| | | |
Collapse
|
42
|
“Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment. Anal Bioanal Chem 2017; 410:1019-1027. [DOI: 10.1007/s00216-017-0626-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
43
|
Recent advances on ionic liquid uses in separation techniques. J Chromatogr A 2017; 1559:2-16. [PMID: 28958758 DOI: 10.1016/j.chroma.2017.09.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented.
Collapse
|
44
|
Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology. Top Curr Chem (Cham) 2017; 375:74. [PMID: 28799044 PMCID: PMC5552829 DOI: 10.1007/s41061-017-0159-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).
Collapse
Affiliation(s)
- Leslie Brown
- AECS-QuikPrep Ltd, 55 Gower Street, London, WC1 6HQ, UK
| | - Martyn J Earle
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Manuela A Gîlea
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Natalia V Plechkova
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Kenneth R Seddon
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
45
|
Caban M, Stepnowski P. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants. Anal Chim Acta 2017; 967:102-110. [DOI: 10.1016/j.aca.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 11/30/2022]
|
46
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 927] [Impact Index Per Article: 115.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
48
|
Zhang P, Yang H, Chen T, Qin Y, Ye F. Facile one-pot preparation of a novel imidazolium-based monolith by thiol-ene click chemistry for capillary liquid chromatography. Electrophoresis 2016; 38:3013-3019. [DOI: 10.1002/elps.201600288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Peng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science; Guangxi Normal University; Guilin P. R. China
| | - Haiguan Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science; Guangxi Normal University; Guilin P. R. China
| | - Tao Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science; Guangxi Normal University; Guilin P. R. China
| | - Yuemei Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science; Guangxi Normal University; Guilin P. R. China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science; Guangxi Normal University; Guilin P. R. China
| |
Collapse
|
49
|
Rathnasekara R, Khadka S, Jonnada M, El Rassi Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography. Electrophoresis 2016; 38:60-79. [DOI: 10.1002/elps.201600356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Murthy Jonnada
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| | - Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
50
|
Wang T, Yang H, Qiu R, Huang S. Synthesis of novel chiral imidazolium stationary phases and their enantioseparation evaluation by high-performance liquid chromatography. Anal Chim Acta 2016; 944:70-77. [PMID: 27776641 DOI: 10.1016/j.aca.2016.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g-1 and 0.40 mmol g-1, respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1'-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes.
Collapse
Affiliation(s)
- Tao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiyan Yang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruchen Qiu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaohua Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|