1
|
Lavoie J, Fan J, Pourdeyhimi B, Boi C, Carbonell RG. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol Bioeng 2024; 121:2300-2317. [PMID: 37256765 DOI: 10.1002/bit.28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations.
Collapse
Affiliation(s)
- Joseph Lavoie
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Nonwovens Institute, NC State University, Raleigh, North Carolina, USA
| | - Cristiana Boi
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- National Institute for Innovation for Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
3
|
Iminodiacetic Acid (IDA) Cation-Exchange Nonwoven Membranes for Efficient Capture of Antibodies and Antibody Fragments. MEMBRANES 2021; 11:membranes11070530. [PMID: 34357180 PMCID: PMC8305546 DOI: 10.3390/membranes11070530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
There is strong need to reduce the manufacturing costs and increase the downstream purification efficiency of high-value therapeutic monoclonal antibodies (mAbs). This paper explores the performance of a weak cation-exchange membrane based on the coupling of IDA to poly(butylene terephthalate) (PBT) nonwoven fabrics. Uniform and conformal layers of poly(glycidyl methacrylate) (GMA) were first grafted to the surface of the nonwovens. Then IDA was coupled to the polyGMA layers under optimized conditions, resulting in membranes with very high permeability and binding capacity. This resulted in IgG dynamic binding capacities at very short residence times (0.1–2.0 min) that are much higher than those achieved by the best cation-exchange resins. Similar results were obtained in the purification of a single-chain (scFv) antibody fragment. As is customary with membrane systems, the dynamic binding capacities did not change significantly over a wide range of residence times. Finally, the excellent separation efficiency and potential reusability of the membrane were confirmed by five consecutive cycles of mAb capture from its cell culture harvest. The present work provides significant evidence that this weak cation-exchange nonwoven fabric platform might be a suitable alternative to packed resin chromatography for low-cost, higher productivity manufacturing of therapeutic mAbs and antibody fragments.
Collapse
|
4
|
Viglio S, Iadarola P, D’Amato M, Stolk J. Methods of Purification and Application Procedures of Alpha1 Antitrypsin: A Long-Lasting History. Molecules 2020; 25:E4014. [PMID: 32887469 PMCID: PMC7504755 DOI: 10.3390/molecules25174014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of the present report is to review the literature addressing the methods developed for the purification of alpha1-antitrypsin (AAT) from the 1950s to the present. AAT is a glycoprotein whose main function is to protect tissues from human neutrophil elastase (HNE) and other proteases released by neutrophils during an inflammatory state. The lack of this inhibitor in human serum is responsible for the onset of alpha1-antitrypsin deficiency (AATD), which is a severe genetic disorder that affects lungs in adults and for which there is currently no cure. Being used, under special circumstances, as a medical treatment of AATD in the so-called "replacement" therapy (consisting in the intravenous infusion of the missing protein), AAT is a molecule with a lot of therapeutic importance. For this reason, interest in AAT purification from human plasma or its production in a recombinant version has grown considerably in recent years. This article retraces all technological advances that allowed the manufacturers to move from a few micrograms of partially purified AAT to several grams of highly purified protein. Moreover, the chronic augmentation and maintenance therapy in individuals with emphysema due to congenital AAT deficiency (current applications in the clinical setting) is also presented.
Collapse
Affiliation(s)
- Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (S.V.); (M.D.)
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, 2333 Leiden, The Netherlands;
| |
Collapse
|
5
|
Velali E, Stute B, Leuthold M, von Lieres E. Model-based performance analysis and scale-up of membrane adsorbers with a cassettes format designed for parallel operation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Peng R, Wu Q, Chen J, Ghosh R, Chen X. Isolation of ellagic acid from pomegranate peel extract by hydrophobic interaction chromatography using graphene oxide grafted cotton fiber adsorbent. J Sep Sci 2018; 41:747-755. [PMID: 29071778 DOI: 10.1002/jssc.201700896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/30/2023]
Abstract
Ellagic acid, a natural polyphenol, was isolated from pomegranate peel extract by hydrophobic interaction using graphene oxide grafted cotton fiber as a stationary adsorbent. The grafted graphene oxide moieties served as hydrophobic interaction-binding sites for ellagic acid adsorption. The graphene oxide grafted cotton fiber was made into a membrane-like sheet in order to complete ellagic acid purification by using a binding-elution mode. The effects of operational parameters, such as the composition of the binding buffer/elution buffer, buffer pH, and buffer concentration, on the isolation process were investigated. It was found that 5 mmol/L sodium carbonate aqueous solution is a proper-binding buffer, and sodium hydroxide aqueous solution ranging from 0.04 to 0.06 mol/L is a suitable elution solution for ellagic acid purification. Under the optimized condition, the purity of ellagic acid increased significantly from 7.5% in the crude extract to 75.0-80.0%. The pH value was found to be a key parameter that determines the adsorption and desorption of ellagic acid. No organic solvent is involved in the entire purification process. Thus, a simple and environmentally friendly method is established for ellagic acid purification using a graphene oxide-modified biodegradable and bio-sourced fibrous adsorbent.
Collapse
Affiliation(s)
- Rong Peng
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P. R. China.,Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Qijiayu Wu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Jingling Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Xiaonong Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
7
|
Khan MK, Luo J, Wang Z, Khan R, Chen X, Wan Y. Alginate dialdehyde meets nylon membrane: a versatile platform for facile and green fabrication of membrane adsorbers. J Mater Chem B 2018; 6:1640-1649. [DOI: 10.1039/c7tb02966g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alginate dialdehyde, a biocompatible polymer, is used as an intermediate layer on a nylon membrane to readily fabricate different membrane adsorbers.
Collapse
Affiliation(s)
- M. Kamran Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Zhaoshuai Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Rashid Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| |
Collapse
|
8
|
Huangfu C, Zhang J, Ma Y, Jia J, Li J, Lv M, Ma X, Zhao X, Zhang J. Large‐scale purification of high purity α1‐antitrypsin from Cohn Fraction IV with virus inactivation by solvent/detergent and dry‐heat treatment. Biotechnol Appl Biochem 2017; 65:446-454. [DOI: 10.1002/bab.1623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Chaoji Huangfu
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
- Lanzhou Center for Diseases Prevention and ControlXining Joint Logistics Center Lanzhou People's Republic of China
| | - Jinchao Zhang
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Yuyuan Ma
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Junting Jia
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Jingxuan Li
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Maomin Lv
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Xiaowei Ma
- Hualan Biological Engineering Inc. Xinxiang People's Republic of China
| | - Xiong Zhao
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| | - Jingang Zhang
- Beijing Key Laboratory of Blood Safety and Supply TechnologiesBeijing Institute of Transfusion Medicine Beijing People's Republic of China
| |
Collapse
|
9
|
Khan MK, Luo J, Khan R, Fan J, Wan Y. Facile and green fabrication of cation exchange membrane adsorber with unprecedented adsorption capacity for protein purification. J Chromatogr A 2017; 1521:19-26. [DOI: 10.1016/j.chroma.2017.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
10
|
Ribeiro DA, Passos DF, Ferraz HC, Castilho LR. Intermediate purification of CHO-derived recombinant human Factor IX using hydrophobic interaction membrane-based chromatography and its comparison to a sulfated resin. Electrophoresis 2017; 38:2900-2908. [DOI: 10.1002/elps.201700226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/26/2017] [Accepted: 08/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel A. Ribeiro
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Douglas F. Passos
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Helen C. Ferraz
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPE, Chemical Engineering Program; Rio de Janeiro/RJ Brazil
| |
Collapse
|
11
|
Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Hughson MD, Cruz TA, Carvalho RJ, Castilho LR. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins. Biotechnol Prog 2017; 33:931-940. [DOI: 10.1002/btpr.2501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Michael D. Hughson
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
| | - Thayana A. Cruz
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
- Federal University of Rio de Janeiro (UFRJ), IQ, Biochemistry Program; Ilha do Fundao Rio de Janeiro 21941-909 Brazil
| | - Rimenys J. Carvalho
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
| | - Leda R. Castilho
- Federal University of Rio de Janeiro (UFRJ); COPPE, Chemical Engineering Program, Cell Culture Engineering Laboratory; Ilha do Fundao Rio de Janeiro 21941-972 Brazil
- Federal University of Rio de Janeiro (UFRJ), IQ, Biochemistry Program; Ilha do Fundao Rio de Janeiro 21941-909 Brazil
| |
Collapse
|
13
|
Fan J, Luo J, Song W, Wan Y. One-step purification of α1-antitrypsin by regulating polyelectrolyte ligands on mussel-inspired membrane adsorber. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
New process for purifying high purity α1-antitrypsin from Cohn Fraction IV by chromatography: A promising method for the better utilization of plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:156-164. [DOI: 10.1016/j.jchromb.2017.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022]
|
15
|
Affiliation(s)
- Anh Vu
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
16
|
Polydopamine meets porous membrane: A versatile platform for facile preparation of membrane adsorbers. J Chromatogr A 2016; 1448:121-126. [DOI: 10.1016/j.chroma.2016.04.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022]
|