1
|
Torres-Palazzolo C, Ferreyra S, Hugalde IP, Kuhn Y, Combina M, Ponsone ML. Recent advances in biocontrol and other alternative strategies for the management of postharvest decay in table grapes. Int J Food Microbiol 2024; 420:110766. [PMID: 38815343 DOI: 10.1016/j.ijfoodmicro.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
During postharvest, table grapes are often spoiled by molds. Aspergillus sp., Alternaria sp., Botrytis sp., Cladosporium sp. and Penicillium sp. are different mold genera frequently related to table grape rot. Fungal spoilage affects nutritional value and organoleptic properties while also producing health hazards, such as mycotoxins. Traditionally, synthetic fungicides have been employed to control fungal diseases. However, possible negative effects on health and the environment are a serious concern for consumers and government entities. This review summarized data on innovative strategies proposed to diminish postharvest losses and extend table grape shelf life. Among physical, chemical, and biological strategies, either alone or in combination, the integrated management of fungal diseases is a sustainable alternative to synthetic fungicides. However, to date, only a few alternative technologies have succeeded on a commercial scale. Recent research aimed at increasing the competitiveness of alternative technologies has led to the development of integrated management strategies to prevent postharvest decay and increase the safety and quality of table grapes.
Collapse
Affiliation(s)
- Carolina Torres-Palazzolo
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA UNCuyo), Almirante Brown 500, Chacras de Coria, M5528 Mendoza, Argentina
| | - Susana Ferreyra
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina
| | - Ines P Hugalde
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (FCA UNCuyo), Almirante Brown 500, Chacras de Coria, M5528 Mendoza, Argentina
| | - Yamila Kuhn
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina
| | - Mariana Combina
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina
| | - Maria Lorena Ponsone
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mendoza INTA), San Martín 3853, Mayor Drummond, Luján de Cuyo, M5507 Mendoza, Argentina; Centro Regional Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET), Avenida Ruiz Leal s/n, Parque General San Martín, M5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN UNCuyo), Padre Jorge Contreras 1300, Parque General San Martín, M5502 Mendoza, Argentina.
| |
Collapse
|
2
|
Xu X, Ma M, Gao J, Sun T, Guo Y, Feng D, Zhang L. Multifunctional Ni-NPC Single-Atom Nanozyme for Removal and Smartphone-Assisted Visualization Monitoring of Carbamate Pesticides. Inorg Chem 2024; 63:1225-1235. [PMID: 38163760 DOI: 10.1021/acs.inorgchem.3c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb. Moreover, a colorimetric detection method for CMP was established based on its robust peroxidase-like catalytic activity and sequential catalytic interactions with acetylcholinesterase. Furthermore, a portable colorimetric sensor based on a hydrogel sphere integrated with a smartphone platform was devised. This sensor enables rapid, on-site, and quantitative assessment of CMP, boasting an extraordinarily low detection limit of 1.5 ng mL-1. Notably, this sensor was successfully applied to the analysis of CMP levels in lake water and vegetable samples (pakchoi and rape), propelling the progress of real-time detection technologies in food and environment monitoring.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jiaxin Gao
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, 150039, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
3
|
Vink MA, Alarcan J, Martens J, Buma WJ, Braeuning A, Berden G, Oomens J. Structural Elucidation of Agrochemical Metabolic Transformation Products Based on Infrared Ion Spectroscopy to Improve In Silico Toxicity Assessment. Chem Res Toxicol 2024; 37:81-97. [PMID: 38118149 PMCID: PMC10792670 DOI: 10.1021/acs.chemrestox.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Toxicological assessments of newly developed agrochemical agents consider chemical modifications and their metabolic and biotransformation products. To carry out an in silico hazard assessment, understanding the type of chemical modification and its location on the original compound can greatly enhance the reliability of the evaluation. Here, we present and apply a method based on liquid chromatography-mass spectrometry (LC-MS) enhanced with infrared ion spectroscopy (IRIS) to better delineate the molecular structures of transformation products before in silico toxicology evaluation. IRIS facilitates the recording of IR spectra directly in the mass spectrometer for features selected by retention time and mass-to-charge ratio. By utilizing quantum-chemically predicted IR spectra for candidate molecular structures, one can either derive the actual structure or significantly reduce the number of (isomeric) candidate structures. This approach can assist in making informed decisions. We apply this method to a plant growth stimulant, digeraniol sinapoyl malate (DGSM), that is currently under development. Incubation of the compound in Caco-2 and HepaRG cell lines in multiwell plates and analysis by LC-MS reveals oxidation, glucuronidation, and sulfonation metabolic products, whose structures were elucidated by IRIS and used as input for an in silico toxicology assessment. The toxicity of isomeric metabolites predicted by in silico tools was also assessed, which revealed that assigning the right metabolite structure is an important step in the overall toxicity assessment of the agrochemical. We believe this identification approach can be advantageous when specific isomers are significantly more hazardous than others and can help better understand metabolic pathways.
Collapse
Affiliation(s)
- Matthias
J. A. Vink
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jimmy Alarcan
- Department
of Food Safety, German Federal Institute
for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Wybren Jan Buma
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| | - Albert Braeuning
- Department
of Food Safety, German Federal Institute
for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Devi M, Sharma P, Sharma N, Kaur S, Devi M, Kaur S, Sharma K, Raghav N, Singh L, Bhatti R, Kumar M, Bhalla V. Beyond Molecular Recognition: A Perylene Bisimide Derivative as a Functional Mimic of Chlorpyrifos. Chem Asian J 2023; 18:e202300406. [PMID: 37602577 DOI: 10.1002/asia.202300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 08/22/2023]
Abstract
Supramolecular assemblies of perylene bisimide derivative (PBI-SAH) have been developed which show 'turn-on' detection of chlorpyrifos in aqueous media, apple residue and blood serum. Differently from the already reported fluorescent probes for the detection of CPF, PBI-SAH assemblies also show affinity for acetylcholinesterase (AChE) which endow the PBI-SAH molecules with mixed inhibitory potential to restrict the AChE catalysed hydrolysis of acetylthiocholine (ATCh) in MG-63 cell lines (in vitro) and in mice (in vivo). The molecular docking studies support the inhibitory activity of PBI-SAH assemblies and their potential to act as safe insecticide with high benefit to harm ratio. The insecticidal potential of PBI-SAH derivative has been examined against Spodoptera litura (S. litura) and these studies demonstrate its excellent insecticidal activity (100 % mortality in nineteen days). To the best of our knowledge, this is the first report regarding development of PBI-SAH assemblies which not only detect chlorpyrifos but also mimic AChE inhibitory activity of CPF to show promising aptitude as safe insecticide.
Collapse
Affiliation(s)
- Minakshi Devi
- Department of Chemistry, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Neha Sharma
- Department of Botanical and Environmental Sciences, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Meena Devi
- Department of Zoology, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sanehdeep Kaur
- Department of Zoology, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kavita Sharma
- Department of chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Neera Raghav
- Department of chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Lovedeep Singh
- Department of Pharmaceutical Sciences, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Centre for Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
5
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
6
|
Guo L, Li R, Chen W, Dong F, Zheng Y, Li Y. The interaction effects of pesticides with Saccharomyces cerevisiae and their fate during wine-making process. CHEMOSPHERE 2023; 328:138577. [PMID: 37019393 DOI: 10.1016/j.chemosphere.2023.138577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Pesticide residues in grapes could be transferred to fermentation system during the wine-making process, which may interfere the normal proliferation of Saccharomyces cerevisiae and subsequently affect the safety and quality of wine products. However, the interaction between pesticides and Saccharomyces cerevisiae is still poorly understood. Herein, the fate, distribution and interaction effect with Saccharomyces cerevisiae of five commonly-used pesticides during the wine-making process were evaluated. The five pesticides exerted varied inhibition on the proliferation of Saccharomyces cerevisiae, and the order of inhibition intensity was difenoconazole > tebuconazole > pyraclostrobin > azoxystrobin > thiamethoxam. Compared with the other three pesticides, triazole fungicides difenoconazole and tebuconazole showed stronger inhibition and played a major role in binary exposure. The mode of action, lipophilicity and exposure concentration were important factors in the inhibition of pesticides. Saccharomyces cerevisiae had no obvious impacts on the degradation of target pesticides in the simulated fermentation experiment. However, the levels of target pesticides and their metabolite were significantly reduced during the wine-making process, with the processing factors ranged from 0.030 to 0.236 (or 0.032 to 0.257) during spontaneous (or inoculated) wine-making process. As a result, these pesticides were significantly enriched in the pomace and lees, and showed a positive correlation (R2 ≥ 0.536, n = 12, P < 0.05) between the hydrophobicity of pesticides and distribution coefficients in the solid-liquid distribution system. The findings provide important information for rational selection of pesticides on wine grapes and facilitate more accurate risk assessments of pesticides for grape processing products.
Collapse
Affiliation(s)
- Luyao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Wuying Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Mishra AK, Singh H, Kumar A, Gupta H, Mishra A. Recent Advancements in Liquid Chromatographic Techniques to Estimate Pesticide Residues Found in Medicinal Plants around the Globe. Crit Rev Anal Chem 2023; 54:2900-2914. [PMID: 37184105 DOI: 10.1080/10408347.2023.2212049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the present review article, different advanced liquid chromatographic techniques and the advanced techniques other than liquid chromatography that are used to estimate the pesticide residues from different plant-based samples are presented. In the beginning of the article, details of pesticides, their health effects and various cell lines used for the related study has been outlined. Afterward, detailed descriptions regarding pesticides classification are inscribed. In the end, recent advancements in the area of analysis of pesticides for herbal drugs are explained. Solid phase micro extraction (SPME) and solid-phase extraction (SPE) are considered as most common method of sample preparation for pesticides and its residual analysis. The most commonly used analytical separation technique for pesticide analysis is liquid chromatography (LC) integrated with mass spectrometry (MS) and MS/MS as Triple Quadrupole Mass Spectrometer (QqQ) for the samples analysis where high level of sensitivity and accuracy is required in quantification.
Collapse
Affiliation(s)
- Arun K Mishra
- Central Facility of Instrumentation, Pharmacy Academy, IFTM University, Moradabad, India
| | - Harpreet Singh
- Advanced Phytochemistry Lab, School of Pharma. Sciences, IFTM University, Moradabad, India
| | - Arvind Kumar
- Advanced Phytochemistry Lab, School of Pharma. Sciences, IFTM University, Moradabad, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, India
| | - Amrita Mishra
- Department of B.Pharm (Ayu), Delhi Pharmaceutical Sciences & Research University, New Delhi, India
| |
Collapse
|
8
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
9
|
Liu C, Chen R, Liu F, Gao Z, Li X, Wang Y, Wang S, Li Y. Distribution pattern, removal effect, transfer behavior of ten pesticides and one metabolite during the processing of grapes. Food Res Int 2023; 164:112398. [PMID: 36737981 DOI: 10.1016/j.foodres.2022.112398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Grapes' growth and processing conditions have various effects on pesticides with different physicochemical properties. Therefore, it is important for the healthy human diet to investigate pesticide residue behavior. To explore the relationship between pesticide residue behavior and physicochemical properties, the distribution of ten pesticides and one metabolite on grape peel and pulp was examined and the results showed that pesticides with low octanol-water partition coefficient (Kow) were more likely to be transferred to the pulp as the harvest interval increases. The removal methods were ranked according to pesticide removal effectiveness as follows: peeling > ozone water washing > tap water washing. Furthermore, the logKow played a key role in pesticide transfer rates during the juicing and winemaking. Notably, drying was the process of increasing pesticide residues. Additionally, the prediction models for the PFs of the pesticides in the juicing and winemaking processes were constructed as PFj = 0.952-0.116logKow (r = 0.886) and PFw = 0.736-0.143logKow (r = 0.959) by stepwise regression analysis. The prediction models recommended that Kow could be used to predict pesticide residues in grape juice and wine, which can predict the effect of pesticide physicochemical properties on PFs.
Collapse
Affiliation(s)
- Chengcheng Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Rui Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Fengmao Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhiqiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xiaohan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yue Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Shiyu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Yuyan Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Ahammed Shabeer TP, Somkuwar R, Sharma AK, Deshmukh U, Hingmire S. Multi-residue method validation, processing factor and monitoring of thirteen targeted fungicide residues in the process of wine making. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Singh P, Kumar S, Verma SK. Development of fluorescent aptasensor for detection of acephate by utilizing graphene oxide platform. Talanta 2023; 252:123843. [DOI: 10.1016/j.talanta.2022.123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
|
12
|
El-Sheikh ESA, Ramadan MM, El-Sobki AE, Shalaby AA, McCoy MR, Hamed IA, Ashour MB, Hammock BD. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022; 27:8072. [PMID: 36432173 PMCID: PMC9695969 DOI: 10.3390/molecules27228072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The use of pesticides leads to an increase in agricultural production but also causes harmful effects on human health when excessively used. For safe consumption, pesticide residues should be below the maximum residual limits (MRLs). In this study, the residual levels of pesticides in vegetables and fruits collected from farmers' markets in Sharkia Governorate, Egypt were investigated using LC-MS/MS and GC-MS/MS. A total number of 40 pesticides were detected in the tested vegetable and fruit samples. Insecticides were the highest group in detection frequency with 85% and 69% appearance in vegetables and fruits, respectively. Cucumber and apple samples were found to have the highest number of pesticide residues. The mean residue levels ranged from 7 to 951 µg kg-1 (in vegetable samples) and from 8 to 775 µg kg-1 (in fruit samples). It was found that 35 (40.7%) out of 86 pesticide residues detected in vegetables and 35 (38.9%) out of 90 pesticide residues detected in fruits exceeded MRLs. Results for lambda-cyhalothrin, fipronil, dimothoate, and omethoate in spinach, zucchini, kaki, and strawberry, respectively, can cause acute or chronic risks when consumed at 0.1 and 0.2 kg day-1. Therefore, it is necessary for food safety and security to continuously monitor pesticide residues in fruits and vegetables in markets.
Collapse
Affiliation(s)
- El-Sayed A. El-Sheikh
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud M. Ramadan
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E. El-Sobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ali A. Shalaby
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mark R. McCoy
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| | - Ibrahim A. Hamed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed-Bassem Ashour
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Vink M, van Geenen FA, Berden G, O’Riordan TJC, Howe PW, Oomens J, Perry SJ, Martens J. Structural Elucidation of Agrochemicals and Related Derivatives Using Infrared Ion Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15563-15572. [PMID: 36214158 PMCID: PMC9671053 DOI: 10.1021/acs.est.2c03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/03/2023]
Abstract
Agrochemicals frequently undergo various chemical and metabolic transformation reactions in the environment that often result in a wide range of derivates that must be comprehensively characterized to understand their toxicity profiles and their persistence and outcome in the environment. In the development phase, this typically involves a major effort in qualitatively identifying the correct chemical isomer(s) of these derivatives from the many isomers that could potentially be formed. Liquid chromatography-mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy are often used in attempts to characterize such environment transformation products. However, challenges in confidently correlating chemical structures to detected compounds in mass spectrometry data and sensitivity/selectivity limitations of NMR frequently lead to bottlenecks in identification. In this study, we use an alternative approach, infrared ion spectroscopy, to demonstrate the identification of hydroxylated derivatives of two plant protection compounds (azoxystrobin and benzovindiflupyr) contained at low levels in tomato and spinach matrices. Infrared ion spectroscopy is an orthogonal tandem mass spectrometry technique that combines the sensitivity and selectivity of mass spectrometry with structural information obtained by infrared spectroscopy. Furthermore, IR spectra can be computationally predicted for candidate molecular structures, enabling the tentative identification of agrochemical derivatives and other unknowns in the environment without using physical reference standards.
Collapse
Affiliation(s)
- Matthias
J.A. Vink
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Fred A.M.G. van Geenen
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Timothy J. C. O’Riordan
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Peter W.A. Howe
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Simon J. Perry
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Jonathan Martens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| |
Collapse
|
14
|
Development of QuEChERS-based multiresidue analytical methods to determine pesticides in corn, grapes and alfalfa. Food Chem 2022; 405:134870. [DOI: 10.1016/j.foodchem.2022.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
15
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
16
|
Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review. Foods 2022; 11:foods11111623. [PMID: 35681373 PMCID: PMC9180315 DOI: 10.3390/foods11111623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases “pesticides” and “grapes” and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods.
Collapse
|
17
|
Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 2022; 11:foods11111609. [PMID: 35681359 PMCID: PMC9180647 DOI: 10.3390/foods11111609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/25/2022] Open
Abstract
Rapid and accurate detection of pesticide residue levels can help to prevent the harm of pesticide residue. This study used visible/near-infrared (Vis-NIR) (376–1044 nm) and near-infrared (NIR) (915–1699 nm) hyperspectral imaging systems (HISs) to detect the level of pesticide residues. Three different varieties of grapes were sprayed with four levels of pesticides. Logistic regression (LR), support vector machine (SVM), random forest (RF), convolutional neural network (CNN), and residual neural network (ResNet) models were used to build classification models for pesticide residue levels. The saliency maps of CNN and ResNet were conducted to visualize the contribution of wavelengths. Overall, the results of NIR spectra performed better than those of Vis-NIR spectra. For Vis-NIR spectra, the best model was ResNet, with the accuracy of over 93%. For NIR spectra, LR was the best, with the accuracy of over 97%, but SVM, CNN, and ResNet also showed closed and fine results. The saliency map of CNN and ResNet presented similar and closed ranges of crucial wavelengths. Overall results indicated deep learning performed better than conventional machine learning. The study showed that the use of hyperspectral imaging technology combined with machine learning can effectively detect the level of pesticide residues in grapes.
Collapse
|
18
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
19
|
Determination of selected pesticide residues in non-fatty fruits using GC–MS in combination with QuEChERS method. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Pesticide Detection in Vegetable Crops Using Enzyme Inhibition Methods: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Pang X, Li C, Zang C, Guan L, Zhang P, Di C, Zou N, Li B, Mu W, Lin J. Simultaneous detection of ten kinds of insecticide residues in honey and pollen using UPLC-MS/MS with graphene and carbon nanotubes as adsorption and purification materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21826-21838. [PMID: 34767177 DOI: 10.1007/s11356-021-17196-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An analytical method of simultaneous detection of ten insecticide residues in honey and pollen was established. The samples were purified with QuEChERS approach using new adsorbents and analyzed with UPLC-MS/MS. The results showed that both of graphene and carbon nanotubes were highly efficient adsorbents for the dSPE clean up to eliminate coextractives in the samples, and graphene was superior to carbon nanotubes for the detection of pesticide residues in honey and pollen samples. The proposed method was used to detect pesticide residues in 25 honey samples and 30 pollen samples which were randomly collected from more than ten provinces in China. All honey samples contain 1-27 μg/kg of chlorpyrifos residues. Only 4% of the honey samples were detected containing acetamiprid and imidacloprid, while the other seven pesticides were not detected. Chlorpyrifos residues were found in all pollen samples (5-66 μg/kg), among which twenty percent exceeded the maximum residue limits (MRLs, 50 μg/kg, European Commission Regulation). Most of the pollen samples containing pesticide concentrations higher than MRLs were collected from rape, followed by lotus, camellia, and rose. Besides, 36.7% and 33.3% of the pollen samples had imidacloprid and flupyradifurone higher than 5 μg/kg. A total of 26.7% pollen samples were detected containing bifenthrin, while none of the other six pesticides were detected in pollen samples.
Collapse
Affiliation(s)
- Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Chenyu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chuanjiang Zang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lei Guan
- Rural Economy and Agricultural Technology Service Center of Banpu town in Haizhou district, Lianyungang, 222000, Jiangsu, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunxiang Di
- The Rural Economy Management Main Station of Shandong Province, Jinan, 250013, Shandong, China
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jin Lin
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
23
|
Mandal S, Poi R, Hazra DK, Bhattacharyya S, Banerjee H, Karmakar R. Assessment of variable agroclimatic impact on dissipation kinetics of ready-mix fungicide formulation in green chili for harmonization of food safety. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Li J, Liu J, Wan Y, Wang J, Pi F. Routine analysis of pesticides in foodstuffs: Emerging ambient ionization mass spectrometry as an alternative strategy to be on your radar. Crit Rev Food Sci Nutr 2022; 63:7341-7356. [PMID: 35229702 DOI: 10.1080/10408398.2022.2045561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pesticides residues in foodstuffs are longstanding of great concern to consumers and governments, thus reliable evaluation techniques for these residues are necessary to ensure food safety. Emerging ambient ionization mass spectrometry (AIMS), a transformative technology in the field of analytical chemistry, is becoming a promising and solid evaluation technology due to its advantages of direct, real-time and in-situ ionization on samples without complex pretreatments. To provide useful guidance on the evaluation techniques in the field of food safety, we offered a comprehensive review on the AIMS technology and introduced their novel applications for the analysis of residual pesticides in foodstuffs under different testing scenarios (i.e., quantitative, screening, imaging, high-throughput detection and rapid on-site analysis). Meanwhile, the creative combination of AIMS with high-resolution mass analyzer (e.g., orbitrap and time-of-flight) was fundamentally mentioned based on recent studies about the detection and evaluation of multi-residual pesticides between 2015 and 2021. Finally, the technical challenges and prospects associated with AIMS operation in food industry were discussed.
Collapse
Affiliation(s)
- Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Jain U, Saxena K, Hooda V, Balayan S, Singh AP, Tikadar M, Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Food Chem 2022; 371:131126. [PMID: 34583176 DOI: 10.1016/j.foodchem.2021.131126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Vinita Hooda
- Department of Botany, M. D. University, Rohtak 124001, Haryana, India
| | - Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Amar Pal Singh
- Amity Institute of Forensic Sciences (AIFS), Amity University Uttar Pradesh (AUUP), Noida 201313, India; Forensic Science Laboratory, Govt. of NCT of Delhi, Sector-14, Rohini, Delhi, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
26
|
Ultra-Sensitive Immuno-Sensing Platform Based on Gold-Coated Interdigitated Electrodes for the Detection of Parathion. SURFACES 2022. [DOI: 10.3390/surfaces5010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Pesticides are unavoidable in agriculture to protect crops from pests and insects. Organophosphates (OPs) are a class of pesticides that are more harmful because of the irreversible inhibition reaction with acetylcholinesterase enzyme, thereby posing serious health hazards in human beings. In the present work, a sensitive and selective immuno-sensing platform is developed using gold inter-digitized electrodes (Au-IDEs) as substrates, integrated with a microfluidic platform having the microfluidic well capacity of 10 µL. Au-IDE having digit width of 10 µm and gap length of 5 µm was used in this study. The surface morphological analysis by field-effect scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) revealed the direct information regarding the modification of Au-IDEs with anti-parathion (Anti-PT) antibodies. In SEM analysis, it was seen that the Au-IDE surface was smooth in contrast to the Anti-PT modified surface, which is supported by the AFM studies showing the surface roughness of ~2.02 nm for Au-IDE surface and ~15.86 nm for Anti-PT modified surface. Further, Fourier transform infra-red (FTIR) spectroscopic analysis confirms the immobilization of Anti-PT by the bond vibrations upon the successive modification of Au-IDE with –OH groups, amine groups after modifying with APTES, and the amide bond formation after incubation in Anti-PT antibody. Electrochemical impedance spectroscopy (EIS) was carried out for the electrochemical characterization and for testing the sensing performances of the fabricated electrode. The developed immuno-sensor provided a linear range of detection from 0.5 pg/L–1 µg/L, with a limit of detection (LoD) of 0.66 ng/L and sensitivity of 4.1 MΩ/ngL−1/cm2. The sensor response was also examined with real samples (pomegranate juice) with good accuracy, exhibiting a shelf life of 25 days. The miniaturized sensing platform, along with its better sensing performance, has huge potential to be integrated into portable electronics, leading to suitable field applications of pesticide screening devices.
Collapse
|
27
|
Nie E, Wang H, Chen Y, Lu Y, Akhtar K, Riaz M, Zhang S, Yu Z, Ye Q. Distinct uptake and accumulation profiles of triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) under two planting systems: Evidence from 14C tracing techniques. CHEMOSPHERE 2022; 288:132651. [PMID: 34699880 DOI: 10.1016/j.chemosphere.2021.132651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Triclosan is a widely used biocide against microorganisms and is ubiquitously distributed in the environment. Triclosan can be accumulated into plants from soil and hydroponic media. However, little information is currently available on the comparative fate of triclosan in plants under soil and hydroponics cultivation conditions and factors governing uptake. Therefore, this study was designed to comparatively elucidate the uptake mechanism of 14C-triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) grown under different soils and hydroponics and clarify dominant uptake factors. Results showed that 77.2% of 14C were accumulated in youdonger grown in a hydroponic system, while only 1.24%-2.33% were accumulated in the two soil-planting systems. In addition, the bioconcentration factor (BCF) of 14C-triclosan in soil-plant systems was approximately 400-fold smaller than that in the hydroponics. In the soil-planting system, a strong linear correlation was found between concentrations of triclosan in soil pore water and youdonger plant (R2 > 0.85, p < 0.01) at different incubation times. Therefore, triclosan in pore water might be a good indicator to estimate its accumulation in plants and is significantly affected by soil pH, clay, and organic matter contents. The estimated average dietary intakes of triclosan for youdonger grown in hydroponic and soil-planting systems were estimated to be 1.31 ng day-1 kg-1 and 0.05-0.12 ng day-1 kg-1, respectively, much lower than the acceptable dietary intakes of triclosan (83 μg day-1 kg-1), indicating no significant human health risks from youdonger consumption. This study provided insights into uptake routes of triclosan into youdonger plants from both soil and hydroponic systems, bioavailability of triclosan in different soils, and further assessment of human exposure to triclosan from youdonger.
Collapse
Affiliation(s)
- Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Punjab, Pakistan
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Rapid detection of paraquat residues in green tea using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanostars. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Dowlatshah S, Ramos-Payán M, Saraji M. A microchip device based liquid-liquid-solid microextraction for the determination of permethrin and cypermethrin in water samples. Talanta 2021; 235:122731. [PMID: 34517599 DOI: 10.1016/j.talanta.2021.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
In this work, for the first time, a microchip device integrating liquid-liquid-solid phase microextraction is presented. As a novel approach to microchip systems, liquid-liquid-solid microextraction was performed in a sandwiched microchip device. The microchip device consisted of three poly(methyl methacrylate) layers along with a double "Y"-shaped microchannel. As the stationary phase, polyacrylonitrile-C18 was synthesized and immobilized in the upper channel, while the beneath channel was used as a reservoir for the stagnant volume ratio of sample-to-extraction solvent phase. In this way, analytes were extracted from an aqueous sample through an organic phase into the stationary phase. The analytes were finally desorbed with a minimum amount of acetonitrile as the desorption solvent. Permethrin and cypermethrin were selected as the model analytes for extraction and subsequent analysis by gas chromatography-flame ionization detection. Under optimum conditions (extraction solvent; n-hexane, sample -to-extraction solvent volume ratio; 2:1, extraction time; 20 min, desorption solvent; acetonitrile, desorption volume; 200 μL, and desorption time; 15 min) detection limits were 3.5 and 6.0 ng mL-1 for permethrin and cypermethrin, respectively. Relative standard deviations for intra- and inter-day reproducibility were below 8.3%. Device-to-device precision was in the range of 8.1-9.6%. The proposed microchip device was successfully applied to determine permethrin and cypermethrin in water samples with recoveries in the range of 73-96%.
Collapse
Affiliation(s)
- Samira Dowlatshah
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n, 41012, Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n, 41012, Seville, Spain
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
30
|
Hrynko I, Kaczyński P, Łozowicka B. A global study of pesticides in bees: QuEChERS as a sample preparation methodology for their analysis - Critical review and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148385. [PMID: 34153771 DOI: 10.1016/j.scitotenv.2021.148385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
To this day, it remains unknown what the cause of decline of honey bee populations is and how to prevent this phenomenon efficiently. Poisonings with pesticides are assumed to be among the main causes for the decline of the honey bee population. Despite the significant progress observed in analytics over recent years, research aimed at improving methods applied in diagnostics of bee poisoning is still in progress. This is no easy task, since determination of the content of trace amounts (often equal to sublethal doses) of a wide range of compounds with diverse physico-chemical properties in honey bee samples with a complex matrix composition poses a serious challenge to modern analytics. This overview is the first to include a comprehensive critical assessment of analytical methods proposed for quantification of pesticides in honey bees over the last decade. Since the QuEChERS method is currently of great significance to ensuring accurate and reliable results of pesticide quantification in honey bees, the present overview focuses on the major aspects of this method, which will provide a comprehensive reference for scientists. The review focuses on the limitations of methods and on potential future prospects. It also contains information on the detection of pesticides in honey bees between 2010 and 2020 and characterizes the pesticide classes which are most toxic to these insects. This is extremely important, not just in the context of understanding the potential adverse impact of pesticides, manifesting as losses in bee colonies; it is also intended to facilitate decision-making in future research related to this difficult yet very important subject.
Collapse
Affiliation(s)
- Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, Bialystok, Poland
| |
Collapse
|
31
|
Dorosh O, Fernandes VC, Moreira MM, Delerue-Matos C. Occurrence of pesticides and environmental contaminants in vineyards: Case study of Portuguese grapevine canes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148395. [PMID: 34412412 DOI: 10.1016/j.scitotenv.2021.148395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/02/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Every year, after grape harvesting, high quantities of vine-canes are generated. Due to the high amount of bioactive compounds present in this woody material, several studies reported their potential to be used in different sustainable applications. However, before employing vine-canes in this kind of products, their safety needs to be assessed. A robust method for identification and quantification of 30 environmental contaminants (12 organochloride pesticides (OCPs), 6 organophosphorus pesticides (OPPs), 5 polychlorinated biphenyls (PCBs) and 7 brominated flame retardants (BFRs)) in vine-canes was developed. For that, the extraction and clean-up procedures were optimized, namely the vine-canes size, the QuEChERS (quick, easy, cheap, effective, rugged and safe) composition and the amount of carbon used in the dispersive-solid phase extraction (d-SPE). Suitable analytical parameters were obtained: linearity (r2) >0.99 for all the studied compounds and for the solvent and matrix-matched standards; relative standard deviation (RSD) below 14%; and mean recoveries for two spiking levels (10 and 20 μg/kg) between 75 and 103%, excepting for the PCBs that ranged between 59 and 105%. The limit of detection (LOD) and quantification (LOQ) ranged between 0.38 and 1.09 and 1.26 to 3.64 μg/kg, respectively. Regarding the analysis of 19 vine-cane samples, corresponding to four different varieties (Touriga Nacional, Tinta Roriz, Alvarinho, and Loureiro) collected in four different years in the North of Portugal, five contaminants (aldrin, 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), α-hexachlorocyclohexane (α-HCH), 2,4,4'-trichlorobiphenyl (PCB28), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101)) were detected. However, only α-HCH (5.85 ± 0.32 to 5.99 ± 0.25 μg/kg) and aldrin (2.44 ± 0.15 μg/kg) were quantified above the LOQ. The screening of environmental contaminants in vine-canes is essential to waste valorization, especially if the goal is to apply them in products for human consumption.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
32
|
Sergazina M, Vazquez L, Llompart M, Dagnac T. Occurrence of Fungicides in Vineyard and the Surrounding Environment. Molecules 2021; 26:molecules26206152. [PMID: 34684732 PMCID: PMC8537801 DOI: 10.3390/molecules26206152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Seventeen fungicides were determined in different matrices from vineyard areas, including vine leaves, soils, grapes and water, using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For leaf analysis, ultrasound-assisted extraction (UAE) was performed evaluating different solvents. UAE was compared with other extraction techniques such as vortex extraction (VE) and matrix solid-phase dispersion (MSPD). The performance of the UAE method was demonstrated on vine leaf samples and on other types of samples such as tea leaves, underlining its general suitability for leaf crops. As regards other matrices, soils were analyzed by UAE and microwave-assisted extraction (MAE), grapes by UAE and waters by SPE using cork as the sorbent. The proposed method was applied to 17 grape leaf samples in which 14 of the target fungicides were detected at concentrations up to 1000 μg g−1. Furthermore, the diffusion and transport of fungicides was demonstrated not only in crops but also in environmental matrices.
Collapse
Affiliation(s)
- Meruyert Sergazina
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (M.S.); (L.V.)
- Department of Chemistry, Institute of Natural Science and Geography, Abai Kazakh National Pedagogical University, Almaty 050010, Kazakhstan
| | - Lua Vazquez
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (M.S.); (L.V.)
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (M.S.); (L.V.)
- Correspondence: (M.L.); (T.D.)
| | - Thierry Dagnac
- Galician Agency for Food Quality—Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
- Correspondence: (M.L.); (T.D.)
| |
Collapse
|
33
|
Kalogeropoulou AG, Kosma CI, Albanis TA. Simultaneous determination of pharmaceuticals and metabolites in fish tissue by QuEChERS extraction and UHPLC Q/Orbitrap MS analysis. Anal Bioanal Chem 2021; 413:7129-7140. [PMID: 34599396 DOI: 10.1007/s00216-021-03684-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the occurrence, fate, and adverse effects of pharmaceutically active compounds (PhACs) in aquatic organisms have become a noteworthy issue. In the present study, a rapid and sensitive multiresidue analytical method was developed for the determination of 18 parent PhACs and 5 metabolites in sea bream (Sparus aurata), by combining a modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure with ultra-high performance liquid chromatography-Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS). The method development involved optimization of extraction solvent, extraction salts, clean-up sorbents, and amount of sample evaluation, while identification on Orbitrap MS was based on accurate mass and further confirmation with MS/MS fragmentation. The developed method was validated, and linearity was higher than 0.99. Recoveries in all cases ranged between 62 and 107% (at 10, 50, and 100 ng g-1), while intra-day and inter-day precision, expressed as relative standard deviation, RSD, was lower than 4% and 7%, respectively. In addition, limits of quantification (LOQs) ranged between 0.5 and 19 ng g-1. The compounds presented a low matrix effect, between - 13 and 4%, while the expanded uncertainty U% estimated at the three spiking levels 10, 50, and 100 ng g-1 was found below 49% in all cases. Finally, the validated method was applied to sea bream samples from an aquaculture farm located in the Mediterranean Sea, with one positive finding for the antibiotic trimethoprim at a concentration of 26 ng g-1, presenting negligible human health risk.
Collapse
Affiliation(s)
| | - Christina I Kosma
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.,University Research Center of Ioannina (URCI), Institute of Environment and Sustainable Development, 45110, Ioannina, Greece
| |
Collapse
|
34
|
Skotadis E, Kanaris A, Aslanidis E, Kalatzis N, Chatzipapadopoulos F, Marianos N, Tsoukalas D. Identification of Two Commercial Pesticides by a Nanoparticle Gas-Sensing Array. SENSORS 2021; 21:s21175803. [PMID: 34502694 PMCID: PMC8433924 DOI: 10.3390/s21175803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
This study presents the experimental testing of a gas-sensing array, for the detection of two commercially available pesticides (i.e., Chloract 48 EC and Nimrod), towards its eventual use along a commercial smart-farming system. The array is comprised of four distinctive sensing devices based on nanoparticles, each functionalized with a different gas-absorbing polymeric layer. As discussed herein, the sensing array is able to identify as well as quantify three gas-analytes, two pesticide solutions, and relative humidity, which acts as a reference analyte. All of the evaluation experiments were conducted in close to real-life conditions; specifically, the sensors response towards the three analytes was tested in three relative humidity backgrounds while the effect of temperature was also considered. The unique response patterns generated after the exposure of the sensing-array to the two gas-analytes were analyzed using the common statistical analysis tool Principal Component Analysis (PCA). The sensing array, being compact, low-cost, and highly sensitive, can be easily integrated with pre-existing crop-monitoring solutions. Given that there are limited reports for effective pesticide gas-sensing solutions, the proposed gas-sensing technology would significantly upgrade the added-value of the integrated system, providing it with unique advantages.
Collapse
Affiliation(s)
- Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
- NEUROPUBLIC S.A., 18545 Piraeus, Greece; (N.K.); (F.C.); (N.M.)
- Correspondence: ; Tel.: +30-2107721679
| | - Aris Kanaris
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| | - Evangelos Aslanidis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| | - Nikos Kalatzis
- NEUROPUBLIC S.A., 18545 Piraeus, Greece; (N.K.); (F.C.); (N.M.)
| | | | | | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| |
Collapse
|
35
|
Santiago MAP, dos Anjos JP, Nascimento MM, da Rocha GO, de Andrade JB. A miniaturized simple binary solvent liquid phase microextraction (BS-LPME) procedure for pesticides multiresidues determination in red and rosè wines. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Hoeltgebaum D, Pedron T, Paniz FP, Souza AA, Romoli JCZ, Lini RS, Pante GC, Rocha GHO, Batista BL, Machinski Junior M. Metals in Brazilian family farming grapes and estimated daily intake. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:236-243. [PMID: 34142923 DOI: 10.1080/19393210.2021.1933612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine concentrations of metals in peel, pulp, and seeds of grapes obtained from family farms in Brazil, compare them to the maximum threshold levels and to evaluate the risk by estimating the daily intake (EDI). Grape samples were collected from farms and levels of Cd, Cr, Cu, Mn, Ni, Pb and Zn were assessed via ICP-MS. The highest metal levels were found in grape peels, Cu at the highest concentration (107.6 mg kg-1). Cr, Cu, and Pb were found at concentrations which exceeded maximum threshold levels. The EDI of Cd, Cu and Pb through consumption of grapes for the assessed Brazilian population was 0.29, 1822 and 3.02 µg/kg bw/day, respectively. The EDI of Cu was above the Provisionary Tolerable Daily Intake (PTDI). Thus, there are possible health risks due to the occurrence of Cu in Brazilian grapes.
Collapse
Affiliation(s)
- Danielle Hoeltgebaum
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil
| | - Tatiana Pedron
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Fernanda Pollo Paniz
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Aline Amenência Souza
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil
| | | | - Renata Sano Lini
- Post-Graduate Program in Biosciences and Physiopathology, State University of Maringa, Maringa, Brazil
| | | | - Gustavo Henrique Oliveira Rocha
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Miguel Machinski Junior
- Post-Graduate Program in Health Sciences, State University of Maringa, Maringa, Brazil.,Post-Graduate Program in Food Science, State University of Maringa, Maringa, Brazil.,Department of Basic Health Sciences, State University of Maringa, Maringa, Brazil
| |
Collapse
|
37
|
Determination and dietary risk assessment of 284 pesticide residues in local fruit cultivars in Shanghai, China. Sci Rep 2021; 11:9681. [PMID: 33958696 PMCID: PMC8102495 DOI: 10.1038/s41598-021-89204-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
The presence of pesticide residues has become one of the main risk factors affecting the safety and quality of agro-food. In this study, a multi-residue method for the analysis of 284 pesticides in five local fruit cultivars in Shanghai was developed based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The limits of determination and the limits of quantitation of pesticides were 0.6–10 and 2–30 μg/kg, respectively. A total of 44, 10, 10, 18, and 7 pesticides were detected in strawberries, watermelons, melons, peaches, and grapes, respectively. The pesticide levels in 95.0% of the samples were below the maximum residual limits (MRLs) prescribed by China, and in 66.2% of the samples below the EU MRLs. The dietary risk assessment study showed big differences in the chronic and acute exposure risk values among different Chinese consumer groups. Through fruit consumption, children/females showed higher exposure risks than adults/males. But both the risk values were less than 100%, indicating that potential dietary risk induced by the pesticides was not significant for Chinese consumers. Nevertheless, certain measures are needed for both growers and the government in order to decrease the MRL-exceeding rate of pesticide residues and ensure the quality and safety of fruits for consumers.
Collapse
|
38
|
Kosma CI, Koloka OL, Albanis TA, Konstantinou IK. Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS. Food Chem 2021; 360:130008. [PMID: 34000630 DOI: 10.1016/j.foodchem.2021.130008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
In this research, a quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction procedure and Ultra-High Performance Liquid Chromatography-Orbitrap-Mass Spectrometry (UHPLC-Orbitrap-MS), were combined to obtain a sensitive and rapid method for the determination of multiclass pesticides in white and red wines. The optimization strategy involved the selection of buffering conditions, by applying different QuEChERS procedures and sorbents for the cleanup step in order to achieve acceptably high recoveries and low co-extractives in the final extracts. Identification was based on both accurate mass and retention time, while further confirmation was achieved by MS fragmentation. The method was evaluated in terms of linearity, recovery, precision, limit of detection (LOD) and quantification (LOQ), matrix effects (ME) and expanded uncertainty. The validated method was successfully applied to real samples (home-made and commercial) revealing the presence of two selected fungicides, in relatively low levels compared to the MRLs defined by the EU for vinification grapes.
Collapse
Affiliation(s)
- Christina I Kosma
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Ourania L Koloka
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Triantafyllos A Albanis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| | - Ioannis K Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| |
Collapse
|
39
|
Hakami RA, Aqel A, Ghfar AA, ALOthman ZA, Badjah-Hadj-Ahmed AY. Development of QuEChERS extraction method for the determination of pesticide residues in cereals using DART-ToF-MS and GC-MS techniques. Correlation and quantification study. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Constantinou M, Louca-Christodoulou D, Agapiou A. Method validation for the determination of 314 pesticide residues using tandem MS systems (GC-MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chem 2021; 360:129964. [PMID: 33993074 DOI: 10.1016/j.foodchem.2021.129964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/17/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
A multi-residue method for the simultaneous analysis of a wide range of pesticides in raisins using liquid and gas chromatography-tandem mass spectrometry (LC-MS/MS and GC-MS/MS) has been validated. Pesticides are extracted from raisins with ethyl acetate, followed by centrifugation. The validation study was in accordance with DG SANTE guidelines. Validation experiments have been performed in both analytical instruments. A total number of 314 pesticides were spiked in raisins of organic farming at two spiking levels for GC-MS/MS (0.025 and 0.1 mg/kg), and at three spiking levels for LC-MS/MS (0.005, 0.05, and 0.1 mg/kg) with 6 replicates at each concentration. The scope of validation included linearity, limits of quantification (LOQ), accuracy, precision, and matrix effects (%) for each pesticide. The validated method was then applied for the analysis of 37 commercial raisin samples purchased from the market. For the evaluation of the results, processing factors (PFs) have been applied to derive the amount of residue in raisins, from the maximum residue levels (MRLs) of grapes, and which in this paper will be referred as to the MRL expressed in raisins. In all conventional samples, pesticides were detected at concentrations above the LOQ. In total, 55 different pesticides were detected. All conventional samples contained multiple pesticides ranging from 2 to 24. On the other hand, samples from organic farming were found to be free of the analysed pesticides. The 13.5% of the examined samples were considered as violations. The exposure assessment for the acute risk of the violating samples indicated that no potential risk derives from the detected and approved in the EU pesticides, while the detection of not approved pesticides in the EU, and the lack of toxicological reference values for certain pesticides raise concerns for the human health, especially for children. The results of the survey study indicate the need to include processed samples, and in particular dry fruits with a high consumption rate such as raisins, in the official controls of pesticide residues in food.
Collapse
Affiliation(s)
- Maria Constantinou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; State General Laboratory, Pesticide Residues Laboratory, Nicosia, Cyprus
| | | | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
41
|
Islam AKMM, Noh HH, Ro JH, Kim D, Oh MS, Son K, Kwon H. Optimization and validation of a method for the determination of acidic pesticides in cabbage and spinach by modifying QuEChERS procedure and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122667. [PMID: 33915385 DOI: 10.1016/j.jchromb.2021.122667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/26/2023]
Abstract
A quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was developed and combined with liquid chromatography-tandem mass spectrometry to analyze 12 acidic pesticides in cabbage and spinach. The extraction solvents, phase partition salts and sorbents effect was studied to optimize the method followed by dilution before sample injection. The extraction involved 5% formic acid in acetonitrile, and the liquid-liquid partition was salt-induced. Carbopack Z, a high surface area graphitized carbon black, was a new sorbent used in the clean-up. The results show that Carbopack Z effectively removes interferences with little loss of acidic pesticides. All tested pesticide recoveries were satisfactory when Carbopack Z was combined with C18 in the clean-up at optimized condition. After clean-up, the extract was subjected to 10-fold dilution to sufficiently reduce the matrix effect (<20%). The limit of quantification (LOQ) was 1-5 ng/g, and the mean recovery was between 95 and 110% with a relative standard deviation <20% (between 2% and 10%) for the spiking of three concentrations: 5, 50, and 500 ng/g. The extract was less pigmented in the modified QuEChERS method than its original version. Thus, the modified method is a useful alternative for investigating the acidic pesticide residues in cabbage and spinach.
Collapse
Affiliation(s)
- Abul Kasem Mohammad Mydul Islam
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyun Ho Noh
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jin-Ho Ro
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Danbi Kim
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Seok Oh
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Kyungae Son
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyeyoung Kwon
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Planning and Coordination Bureau, Rural Development Administration, Deokjin-gu, Jeonju-si, Jeollabukdo, 54875, Republic of Korea.
| |
Collapse
|
42
|
Özcan R, Cesur B, Tezgit E, Unutkan Gösterişli T, Bakırdere S. Determination of pyridaphenthion in soybean sprout samples by gas chromatography mass spectrometry with matrix matching calibration strategy after metal sieve linked double syringe based liquid-phase microextraction. Food Chem 2021; 342:128294. [PMID: 33071192 DOI: 10.1016/j.foodchem.2020.128294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
A novel analytical strategy for the trace determination of pyridaphenthion pesticide was developed in this study. Gas chromatography-mass spectrometry (GC-MS) was used for the accurate, feasible and precise determination of this analyte. Liquid phase microextraction (LPME) was performed with a metal sieve linked double syringe (MSLDS) system, which eliminated the need for a disperser solvent. In order to increase extraction efficiency for the analyte, all variable parameters were optimized and the system analytical performance of the proposed method was determined. Limit of detection and quantification (LOD and LOQ) values of pyridaphenthion were found to be 0.8 and 2.7 µg L-1, respectively. Compared to GC-MS system's analytical performance, the developed method provided approximately 273-folds improvement in the detection limit of the analyte. Applicability/accuracy of the developed analytical strategy was checked by recovery experiments carried out with soybean sprouts, and the results obtained were satisfactory.
Collapse
Affiliation(s)
- Rümeysa Özcan
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Buket Cesur
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Ezgi Tezgit
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | | | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey; Turkish Academy of Sciences (TÜBA), Piyade Sokak No: 27, Çankaya 06690, Ankara, Turkey.
| |
Collapse
|
43
|
Validation of Analytical Methods Used for Pesticide Residue Detection in Fruits and Vegetables. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02027-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Löbbert A, Schanzer S, Krehenwinkel H, Bracher F, Müller C. Determination of multi pesticide residues in leaf and needle samples using a modified QuEChERS approach and gas chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1138-1146. [PMID: 33576365 DOI: 10.1039/d0ay02329a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to gain a better insight into pesticide and pollutant exposure in forests, a rapid and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) method for the determination of 208 pesticide residues in leaves and needles has been established. The modified QuEChERS (quick, easy, cheap, effective, rugged and safe) approach uses 2 g of homogenized sample, acetonitrile and water as extraction agents, combined with citrate buffer for the following salting out step. The limits of quantification (LOQs) were determined to 0.0025-0.05 mg kg-1, respectively. Calibration curves showed a linear range between the respective LOQ and 1.0 mg kg-1 with coefficients of determination (R2) ≥ 0.99 for all analyzed pesticides. The recovery rates ranged from 69.7% to 92.0% with a relative standard deviation below 20%. The analysis of beech leaves, spruce and pine needles (each n = 3) provided a proof of concept for the developed methodology and revealed the presence of six pesticide residues (boscalid, epoxiconazole, fenpropimorph, lindane, terbuthylazine, terbuthylazine-desethyl). The results underline the strong need for systematic surveillance of the uncontrollable exposure of pesticides to nature.
Collapse
Affiliation(s)
- Arnelle Löbbert
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandstr. 5-13, DE-81377 Munich, Germany.
| | - Sonja Schanzer
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandstr. 5-13, DE-81377 Munich, Germany.
| | - Henrik Krehenwinkel
- Department of Biogeography, Umweltprobenbank des Bundes, University of Trier, Universitiätsring 15, 54296 Trier, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandstr. 5-13, DE-81377 Munich, Germany.
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandstr. 5-13, DE-81377 Munich, Germany.
| |
Collapse
|
45
|
Watanabe E. Review of sample preparation methods for chromatographic analysis of neonicotinoids in agricultural and environmental matrices: From classical to state-of-the-art methods. J Chromatogr A 2021; 1643:462042. [PMID: 33761434 DOI: 10.1016/j.chroma.2021.462042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
This review specifically examines the development of sample preparation methods for residue analyses of neonicotinoid insecticides in agricultural and environmental matrices. Pesticide residue analysis is fundamentally important to ensure the safety of foods and processed foods of plant and animal origin, and to preserve the environment, particularly soil and water. For the development of pesticide residue analysis, the sample preparation process is an important key to maximizing the analytical performance of highly sensitive and accurate chromatographic instruments and to acquiring reliable analytical results. This review outlines sample preparation methods that have been proposed to date for extraction of neonicotinoids that might remain in a complicated sample matrix in quantitatively trace amounts, and for cleaning up, to the greatest extent possible, the interfering components that coexist in the sample extract.
Collapse
Affiliation(s)
- Eiki Watanabe
- Chemical Analysis Unit, Division of Hazardous Chemicals, Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan.
| |
Collapse
|
46
|
Purkait A, Mukherjee A, Hazra DK, Roy K, Biswas PK, Kole RK. Encapsulation, release and insecticidal activity of Pongamia pinnata (L.) seed oil. Heliyon 2021; 7:e06557. [PMID: 33855235 PMCID: PMC8027697 DOI: 10.1016/j.heliyon.2021.e06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Pongamia pinnata (L.) seed oil is effective for its insecticidal and larvicidal activities. However, its low aqueous solubility, high photosensitivity, and high volatility restrict its application for the control of agricultural pests. Encapsulation can be an effective technique to overcome such hindrances. Therefore, P. pinnata oil (PO) was extracted from its seeds and analyzed for karanjin content (3.18%) by GC-MS/MS as the marker compound. Micro-encapsulation (MC) of PO was prepared by interfacial polymerization between isocyanates and polyamine and tested for insecticidal and larvicidal activities. Bioassay of the developed formulations was tested in-vitro against 2nd instar larvae of Bombyx mori (Bivoltine hybrid) and in-vivo insecticidal bio-efficacy was tested against aubergine aphid (Aphis gossypii G.) and whitefly (Bemisia tabaci G.). Various properties of micro-capsules viz., stability, size, oil content and release kinetics were examined. Average diameter of capsules (1 μm) with Zeta potential (-16 mV) was indicated by the Dynamic Light Scattering (DLS) instrument. Existence of PO in the microcapsules was confirmed by an optical microscopic study. Spectroscopic analysis revealed 87.4% of PO was encapsulated in polyurea shell. The shelf-life (T 10 ), half-life (T 50 ), and expiry-life (T 90 ) of polyurea coated capsules were 11.4, 75.3 and 250.0 h, respectively. Polyurea coated PO capsule formulation showed evidence of in-vitro toxicity against 2nd instar larvae of B. mori (LC 50 = 1.1%; LC 90 = 5.9%). The PO formulation also exhibited 67.0-71.8% and 62.4-74.8% control of aphid and whitefly population in aubergine at 4.0% dose following 7-14 days after application. The study unveiled its significance in developing controlled release herbal formulations of P. pinnata as an alternative to harmful conventional synthetic insecticides for crop protection.
Collapse
Affiliation(s)
- Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Ayan Mukherjee
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Dipak Kumar Hazra
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| | - Kusal Roy
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| | - Pabitra Kumar Biswas
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| |
Collapse
|
47
|
Schusterova D, Hajslova J, Kocourek V, Pulkrabova J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021; 10:307. [PMID: 33540835 PMCID: PMC7913069 DOI: 10.3390/foods10020307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, the occurrence of pesticide residues and their metabolites in grapes and wines was investigated. A targeted analysis of 406 pesticide residues in 49 wine and grape samples from organic and conventional production were performed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method, followed by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Multiple residues (>4 residues/sample) were detected in 22 tested samples. The most commonly detected residues were fungicides (e.g., boscalid) and insecticides (e.g., methoxyfenozide). An ultra-high-performance liquid chromatography-high resolution mass spectrometry method (UHPLC-(HR)MS) was used for screening of pesticide metabolites. We also provide a method and database for detecting pesticide metabolites (extending our previously published database to 49 metabolites originating from 25 pesticides). An introduced strategy of targeted screening of pesticide metabolites was applied for authentication of 27 organic grapes and wines. In total, 23 samples were free of quantifiable residues/detected metabolites or contained residues approved for organic production.
Collapse
Affiliation(s)
| | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic; (D.S.); (J.H.); (V.K.)
| |
Collapse
|
48
|
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J. An extensive review on the consequences of chemical pesticides on human health and environment. JOURNAL OF CLEANER PRODUCTION 2021. [PMID: 0 DOI: 10.1016/j.jclepro.2020.124657] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
49
|
Xu G, Jia X, Li J, Kuang L, Li H, Dong F. Enantioselective fate of famoxadone during processing of apple cider and grape wine. Chirality 2021; 33:134-142. [PMID: 33460199 DOI: 10.1002/chir.23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022]
Abstract
Famoxadone enantiomers were separated on Lux Amylose-1 chiral column and determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The half-lives of R-(-)-famoxadone and S-(+)-famoxadone were 69.3 and 86.6 h in apple cider, 231.0 and 346.5 h in apple pomace, 69.3 and 77.0 h in grape wine, and 231.0 and 346.5 h in grape pomace, respectively. The enantiomeric fraction (EF) values decreased gradually from 0.498, 0.499, and 0.500 (0 h) to 0.404, 0.374, and 0.427 (144 h) and then increased gradually to 0.474, 0.427, and 0.422 (312 h) in apple cider, grape wine, and grape pomace. The EF value in apple pomace decreased gradually from 0.499 (0 h) to 0.450 (168 h) and then increased gradually to 0.482 (312 h). The processing factors (PFs) for famoxadone ranged from 0.014 to 0.024 in the overall process. The residue of famoxadone reduced 94.7-97.4% after the fermentation process.
Collapse
Affiliation(s)
- Guofeng Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Xiaohui Jia
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Haifei Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Nagabooshanam S, Roy S, Deshmukh S, Wadhwa S, Sulania I, Mathur A, Krishnamurthy S, Bharadwaj LM, Roy SS. Microfluidic Affinity Sensor Based on a Molecularly Imprinted Polymer for Ultrasensitive Detection of Chlorpyrifos. ACS OMEGA 2020; 5:31765-31773. [PMID: 33344830 PMCID: PMC7745425 DOI: 10.1021/acsomega.0c04436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/04/2020] [Indexed: 05/04/2023]
Abstract
The persistent use of pesticides in the agriculture field remains a serious issue related to public health. In the present work, molecularly imprinted polymer thin films were developed using electropolymerization of pyrrole (py) onto gold microelectrodes followed by electrodeposition for the selective detection of chlorpyrifos (CPF). The molecularly imprinted polymer (MIP) was synthesized by the electrochemical deposition method, which allowed in-line transfer of MIP on gold microelectrodes without using any additional adhering agents. Various parameters such as pH, monomer ratio, scan rate, and deposition cycle were optimized for sensor fabrication. The sensor was characterized at every stage of fabrication using various spectroscopic, microscopic, and electrochemical techniques. The sensor requires only 2 μL of the analyte and its linear detection range was found to be 1 μM to 1 fM. The developed sensor's limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.93 and 2.82 fM, respectively, with a sensitivity of 3.98 (μA/(μM)/ mm2. The sensor's shelf life was tested for 70 days. The applicability of the sensor in detecting CPF in fruit and vegetable samples was also assessed out with recovery % between 91 and 97% (RSD < 5%). The developed sensor possesses a huge commercial potential for on-field monitoring of pesticides.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Souradeep Roy
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Sujit Deshmukh
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, Gautam
Budh Nagar 201314, Uttar
Pradesh, India
| | - Shikha Wadhwa
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Indra Sulania
- Inter
University Accelerator Centre, Aruna Asaf Ali Marg, New
Delhi 110067, India
| | - Ashish Mathur
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
- ,
| | - Satheesh Krishnamurthy
- Nanoscale
Energy and Surface Engineering, School of Engineering and Innovation, The Open University, Milton Keynes MK 76AA, United Kingdom
| | - Lalit M. Bharadwaj
- Amity
Institute of Nanotechnology, Amity University
Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Susanta S. Roy
- Department
of Physics, School of Natural Sciences, Shiv Nadar University, Gautam
Budh Nagar 201314, Uttar
Pradesh, India
| |
Collapse
|