1
|
Li L, Zeng Y, Yang G, Liu H, Zhu C, Zhang Y, Qu F, Ma Q. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin. Talanta 2025; 283:127142. [PMID: 39541715 DOI: 10.1016/j.talanta.2024.127142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Ambient ionization mass spectrometry (AIMS) allows rapid analysis of targets, while its overall selectivity is somewhat limited due to the lack of chromatographic separation. Recently, magnetic blade spray (MBS) has enhanced AIMS by incorporating immunomagnetic beads instead of the traditional coated blade spray (CBS) coating, thereby improving selectivity and sensitivity by targeted analyte detection and reducing background interference. In this study, an aptamer-functionalized and nucleic acid dye (GelRed)-loaded MS probe (AGMP) was developed and employed with MBS-based miniature mass spectrometer. Specifically, AGMP was assembled using aptamer-functionalized magnetic nanoparticles loaded with GelRed as mass tags for highly sensitive analysis of endoglin (CD105). For the preparation of AGMP, the CD105 binding aptamer of End-A2 was first selected through three rounds of capillary electrophoresis (CE)-SELEX with an optimal affinity of 62.3 pM. After optimizing the critical parameters that affected adsorption, desorption, and ionization efficiency, this method displayed satisfactory sensitivity with detection and quantitation limits of 0.2 and 1 ng/mL, respectively, as well as reliable recoveries of 90.1-106.8 % with relative standard deviations of 1.6-5.4 %. Besides, the method effectively mitigated the matrix effects with a slope deviation of 10.03 %, and exhibited good selectivity and environmental friendliness. Furthermore, this AGMP-based MBS strategy was successfully applied for CD105 detection in serum samples, demonstrating its potential for sensitive and on-site biomolecule analysis in complex matrices.
Collapse
Affiliation(s)
- Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yulong Zeng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Ying Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
2
|
Hejji L, Azzouz A, Pérez-Villarejo L, Castro E, Souhail B, Rodríguez-Castellón E. Fe 3O 4@UiO-66-NH 2 based on magnetic solid phase extraction for determination of organic UV filters in environmental water samples. CHEMOSPHERE 2023; 341:140090. [PMID: 37678590 DOI: 10.1016/j.chemosphere.2023.140090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In this work, a nanocomposite structured magnetic metal-organic framework named as Fe3O4@UiO-66-NH2 was prepared via a simple hydrothermal approach. The as-mentioned nanocomposite was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and the Brunauer-Emmett-Teller (BET) techniques. Using the Fe3O4@UiO-66-NH2 as a nanosorbent, an easy and highly effective approach was developed to preconcentrate nine organic UV filters before gas chromatography-mass spectrometry (GC-MS) analysis. Different conditions influencing the extraction efficiency encompassing the sorbent amount, nature and volume of desorption solvent, desorption time, pH of the sample, and extraction time, were examined. Under the optimal experimental parameters, the Fe3O4@UiO-66-NH2-based magnetic solid phase extraction and GC-MS (MSPE-GC-MS) demonstrated linearity in the range of 0.03-1500 ng/L (R2 ≥ 0.9974) and the reproducibility, expressed as RSD, was ≤7.5%. The limits of detection ranged between 0.01 and 0.07 ng/L and limits of quantification were in the range of 0.03-0.4 ng/L. Finally, the suggested approach was satisfactorily utilized to determine nine organic UV filters in different water samples (analytical recoveries between 86.5% and 104.2%).
Collapse
Affiliation(s)
- Lamia Hejji
- Department of Chemical, Environmental, And Materials Engineering, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain; Center for Advanced Studies in Earth Science, Energy and Environment, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Luis Pérez-Villarejo
- Department of Chemical, Environmental, And Materials Engineering, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain; Center for Advanced Studies in Earth Science, Energy and Environment, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain.
| | - Eulogio Castro
- Department of Chemical, Environmental, And Materials Engineering, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain; Center for Advanced Studies in Earth Science, Energy and Environment, Campus Las Lagunillas, University of Jaén, 23071, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | | |
Collapse
|
3
|
Jiang D, Wu S, Lv S, Qi R, Li Y, Liu J. Cerium ions immobilized magnetic graphite nitride decorated with L-Alanyl-L-Glutamine as new chelator for enrichment of phosphopeptides. Mikrochim Acta 2023; 190:452. [PMID: 37882891 DOI: 10.1007/s00604-023-06033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Cerium ions immobilized magnetic graphite nitride material have been prepared using L-Alanyl-L-Glutamine as the new chelator. The resulting Fe3O4/g-C3N4-L-Ala-L-Gln-Ce4+, as an immobilized metal ion affinity chromatography (IMAC) sorbent, was reusable. This is due to the strong coordination interaction between L-Alanyl-L-Glutamine and cerium ions. After a series of characterizations, the magnetic nanocomposite showed high surface area, good hydrophilicity, positive electricity, and magnetic response. Fe3O4/g-C3N4-L-Ala-L-Gln-Ce4+ had high sensitivity (0.1 fmol), selectivity (α-/β-casein/bovine serum albumin, 1:1:5000), and good recyclability (10 cycles). A total of 647 unique phosphopeptides mapped to 491 phosphoproteins were identified from A549 cell lysate by nano LC-MS analysis.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Siqi Lv
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao, 028000, China
| |
Collapse
|
4
|
Du C, Hu J, Chen F. Thin‐film nanocomposite forward osmosis membrane with polydopamine @
UiO‐66‐NH
2
‐modified polypropylene support and its antifouling property. J Appl Polym Sci 2022. [DOI: 10.1002/app.52724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Du
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| | - Jintai Hu
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| | - Fen Chen
- School of Environmental Science and Engineering Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
5
|
Xu Z, Zhang Z, She Z, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-coated nanofibers with multi-affinity sites for highly sensitive, selective recognition of ultra-trace microcystin-LR. Talanta 2022; 236:122880. [PMID: 34635260 DOI: 10.1016/j.talanta.2021.122880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zhexiang Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zongkang She
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
6
|
Manousi N, Zachariadis GA, Deliyanni EA. On the use of metal-organic frameworks for the extraction of organic compounds from environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59015-59039. [PMID: 32077018 DOI: 10.1007/s11356-020-07911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The determination of trace metals and organic contaminants in environmental samples, such as water, air, soil, and sediment, is until today a challenging process for the analytical chemistry. Metal-organic frameworks (MOFs) are novel porous nanomaterials that are composed of metal ions and an organic connector. These materials are gaining more and more attention due to their superior characteristics, such as high surface area, tunable pore size, mechanical and thermal stability, luminosity, and charge transfer ability between metals and ligands. Among the various applications of MOFs are gas storage, separation, catalysis, and drug delivery. Recently, MOFs have been successfully introduced in the field of sample preparation for analytical chemistry and they have been used for sample pretreatment of various matrices. This review focuses on the applications of MOFs as novel adsorbents for the extraction of organic compounds from environmental samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
7
|
Xu Z, Fan G, Zheng T, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-based electrospun nanofibrous composite coating fiber for specific recognition of ultratrace microcystin in water. J Chromatogr A 2021; 1656:462542. [PMID: 34543883 DOI: 10.1016/j.chroma.2021.462542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 02/01/2023]
Abstract
A novel aptamer@AuNPs@UiO-66-NH2 electrospun nanofibrous coating fiber for specific recognition of microcystin-LR (MC-LR) was proposed by using electrospinning, metal-organic frameworks (MOF) seed growth and AuNPs bridging aptamer strategies. Characterization of morphology, structure and stability of the obtained affinity nanofibrous coating fiber were investigated. High loading of MOFs and aptamers on the nanofibrous fiber were achieved and successfully applied for accurate identification of MC-LR by solid-phase microextraction (SPME) coupled with LC-MS. Highly specific recognition of MC-LR with little interference of analogs was achieved with extremely low LOD (0.004 ng/mL), good precision (CV% < 11.0%) and low relative error (RE% = -1.5% to -10.0%), which was rather better than that of the traditional SPME or SPE protocols. Satisfactory recoveries of MC-LR were obtained in the range of 92.0-96.8% (n = 3) in fortified tap water, raw pond water and river water samples. This work revealed an attractive alternative access to specific recognition and super-sensitive analysis of MC-LR in water.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Guanghui Fan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tuo Zheng
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
8
|
Wang X, Pei K, Sun H, Wang Q. A magnetic relaxation switch sensor for determination of 17β-estradiol in milk and eggs based on aptamer-functionalized Fe 3 O 4 @Au nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5697-5706. [PMID: 33786831 DOI: 10.1002/jsfa.11224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A simple and rapid detection method for 17β-estradiol (E2 ) in complex food matrix is greatly desirable. A magnetic relaxation switch (MRS) sensor for detecting E2 based on the aptamer-functionalized gold-coated iron oxide (Fe3 O4 @Au) nanocomposite was designed in this study. Fe3 O4 @Au nanoparticles (NPs) played as a 'switch' between dispersed and aggregated states, while aptamer served as the recognition unit. RESULTS According to the sensing effect of monocomponent relaxation time (T2W ) for E2 , the volume ratio of aptamers to Fe3 O4 @Au, the sodium chloride (NaCl) concentration, the concentration of Fe3 O4 @Au@Apt, and reaction time were optimized to be 4:1, 0.03 mol L-1 , 4 μmol L-1 and 15 min, respectively. For the analysis of food sample, the E2 was quantified over a concentration range of 1 to 100 nmol L-1 with a detection limit of 7.6 nmol L-1 for milk samples, while a linearity range of 20 to 100 nmol L-1 and a detection limit of 8.57 nmol L-1 for egg samples. CONCLUSION These results exhibited that the MRS sensor could be a promising platform for the rapid detecting of E2 in food sample. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaili Pei
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hanying Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Qi Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Wang X, Li C, Wu D, Shen J, Wei Y, Wang C. Enrichment of polychlorinated biphenyls in river water by using magnetic adsorbents with high selectivity to nonplanar aromatic compounds and their analysis with gas chromatography–mass spectrometry. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuesong Wang
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Chunyan Li
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Dan Wu
- Department of Solid Phase Materials Sunresin New Materials Co., Ltd. Xi'an China
| | - Jiwei Shen
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Yinmao Wei
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
| | - Chaozhan Wang
- Department of Analytical Science, Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory, College of Chemistry and Materials Science Northwest University Xi'an China
- Instrumental Analysis Lab National Demonstration Center for Experimental Chemistry Education (Northwest University) Xi'an China
| |
Collapse
|
11
|
Verma R, Dhingra G, Malik AK. A Comprehensive Review on Metal Organic Framework Based Preconcentration Strategies for Chromatographic Analysis of Organic Pollutants. Crit Rev Anal Chem 2021; 53:415-441. [PMID: 34435923 DOI: 10.1080/10408347.2021.1964344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic pollutants (OPs) are of worldwide concern for being hazardous to human existence and natural flora and fauna in view of their contaminating nature, bio-aggregation properties and long range movement abilities in environment. Metal organic frameworks (MOFs) are a new kind of crystalline porous material, composed of metal ions and multi dentate organic ligands with well-defined co-ordination geometry exhibiting promising application respect to adsorptive evacuation of OPs for chromatographic analysis. Applications of MOFs as preconcentration material and column packing material are reviewed. Key analytical characteristics of MOF based preconcentration techniques and coupled chromatographic procedures are summarized in detail. MOF based preconcentration strategies are compared with conventional sorbent based extraction techniques for thorough evaluation of performance of MOF materials.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Patiala, Punjab, India
| | | |
Collapse
|
12
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
13
|
Zheng P, Wang R, Li Z, Li Y, Wang D, Li Z, Peng X, Liu C, Jiang L, Liu Q. Enhanced proton transport properties of sulfonated polyarylene ether nitrile (SPEN) with moniliform nanostructure UiO-66-NH2/CNT. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211011636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely investigated for their porosity and functional diversity. Inspired by the flexible designability of MOFs, UiO-66-NH2/CNT with moniliform nanostructure was designed and synthesized successfully. SPEN@UiO-66-NH2/CNT composite proton exchange membranes were prepared by loaded UiO-66-NH2/CNT into sulfonated polyarylene ether nitrile (SPEN). Due to the addition of UiO-66-NH2/CNT, all the properties of composite proton exchange membranes were improved. The composite membranes exhibit excellent thermal stability and dimensional stability. The tensile strength of the composite membranes was improved about twofold compared to that of recast SPEN membrane, which was contributed by the interlaced property and rigid structure of UiO-66-NH2/CNT. Especially, the proton conductivity of the composite membranes was greatly facilitated by the additional proton acceptors and donors provided by the abundant amino groups and carboxyl groups in UiO-66-NH2/CNT. Furthermore, the methanol permeability of SPEN@UiO-66-NH2/CNT reduced consistently (from 6.13 to 0.96 × 10−7 cm2 s−1), which was much lower than that of Nafion membrane (21.36 × 10−7 cm2 s−1). All the results suggest that the design of multifunctional nanofillers based on the skeleton structure of MOFs could provide a new strategy to enhance the performance of PEMs.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Rui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Youren Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Lan Jiang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Sichuan China
| |
Collapse
|
14
|
Qriouet Z, Cherrah Y, Sefrioui H, Qmichou Z. Monoclonal Antibodies Application in Lateral Flow Immunochromatographic Assays for Drugs of Abuse Detection. Molecules 2021; 26:1058. [PMID: 33670468 PMCID: PMC7922373 DOI: 10.3390/molecules26041058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
Lateral flow assays (lateral flow immunoassays and nucleic acid lateral flow assays) have experienced a great boom in a wide variety of early diagnostic and screening applications. As opposed to conventional examinations (High Performance Liquid Chromatography, Polymerase Chain Reaction, Gas chromatography-Mass Spectrometry, etc.), they obtain the results of a sample's analysis within a short period. In resource-limited areas, these tests must be simple, reliable, and inexpensive. In this review, we outline the production process of antibodies against drugs of abuse (such as heroin, amphetamine, benzodiazepines, cannabis, etc.), used in lateral flow immunoassays as revelation or detection molecules, with a focus on the components, the principles, the formats, and the mechanisms of reaction of these assays. Further, we report the monoclonal antibody advantages over the polyclonal ones used against drugs of abuse. The perspective on aptamer use for lateral flow assay development was also discussed as a possible alternative to antibodies in view of improving the limit of detection, sensitivity, and specificity of lateral flow assays.
Collapse
Affiliation(s)
- Zidane Qriouet
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Université Mohammed V-Souissi, Rabat 10100, Morocco;
| | - Yahia Cherrah
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Université Mohammed V-Souissi, Rabat 10100, Morocco;
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco; (Z.Q.); (H.S.)
| |
Collapse
|
15
|
Han T, Wang S, Sheng F, Wang S, Dai T, Zhang X, Wang G. Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction. Analyst 2021; 145:3598-3604. [PMID: 32334417 DOI: 10.1039/d0an00065e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we demonstrated an ultrasensitive detection platform for polychlorinated biphenyls (PCBs) based on DNA microcapsules and a nonlinear hybridization chain reaction (NHCR). In the process, first, electrochemical signal molecules (Methylene Blue, MB) were sealed in the prepared DNA microcapsules. In the presence of PCB-72, DNA microcapsules could be dissociated with the conjugation of the aptamer and target, and meanwhile, the released DNA strand could initiate the NHCR and trigger the chain branching growth of DNA dendrimers. Because the released MBs were intercalated into the DNA dendrimer, enhanced electrochemical responses could be detected. This method exhibited ultrahigh sensitivity to PCB-72 with a detection limit of 0.001 ng mL-1. Furthermore, the present aptasensor was also capable of discriminating different PCB congeners. Therefore, the devised label-free and enzyme-free amplification electrochemical aptasensor strategy has great potential for the detection of PCB-72 in real samples, and this strategy may also become an attractive alternative for sensitive and selective small molecule, protein, nucleic acid and nuclease activity detection.
Collapse
Affiliation(s)
- Ting Han
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Shaozhen Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Feifan Sheng
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Sicheng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Tianyue Dai
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
16
|
YANG JW, WANG CY, LUO L, GUO L, XIE JW. Applications and Prospects of Oligonucleotide Aptamers in Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang S, Zheng H, Sun Y, Li F, Li T, Liu X, Zhou Y, Chen W, Ju H. Oxygen vacancies enhanced photoelectrochemical aptasensing of 2, 3', 5, 5'-tetrachlorobiphenyl amplified with Ag 3VO 4 nanoparticle-TiO 2 nanotube array heterostructure. Biosens Bioelectron 2020; 167:112477. [PMID: 32810703 DOI: 10.1016/j.bios.2020.112477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022]
Abstract
This work proposed an enhancing mechanism of both oxygen vacancies (OVs) and the heterostructure for amplifying the photoelectrochemical (PEC) aptasensing signal. The OVs were formed by in situ electrochemical reduction of TiO2 nanotube arrays (TNTAs), and well-separated Ag3VO4 nanoparticles (NPs) were then deposited on the TNTAs. The band gaps and positions of these nanomaterials were evaluated by Tauc equation and Mott-Schottky plots to verify the formation of the heterojunction. The OVs and heterojunction greatly enhanced the visible light absorption and improved the charge separation of TNTAs. The amplified PEC signal could be quenched by the resonance energy transfer between Ag3VO4 NPs and gold nanorods (Au NRs), which were labeled on the complementary DNA (cDNA) to the aptamer immobilized on the heterojunction. Upon the recognition of the aptamer to target analyte, the Au NR-cDNA was detached from the sensor, leading to a "signal-on" aptasensing strategy. Under optimal conditions, the PEC aptasensor displayed a detection limit of 0.015 pg mL-1 and a linear range from 0.02 to 300 ng mL-1 for 2,3',5,5'-tetrachlorobiphenyl.
Collapse
Affiliation(s)
- Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Hejie Zheng
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Yuping Sun
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Fen Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Tongtong Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
18
|
Mi X, Li H, Tan R, Tu Y. Dual-Modular Aptasensor for Detection of Cardiac Troponin I Based on Mesoporous Silica Films by Electrochemiluminescence/Electrochemical Impedance Spectroscopy. Anal Chem 2020; 92:14640-14647. [PMID: 33090771 DOI: 10.1021/acs.analchem.0c03130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A simple, dual-modular aptasensor for accurate determination of cardiac troponin I (cTnI), a sensitive biomarker of acute myocardial infarction, is reported. It has the parallel output of electrochemiluminescence (ECL) and electrochemical impedance spectroscopy (EIS) based on target-gated transportation of signal probes (luminol/H2O2 or Fe(CN)63-/4-). The sensing capacity is originated from the amino-functionalized mouth margin of the nanochannels in a vertically oriented mesoporous silica film, which was in situ-grown on indium tin oxide-coated glass. With the linkage of glutaraldehyde to couple the aptamer as a trapper, it brings in the high specific target-gated response toward cTnI as decreased ECL or increased EIS. The concentration of cTnI is measurable by the ECL response within a wide linear range from 0.05 pg mL-1 to 10 ng mL-1, as well as the EIS response for a linear range between 0.05 pg mL-1 and 1 ng mL-1. Significantly, the self-verification of these two data from ECL and EIS validated each other with a satisfactory linear correlation (R2 = 0.999), thereby realizing the more reliable and accurate quantification to avoid false results. The designed strategy is an effective method for detection of cTnI, which is of great potential to apply in clinical detection.
Collapse
Affiliation(s)
- Xiaona Mi
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
19
|
Zhang H, Xiong P, Li G, Liao C, Jiang G. Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: Overview and perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Pérez-Cejuela HM, Herrero-Martínez JM, Simó-Alfonso EF. Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes. Molecules 2020; 25:E4216. [PMID: 32938010 PMCID: PMC7571043 DOI: 10.3390/molecules25184216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the recent advances concerning metal-organic frameworks (MOFs) modified with several biomolecules (e.g., amino acids, nucleobases, proteins, antibodies, aptamers, etc.) as ligands to prepare affinity-based sorbents for application in the sample preparation field. The preparation and incorporation strategies of these MOF-based affinity materials were described. Additionally, the different types of ligands that can be employed for the synthesis of these biocomposites and their application as sorbents for the selective extraction of molecules and clean-up of complex real samples is reported. The most important features of the developed biocomposites will be discussed throughout the text in different sections, and several examples will be also commented on in detail.
Collapse
Affiliation(s)
| | | | - Ernesto F. Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; (H.M.P.-C.); (J.M.H.-M.)
| |
Collapse
|
21
|
A new 3D COF with excellent fluorescence response for water and good adsorption performance for polychlorinated biphenyls. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Guo Y, Wei W, Zhang Y, Dai Y, Wang W, Wang A. Determination of sulfadimethoxine in milk with aptamer-functionalized Fe 3 O 4 /graphene oxide as magnetic solid-phase extraction adsorbent prior to HPLC. J Sep Sci 2020; 43:3499-3508. [PMID: 32573934 DOI: 10.1002/jssc.202000277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023]
Abstract
An aptamer (Apt) functionalized magnetic material was prepared by covalently link Apt to Fe3 O4 /graphene oxide (Fe3 O4 /GO) composite by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide, and then characterized by FTIR spectroscopy, X-ray diffraction, and vibration sample magnetometry. The obtained composite of Fe3 O4 /GO/Apt was employed as magnetic solid-phase extraction adsorbent for the selective preconcentration of sulfadimethoxine prior to analysis by high-performance liquid chromatography. Under the optimal conditions (sample pH of 4.0, sorbent dosage of 20 mg, extraction time of 3 h, and methanol-5% acetic acid solution as eluent), a good linear relationship was obtained between the peak area and concentration of sulfadimethoxine in the range of 5.0 to 1500.0 µg/L with correlation coefficient of 0.9997. The limit of detection (S/N = 3) was 3.3 µg/L. The developed method was successfully applied to the analysis of sulfadimethoxine in milk with recoveries in the range of 75.9-92.3% and relative standard deviations less than 8.1%. The adsorption mechanism of Fe3 O4 /GO/Apt toward sulfadimethoxine was studied through the adsorption kinetics and adsorption isotherms, and the results show that the adsorption process fits well with the pseudo-second-order kinetic model and the adsorbate on Fe3 O4 /GO/Apt is multilayer and heterogeneous.
Collapse
Affiliation(s)
- Yinan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Wei Wei
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Aijun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
23
|
Belenguer-Sapiña C, Pellicer-Castell E, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138266. [PMID: 32251885 DOI: 10.1016/j.scitotenv.2020.138266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants whose wide industrial use has been banned over the years in most countries due to their persistence and bioaccumulation. In fact, the International Agency for Research on Cancer defined them in 2016 as carcinogenic to humans based on sufficient evidence of an increased risk of cancer, being children and pregnant or lactating women the most vulnerable population subgroups. In this work, a new alternative for the determination of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in water samples has been developed by using a cyclodextrin-containing silica microparticulated material as an adsorbent in solid-phase extraction. Gas chromatography coupled to an electron capture detector has been used in the quantification step. The methodology allows quantifying polychlorinated biphenyls at very trace levels, with limits of detection between 0.2 and 1.7 ng L-1. Other parameters such as the repeatability, with coefficients of variation lower than 11%, were likewise established. To end, real water samples were analyzed, and the results were comparable with those obtained with a reference method. The proposed methodology can be utilized for assessing the presence of these compounds in the environment and can come in handy for evaluation and remediation purposes.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
24
|
Application of zirconium-based metal–organic frameworks for micro-extraction by packed sorbent of urinary trans, trans-muconic acid. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01930-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Tu C, Guo Y, Dai Y, Wei W, Wang W, Wu L, Wang A. Determination of Chloramphenicol in Honey and Milk by HPLC Coupled with Aptamer-Functionalized Fe 3 O 4 /Graphene Oxide Magnetic Solid-Phase Extraction. J Food Sci 2019; 84:3624-3633. [PMID: 31762030 DOI: 10.1111/1750-3841.14955] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/06/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
Abstract
An aptamer-functionalized Fe3 O4 /graphene oxide was synthesized by chemical co-precipitation method and then employed in the magnetic solid-phase extraction for selective enrichment of chloramphenicol before HPLC. The aptamer was covalently bonded to the Fe3 O4 /graphene oxide complex by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide. Parameters affecting extraction efficiency including solution pH, extraction time and temperature, types and volume of elution solvent, and elution time were investigated in detail. Under the optimal conditions, good linearity was obtained between the peak area and analyte concentration in the range of 7.0 to 1.0 × 103 µg/L with the correlation coefficient of 0.9994. The limit of detection and quantitation were 0.24 µg/L and 0.79 µg/L, respectively. The developed method was employed to the analysis of chloramphenicol in honey and milk samples. The recoveries ranged from 80.5% to 105.0% with relative standard deviations less than 8.9%. PRACTICAL APPLICATION: An aptamer-functionalized Fe3 O4 /graphene oxide was synthesized and employed in magnetic solid phase extraction for the enrichment of chloramphenicol before HPLC. The presented assay was employed for the determination of chloramphenicol in honey and milk with satisfactory results.
Collapse
Affiliation(s)
- Chunyan Tu
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Yinan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Wei Wei
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| | - Aijun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal Univ., Jinhua, 321004, China
| |
Collapse
|
26
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Yu M, Wang L, Hu L, Li Y, Luo D, Mei S. Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Mascini M, Dikici E, Robles Mañueco M, Perez-Erviti JA, Deo SK, Compagnone D, Wang J, Pingarrón JM, Daunert S. Computationally Designed Peptides for Zika Virus Detection: An Incremental Construction Approach. Biomolecules 2019; 9:biom9090498. [PMID: 31533374 PMCID: PMC6770336 DOI: 10.3390/biom9090498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
Herein, and in contrast to current production of anti-Zika virus antibodies, we propose a semi-combinatorial virtual strategy to select short peptides as biomimetic antibodies/binding agents for the detection of intact Zika virus (ZIKV) particles. The virtual approach was based on generating different docking cycles of tetra, penta, hexa, and heptapeptide libraries by maximizing the discrimination between the amino acid motif in the ZIKV and dengue virus (DENV) envelope protein glycosylation site. Eight peptides, two for each length (tetra, penta, hexa, and heptapeptide) were then synthesized and tested vs. intact ZIKV particles by using a direct enzyme linked immunosorbent assay (ELISA). As a reference, we employed a well-established anti-ZIKV antibody, the antibody 4G2. Three peptide-based assays had good detection limits with dynamic range starting from 105 copies/mL of intact ZIKV particles; this was one order magnitude lower than the other peptides or antibodies. These three peptides showed slight cross-reactivity against the three serotypes of DENV (DENV-1, -2, and -3) at a concentration of 106 copies/mL of intact virus particles, but the discrimination between the DENV and ZIKV was lost when the coating concentration was increased to 107 copies/mL of the virus. The sensitivity of the peptides was tested in the presence of two biological matrices, serum and urine diluted 1:10 and 1:1, respectively. The detection limits decreased about one order of magnitude for ZIKV detection in serum or urine, albeit still having for two of the three peptides tested a distinct analytical signal starting from 106 copies/mL, the concentration of ZIKV in acute infection.
Collapse
Affiliation(s)
- Marcello Mascini
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA.
| | - Marta Robles Mañueco
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Julio A Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba.
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA.
- University of Miami Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
30
|
Phenyl propyl functionalized hybrid sol–gel reinforced aluminum strip as a thin film microextraction device for the trace quantitation of eight PCBs in liquid foodstuffs. Talanta 2019; 199:547-555. [DOI: 10.1016/j.talanta.2019.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
|
31
|
Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis. Chromatographia 2019. [DOI: 10.1007/s10337-019-03726-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Verdian A, Fooladi E, Rouhbakhsh Z. Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta 2019; 202:123-135. [PMID: 31171160 DOI: 10.1016/j.talanta.2019.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants, which have expanded in foods and the environment. Detection of PCBs is considered essential due to recognized side-effects of PCBs on health and the public concerns in this regard. On the other hand, due to the trace levels of these organic chlorine compounds, reliable and sensitive assays must be developed. Recognition elements are essential parts of analytical detection assays and sensors of PCBs since these elements are involved in the selective identification of the analytes of interest. Understanding the fundamentals of the recognition elements of PCBs and the benefits of the sensor strategies result in the development of next-generation recognition devices. This review aimed to highlight the recent progress in the recognition elements as key parts of biosensors. We initially, focused on the developed antibody-based biosensors for the detection of PCBs, followed by discussing the aptamers as novel recognition elements. Furthermore, the recent advancement in the development of aptamer-based solid phase extractions has been evaluated. These findings could contribute to improving the design of commercial PCB-kits in the future.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
33
|
Sun M, Li R, Zhang J, Yan K, Liu M. One-pot synthesis of a CdS-reduced graphene oxide-carbon nitride composite for self-powered photoelectrochemical aptasensing of PCB72. NANOSCALE 2019; 11:5982-5988. [PMID: 30888368 DOI: 10.1039/c9nr00966c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Graphitic carbon nitride (C3N4) is a carbon-based metal-free semiconductor, which has been widely explored as a photoactive material. In this work, the CdS, reduced graphene oxide (rGO) and C3N4 (CdS-rGO-C3N4) composite was synthesized by a simple one-pot hydrothermal method and utilized to construct a photoelectrochemical (PEC) sensor. Compared with CdS, C3N4 and CdS-C3N4, the CdS-rGO-C3N4 composite exhibited enhanced photoelectrochemical (PEC) performance, due to the expanded absorption of C3N4 in the visible region by CdS and promoted the charge carrier separation of a photoelectrode by rGO. Based on a glassy carbon electrode (GCE) modified with CdS-rGO-C3N4 and a PCB72-binding aptamer (ap/CdS-rGO-C3N4/GCE), a PEC aptasensor for the detection of 2,3',5,5'-tetrachlorobiphenyl (PCB72) was developed. When H2O2 was added into the electrolyte, the PEC sensor exhibited an amplified response toward PCB72, and could be operated in a self-powered mode at a potential of 0 V. Under optimum conditions, the constructed PEC aptasensor exhibited a wide linear range of 10 to 1000 ng mL-1 for PCB72 detection, with a low detection limit (S/N = 3) of 1.0 ng mL-1. Moreover, this aptasensor exhibited high selectivity, good reproducibility and high stability. The applicability of the developed PEC strategy was demonstrated by determining PCB72 in environmental water.
Collapse
Affiliation(s)
- Mengjun Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
Wang Q, Wu H, Lv F, Cao Y, Zhou Y, Gan N. A headspace sorptive extraction method with magnetic mesoporous titanium dioxide@covalent organic frameworks composite coating for selective determination of trace polychlorinated biphenyls in soils. J Chromatogr A 2018; 1572:1-8. [DOI: 10.1016/j.chroma.2018.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
|
35
|
Wang Y, Bai J, Huo B, Yuan S, Zhang M, Sun X, Peng Y, Li S, Wang J, Ning B, Gao Z. Upconversion Fluorescent Aptasensor for Polychlorinated Biphenyls Detection Based on Nicking Endonuclease and Hybridization Chain Reaction Dual-Amplification Strategy. Anal Chem 2018; 90:9936-9942. [PMID: 30033721 DOI: 10.1021/acs.analchem.8b02159] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel upconversion fluorescent aptasensor based on hybridization chain reaction and nicking endonuclease has been developed for detection of polychlorinated biphenyls (PCBs). It combined the dual advantages of UCNPs and HCR. Two harpins (H1 and H2) were first designed according to the partial complementary sequence (cDNA) of the PCB72/106. Since the aptamer specifically recognized the target, the cDNA was detached from the magnetic microspheres (MMPs). The cDNA could initiate hybridization chain reaction (HCR) and open the stems of H1 and H2. After the addition of nicking endonuclease, UCNPs were further away from the quenchers (BHQ-1). Hence, the fluorescence intensity of upconversion nanoparticals (UCNPs) could be restored via fluorescence resonance energy transfer (FRET). Therefore, the fluorescence of UCNPs was directly proportional to concentration of PCB72/106, which was the basis for the quantification of PCB72/106. PCB72/106 could be analyzed within the ranges of 0.004 to 800 ng/mL with a detection limit of 0.0035 ng/mL ( S/ N = 3). The aptasensor was also used for the detection of water and soil samples, and the average recoveries ranged from 93.4% to 109.7% and 83.2% to 118.5%, respectively. The relative standard deviations (RSDs) were all below 3.2%. The signal was first amplified through HCR and further amplified with the help of nicking endonuclease. This work also provided the opportunity to develop fluorescent aptasensors for other targets using this dual-amplification strategy.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China.,College of Food Science and Engineering , Jilin University , Changchun 130022 , People's Republic of China
| | - Shuai Yuan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Man Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science , Academy of Military Science . Tianjin 300050 , People's Republic of China
| |
Collapse
|
36
|
Khodadadi M, Malekpour A, Mehrgardi MA. Aptamer functionalized magnetic nanoparticles for effective extraction of ultratrace amounts of aflatoxin M1 prior its determination by HPLC. J Chromatogr A 2018; 1564:85-93. [DOI: 10.1016/j.chroma.2018.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/03/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
|
37
|
Jiang D, Hu T, Zheng H, Xu G, Jia Q. Aptamer-Functionalized Magnetic Conjugated Organic Framework for Selective Extraction of Traces of Hydroxylated Polychlorinated Biphenyls in Human Serum. Chemistry 2018; 24:10390-10396. [PMID: 29722078 DOI: 10.1002/chem.201800092] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/03/2023]
Abstract
A solid-phase extraction adsorbent based on an aptamer-functionalized magnetic conjugated organic framework (COF) was developed for selective extraction of traces of hydroxylated polychlorinated biphenyls. This material has advantages such as superparamagnetism of the magnetic core, high surface area and porous structure of the COF, and high specific affinity of the aptamer. In combination with HPLC-MS, the aptamer-functionalized magnetic COF was used for the capture of hydroxy-2',3',4',5,5'-pentachlorobiphenyl in human serum. The method provided a linear range of 0.01-40 ng mL-1 with a good correlation coefficient (R2 =0.9973). The limit of detection was as low as 2.1 pg mL-1 . Furthermore, the material showed good reusability and could be applied in at least ten extraction cycles with recoveries greater than 90 %.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tingting Hu
- Department of Technical Center, Jilin Entry Exit Inspection and Quarantine Bureau, Changchun, 130033, P. R. China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Jia Y, Zhao Y, Zhao M, Wang Z, Chen X, Wang M. Core–shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. J Chromatogr A 2018; 1551:21-28. [DOI: 10.1016/j.chroma.2018.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
|
39
|
Rocío-Bautista P, Pino V, Pasán J, López-Hernández I, Ayala JH, Ruiz-Pérez C, Afonso AM. Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta 2018; 179:775-783. [DOI: 10.1016/j.talanta.2017.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
40
|
Qin SB, Fan YH, Li XS, Zhang Y, Qi SH. Rapid preparation of methyltrimethoxy-modified magnetic mesoporous silica as an effective solid-phase extraction adsorbent. J Sep Sci 2018; 41:669-677. [DOI: 10.1002/jssc.201700832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
- School of Environmental Studies; China University of Geosciences; Wuhan China
| | - Yu-Han Fan
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| |
Collapse
|
41
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2'-deoxyguanosine in human urine. Anal Chim Acta 2018; 1008:48-56. [PMID: 29420943 DOI: 10.1016/j.aca.2017.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022]
Abstract
In this work, an innovative magnetic aptamer adsorbent (Fe3O4-aptamer MNPs) was synthesized for the selective extraction of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Amino-functionalized-Fe3O4 was crosslinked with 8-OHdG aptamer by glutaraldehyde and fixed into a steel stainless tube as the sorbent of magnetic solid phase extraction (MSPE). After selective extraction by the aptamer adsorbent, the adsorbed 8-OHdG was desorbed dynamically and online analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). The synthesized sorbent presented outstanding features, including specific selectivity, high enrichment capacity, stability and biocompatibility. Moreover, this proposed MSPE-HPLC-MS can achieve adsorption and desorption operation integration, greatly simplify the analysis process and reduce human errors. When compared with offline MSPE, a sensitivity enhancement of 800 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sample flow rate and sample volume, were optimized systematically. Under the optimal conditions, low limit of detection (0.01 ng mL-1, S/N = 3), limit of quantity (0.03 ng mL-1, S/N = 10) and wide linear range with a satisfactory correlation coefficient (R2 ≥ 0.9992) were obtained. And the recoveries of 8-OHdG in the urine samples varied from 82% to 116%. All these results revealed that the method is simple, rapid, selective, sensitive and automated, and it could be expected to become a potential approach for the selective determination of trace 8-OHdG in complex urinary samples.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
42
|
Che D, Cheng J, Ji Z, Zhang S, Li G, Sun Z, You J. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application In Vivo. J Nucleic Acids 2017; 2017:3712070. [PMID: 29225967 PMCID: PMC5684557 DOI: 10.1155/2017/3712070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/10/2017] [Indexed: 12/21/2022] Open
Abstract
The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents.
Collapse
|
44
|
Wang X, Ye N. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 2017; 38:3059-3078. [PMID: 28869768 DOI: 10.1002/elps.201700248] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
45
|
Huang S, Gan N, Liu H, Zhou Y, Chen Y, Cao Y. Simultaneous and specific enrichment of several amphenicol antibiotics residues in food based on novel aptamer functionalized magnetic adsorbents using HPLC-DAD. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Ghani M, Font Picó MF, Salehinia S, Palomino Cabello C, Maya F, Berlier G, Saraji M, Cerdà V, Turnes Palomino G. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. J Chromatogr A 2017; 1488:1-9. [DOI: 10.1016/j.chroma.2017.01.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
|
49
|
Wang K, He MQ, Zhai FH, He RH, Yu YL. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta 2017; 166:87-92. [PMID: 28213264 DOI: 10.1016/j.talanta.2017.01.052] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. A sandwich electrochemical biosensor was developed based on polyadenine (polydA)-aptamer modified gold electrode (GE) and polydA-aptamer functionalized gold nanoparticles/graphene oxide (AuNPs/GO) hybrid for the label-free and selective detection of breast cancer cells (MCF-7) via a differential pulse voltammetry (DPV) technique. Due to the intrinsic affinity between multiple consecutive adenines of polydA sequences and gold, polydA modified aptamer instead of thiol terminated aptamer was immobilized on the surface of GE and AuNPs/GO. The label-free MCF-7 cells could be recognized by polydA-aptamer and self-assembled onto the surface of GE. The polydA-aptamer functionalized AuNPs/GO hybrid could further bind to MCF-7 cells to form a sandwich sensing system. Characterization of the surface modified GE was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using Fe(CN)63-/4- as a redox probe. Under the optimized experimental conditions, a detection limit of 8 cellsmL-1 (3σ/slope) was obtained for MCF-7 cells by the present electrochemical biosensor, along with a linear range of 10-105 cellsmL-1. By virtue of excellent sensitivity, specificity and repeatability, the present electrochemical biosensor provides a potential application in point-of-care cancer diagnosis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng-Qi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fu-Heng Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Rong-Huan He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
50
|
Liu H, Gan N, Chen Y, Li T, Cao Y. Three dimensional M × N type aptamer-functionalized solid-phase micro extraction fibers array for selectively sorptive extraction of multiple antibiotic residues in milk. RSC Adv 2017. [DOI: 10.1039/c6ra27005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel three dimensional (3D) M × N type aptamer-functionalized solid-phase micro extraction fibers array was developed for selective enrichment of multiplex antibiotic residues from milk samples, with three chloramphenicols as models.
Collapse
Affiliation(s)
- Haibo Liu
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Yinji Chen
- Department of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Tianhua Li
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Yuting Cao
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
- China
| |
Collapse
|