1
|
Xiang K, Zhou W, Hou T, Yu L, Zhou H, Zhou L, Liu Y, Wang J, Guo Z, Liang X. Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227715. [PMID: 36431815 PMCID: PMC9692749 DOI: 10.3390/molecules27227715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), β2-adrenergic receptor (β2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent β2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to β2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the β2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.
Collapse
Affiliation(s)
- Kaijing Xiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijia Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Long Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Liangliang Zhou
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (J.W.); (Z.G.); Tel.: +86-411-8437-9519 (J.W.); Fax: +86-411-8437-9539 (J.W.)
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (J.W.); (Z.G.); Tel.: +86-411-8437-9519 (J.W.); Fax: +86-411-8437-9539 (J.W.)
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| |
Collapse
|
2
|
Castilho LDMB, Gama VDS, Santos ALRD, Faria AMD. Polar polymer-immobilized stationary phase for aqueous reversed-phase liquid chromatography. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1862868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Verônica dos Santos Gama
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Brazil
| | | | - Anizio Marcio de Faria
- Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Ituiutaba, Brazil
| |
Collapse
|
5
|
Chu Z, Zhang L, Zhang W. Preparation and evaluation of maltose modified polymer-silica composite based on cross-linked poly glycidyl methacrylate as high performance liquid chromatography stationary phase. Anal Chim Acta 2018; 1036:179-186. [PMID: 30253830 DOI: 10.1016/j.aca.2018.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022]
Abstract
A new maltose modified polymer-silica composite was fabricated and applied as high performance liquid chromatography (HPLC) stationary phase. The cross-linked poly glycidyl methacrylate (pGMA) layer was chemically bonded to the outer surface as well as pore inner surface of silica beads via in-situ polymerization, and then maltose was modified onto the polymer layer via a [3 + 2] "click" reaction. The porous spherical silica (4 μm diameter) with 300 Å pore size was selected as the matrix so that the 3.25 nm-thick polymer layer fabricated on the pore inner surface would not affect its permeability. The typical 'U-shape' retention curves indicated a mixed-mode retention mechanism of the as-synthesized stationary phase. Both polar and non-polar analytes could be well separated on the stationary phase with column efficiency reaching 123809 plates/m for guanosine in hydrophilic interaction liquid chromatography (HILIC) mode and 46808 plates/m for fluorene in reversed-phase liquid chromatography (RPLC) mode, respectively. Nucleotides and their bases were baseline separated with good peak shape without any buffer salt in mobile phase, suggesting the effective shielding of the silanol groups. The packing material also showed excellent chromatographic repeatability with intraday RSDs of the retention time of five nucleosides less than 0.048% (n = 3) and interday RSDs less than 0.33% (n = 7) and great pH stability (from 1.5 to 10.2). Finally, the stationary phase was applied to the separation of ginseng extract.
Collapse
Affiliation(s)
- Zhanying Chu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
6
|
Liu D, Qiao T, Liu H, Wang X, Shi ZG. A simple approach to prepare a sulfone-embedded stationary phase for HPLC. J Sep Sci 2017; 41:877-885. [DOI: 10.1002/jssc.201700751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Liu
- Department of Chemistry; Wuhan University; Wuhan China
- Key Laboratory of Analytical Chemistry for Biology and Medicine; Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University; Wuhan China
| | - Ting Qiao
- Department of Chemistry; Wuhan University; Wuhan China
- Key Laboratory of Analytical Chemistry for Biology and Medicine; Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University; Wuhan China
| | - Haiyan Liu
- Department of Chemistry; Wuhan University; Wuhan China
| | - Xiaoling Wang
- Department of Chemistry; Wuhan University; Wuhan China
| | - Zhi-guo Shi
- Department of Chemistry; Wuhan University; Wuhan China
- Key Laboratory of Analytical Chemistry for Biology and Medicine; Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University; Wuhan China
| |
Collapse
|
7
|
Jin H, Liu Y, Guo Z, Wang J, Zhang X, Wang C, Liang X. Recent development in liquid chromatography stationary phases for separation of Traditional Chinese Medicine components. J Pharm Biomed Anal 2016; 130:336-346. [PMID: 27329167 DOI: 10.1016/j.jpba.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
Abstract
Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-phase liquid chromatography (RPLC) is still the method of choice for the separation of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary phases. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary phases have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary phases. Their potential in the separation of TCMs using relevant applications is also demonstrated.
Collapse
Affiliation(s)
- Hongli Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Chaoran Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
| |
Collapse
|