1
|
Lee D, Kwon J, Choi C, Jeon J, Lee G. Quantitative analysis of phthalates using a pyrolyzer gas chromatography/mass spectrometry method. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4912. [PMID: 36916476 DOI: 10.1002/jms.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
A pyrolyzer gas chromatography/mass spectrometry (GC/MS) method eliminates toxic solvents that burden our environment and can address the crucial problem of the solvent extraction GC/MS method. The purpose of this study is to establish an efficient quantitative analysis method for 10 phthalates that are regulated by the several governments. A change of concentrations over time for phthalates and internal standards was measured to verify the feasibility of using an auto sampler that facilitates analyzing multiple samples. Both standards maintained constant concentrations over the appropriate time for analysis. A certified reference material under the auspices of the Korea Research Institute of Standards and Science was used to verify the calibration curve obtained by the pyrolyzer GC/MS method, and a deviation was considered similar to the solvent extraction GC/MS method. Then, the limit of detection and limit of quantitation values were confirmed for various consumer products. To verify the reliability of the method, a comparative test with several accredited testing institutes was conducted, and the results were within the standard deviations of the results provided by the institutes. These results indicate that the pyrolyzer GC/MS method can be used in not only screening but also in accurate quantitative analysis.
Collapse
Affiliation(s)
- Donghyo Lee
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 08096, Republic of Korea
| | - Jungmin Kwon
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 08096, Republic of Korea
| | - Choongryul Choi
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 08096, Republic of Korea
| | - Jinkyung Jeon
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 08096, Republic of Korea
| | - Gyeonghweon Lee
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 08096, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:22. [PMCID: PMC9748405 DOI: 10.1007/s44169-022-00023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 07/21/2023]
Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composition of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligible that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation of textile additives.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Qun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
3
|
Akoueson F, Chbib C, Monchy S, Paul-Pont I, Doyen P, Dehaut A, Duflos G. Identification and quantification of plastic additives using pyrolysis-GC/MS: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145073. [PMID: 33592462 DOI: 10.1016/j.scitotenv.2021.145073] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Analysis of organic plastic additives (OPAs) associated to plastic polymers is growing. The current review outlines the characteristics and the development of (multi-step) pyrolysis coupled with a gas chromatography mass spectrometer (Py-GC/MS) for the identification and semi-quantification of OPAs. Compared to traditional methods, Py-GC/MS offers advantages like suppressing extensive steps of preparation, limiting contamination due to solvents and the possibility to analyse minute particles. Its key advantage is the successive analysis of OPAs and the polymeric matrix of the same sample. Based on the studied articles, numerous methods have been described allowing identification and, in some case, semi-quantification of OPAs. There is nevertheless no gold standard method, especially given the huge diversity of OPAs and the risks of interferences with polymers or other additives, but, among other parameters, a consensus temperature seems to arise from studies. More broadly, this review also explores many aspects on the sample preparation like weight and size of particles and calibration strategies. After studying the various works, some development prospects emerge and it appears that methodological developments should focus on better characterizing the limits of the methods in order to consider which OPAs can be quantified and in which polymers this is feasible.
Collapse
Affiliation(s)
- Fleurine Akoueson
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France; Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200, Boulogne-sur-Mer, France
| | - Chaza Chbib
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Sébastien Monchy
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Ika Paul-Pont
- Univ Brest, CNRS, IRD, IFREMER, LEMAR, F-29280 Plouzané, France
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200, Boulogne-sur-Mer, France
| | - Alexandre Dehaut
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France.
| |
Collapse
|
4
|
Kudo Y, Obayashi K, Yanagisawa H, Maruyama F, Fujimaki S, Miyagawa H, Nakagawa K. Development of a screening method for phthalate esters in polymers using a quantitative database in combination with pyrolyzer/thermal desorption gas chromatography mass spectrometry. J Chromatogr A 2019; 1602:441-449. [DOI: 10.1016/j.chroma.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
|
5
|
Park YK, Han TU, Jeong J, Kim YM. Debrominated high quality oil production by the two-step catalytic pyrolysis of phenolic printed circuit boards (PPCB) using natural clays and HY. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:50-58. [PMID: 30594017 DOI: 10.1016/j.jhazmat.2018.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The two-step catalytic pyrolysis (CP) of a phenolic-printed circuit board (PPCB) over in-situ natural clays (dolomite, bentonite, and olivine) and ex-situ HY(30, SiO2/Al2O3: 30) was investigated by tandem micro reactor-gas chromatography/mass spectrometry. The non-catalytic pyrolysis (NCP) of PPCB produced oxygenated, phosphorous, and brominated compounds due to the presence of paper, tetrabromo bisphenol A (TBBA), phosphorous flame retardants, and phenol resin in the PPCB. Among the natural clays, dolomite showed the highest debromination and aromatics formation efficiency during the in-situ CP of PPCB followed by bentonite and olivine owing to the different catalyst properties. Two-step CP of PPCB over in-situ natural clays and ex-situ HY(30) achieved higher efficiency on the formation of higher quality oil (mono-phenol and aromatic hydrocarbons) with a lower Br content than the one-step CP of PPCB. Among the two-step catalysts, the combination of in-situ dolomite and ex-situ HY(30) provided the highest quality oil production due to the high acidity and sufficiently large pore size of dolomite. Two-step CP of PPCB over in-situ dolomite and ex-situ HY(30) also revealed a longer lifetime than the one-step CP of PPCB over ex-situ HY(30), not only for the formation of aromatic hydrocarbons and mono-phenols, but also for debromination.
Collapse
Affiliation(s)
- Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Tae Uk Han
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaehun Jeong
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
6
|
Yanagisawa H, Kudo Y, Nakagawa K, Miyagawa H, Maruyama F, Fujimaki S. Simultaneous Screening of Major Flame Retardants and Plasticizers in Polymer Materials Using Pyrolyzer/Thermal Desorption Gas Chromatography Mass Spectrometry (Py/TD-GC-MS). Molecules 2018; 23:molecules23040728. [PMID: 29565319 PMCID: PMC6017896 DOI: 10.3390/molecules23040728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
This study was conducted with the aim of achieving the simultaneous screening of various additives in polymer materials by utilizing a solvent-free pyrolyzer/thermal desorption gas chromatography mass spectrometry (Py/TD-GC–MS) method. As a first step to achieve this goal, simultaneous screening has been examined by selecting major substances representing plasticizers and flame retardants, such as short chain chlorinated paraffins (SCCPs), decabromodiphenyl ether (DecaBDE), hexabromocyclododecane (HBCDD), and di(2-ethylhexyl) phthalate (DEHP). A quantitative MS analysis was performed to check for the peak areas and sensitivities. Since Py/TD-GC–MS is fraught with the risk of thermal degradation of the sample, temperatures during the analytical process were finely tuned for securing reliable results. The instrumental sensitivity was confirmed by the S/N ratio on each component. The detection limits of all components were less than 50 mg/kg, which are sufficiently lower than the regulatory criteria. With regard to reproducibility, a relative standard deviation (RSD) of about 5% was confirmed by employing a spike recovery test on a polystyrene polymer solution containing mixed standard solution (ca. 1000 mg/kg). In conclusion, the results obtained in this study indicate that Py/TD-GC–MS is applicable for the screening of major flame retardants and plasticizers in real samples with sufficient reproducibility at regulatory levels.
Collapse
Affiliation(s)
- Hiroyuki Yanagisawa
- Consumer & Retail Service Division, SGS Japan Inc. YBP East Tower 12F, 134 Godo-cho, Hodogaya-ku, Yokohama 240-0005, Japan.
| | - Yukihiko Kudo
- Analytical & Measuring Instrument Division, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 640-8511, Japan.
| | - Katsuhiro Nakagawa
- Analytical & Measuring Instrument Division, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 640-8511, Japan.
| | - Haruhiko Miyagawa
- Analytical & Measuring Instrument Division, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 640-8511, Japan.
| | - Fumitaka Maruyama
- Consumer & Retail Service Division, SGS Japan Inc. YBP East Tower 12F, 134 Godo-cho, Hodogaya-ku, Yokohama 240-0005, Japan.
| | - Shigehiko Fujimaki
- Consumer & Retail Service Division, SGS Japan Inc. YBP East Tower 12F, 134 Godo-cho, Hodogaya-ku, Yokohama 240-0005, Japan.
| |
Collapse
|
7
|
Salazar-Beltrán D, Hinojosa-Reyes L, Ruiz-Ruiz E, Hernández-Ramírez A, Guzmán-Mar JL. Phthalates in Beverages and Plastic Bottles: Sample Preparation and Determination. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|