1
|
Takayanagi T, Miyake K, Seto M, Mizuguchi H, Okabe H, Matsuda N. Conjugation monitoring of gold nanoparticles with alkanedithiols by capillary zone electrophoresis. ANAL SCI 2023:10.1007/s44211-023-00299-4. [PMID: 36811184 DOI: 10.1007/s44211-023-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Alkanedithiols were used for the conjugation of gold nanoparticles (AuNP) prepared by a solution plasma process. Capillary zone electrophoresis was utilized for the monitoring of the conjugated AuNP. When 1,6-hexanedithiol (HDT) was used as a linker, a resolved peak from the AuNP was detected in the electropherogram; the resolved peak was attributed to the conjugated AuNP. The resolved peak was developed with increasing concentrations of HDT, while the peak of the AuNP decreased complementary. The resolved peak also tended to develop along with the standing time at least up to 7 weeks. The electrophoretic mobility of the conjugated AuNP was almost identical over the HDT concentrations examined, suggesting that the conjugation of the AuNP did not proceed further, such as aggregate/agglomerate formation. The conjugation monitoring was also examined with some dithiols and monothiols. Resolved peak of the conjugated AuNP was also detected with 1,2-ethanedithiol and 2-aminoethanethiol.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Graduate School of Science and Technology for Innovation, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Minamo Seto
- Faculty of Science and Technology, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, 841-0052, Japan.
| |
Collapse
|
2
|
Takayanagi T, Miyake K, Iwasaki S, Uehara D, Mizuguchi H, Okabe H, Matsuda N. Highly stable gold nanoparticles in an aqueous solution without any stabilizer prepared by a solution plasma process evaluated through capillary zone electrophoresis. ANAL SCI 2022; 38:1199-1206. [PMID: 35788911 DOI: 10.1007/s44211-022-00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Gold nanoparticles (AuNP) were prepared by a solution plasma process in the presence of H2O2, and they were dispersed in an aqueous solution without any stabilizer generally used. The dispersion stability of the AuNP in an aqueous solution was evaluated by capillary zone electrophoresis (CZE). An anionic broad peak was detected with the AuNP by CZE based on its wide variations in size and net charge. The broad peak also suggests that the AuNP were well dispersed in an aqueous solution. The dispersion stability of AuNP was evaluated from the viewpoints of long-term dispersion, salt concentration, and organic co-solvent. The anionic broad peak attributed to the dispersed AuNP was successfully detected for at least 55 weeks from the preparation with less shot signals of the aggregates. The AuNP was also well dispersed in aqueous NaCl solutions with its concentrations up to 30 mmol L-1, as well as with ethanol co-solvent up to 40%(v/v). The AuNP prepared by the solution plasma process was proved to be highly stable in an aqueous solution.
Collapse
Affiliation(s)
- Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan.
| | - Koji Miyake
- Raduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Sohta Iwasaki
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Daiki Uehara
- Department of Science and Technology, Faculty of Science and Technology, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hirotaka Okabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan
| | - Naoki Matsuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, 807-1 Shukumachi, Tosu, Saga, 841-0052, Japan.
| |
Collapse
|
3
|
Berthou M, Pallotta A, Beurton J, Chaigneau T, Athanassiou A, Marcic C, Marchioni E, Boudier A, Clarot I. Gold nanostructured membranes to concentrate low molecular weight thiols, a proof of concept study. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123244. [DOI: 10.1016/j.jchromb.2022.123244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/02/2023]
|
4
|
Abstract
There is intensive research using gold nanoparticles for biomedical purposes, which have many advantages such as ease of synthesis and high reactivity. Their possible small size (<10 nm) can lead to the crossing of biological membranes and then to problematic dissemination and storage in organs that must be controlled and evaluated. In this work, a simple isocratic HPLC method was developed and validated to quantify the gold coming from nanoparticles in different biological samples. After a first carbonization step at 900 °C, the nanoparticles were oxidized by dibroma under acidic conditions, leading to tetrachloroaurate ions that could form ion pairs when adding rhodamine B. Finally, ion pairs were extracted and rhodamine B was evaluated to quantify the corresponding gold concentration by reversed-phase HPLC with visible detection. The method was validated for different organs (liver, spleen, lungs, kidneys, or brain) and fluids (plasma and urine) from rats and mice. Lastly, the developed method was used to evaluate the content of gold in organs and fluids after intravenous (IV) injection of nanoparticles.
Collapse
|
5
|
Pallotta A, Clarot I, Beurton J, Creusot B, Chaigneau T, Tu A, Lavalle P, Boudier A. Analytical strategy for studying the formation and stability of multilayered films containing gold nanoparticles. Anal Bioanal Chem 2021; 413:1473-1483. [PMID: 33495848 DOI: 10.1007/s00216-020-03113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022]
Abstract
The design of layer-by-layer (LbL) polyelectrolyte films including nanoparticles is a growing field of innovation in a wide range of biomedical applications. Gold nanoparticles (AuNPs) are very attractive for further biomolecule coupling to induce a pharmacological effect. Nanostructured LbL films coupled with such metallic species show properties that depend on the conditions of construction, i.e. the polymer nature and dissolution buffer. Tripartite LbL films (polycation, AuNP, and polyanion) were evaluated using two different polycationic polymers (poly(allylamine hydrochloride) (PAH), poly(ethylene imine) (PEI)) and various medium conditions (salts, i.e. phosphate, Tris or Tris-NaCl buffers, and concentration). AuNP incorporation and film stability were analysed by visible spectrophotometry, capillary zone electrophoresis, a quartz crystal microbalance, and high-performance liquid chromatography. The ideal compromise between AuNP loading and film stability was obtained using PAH prepared in Tris-NaCl buffer (0.01-0.15 M). This condition allowed the formation of a LbL film that was more stable than the film with PEI and provided an AuNP quantity that was 4.8 times greater than that of the PAH-PBS-built film. In conclusion, this work presents an analytical strategy for the characterization of nanostructured multilayer films and optimization of LbL films enriched with AuNPs to design biomedical device coatings.
Collapse
Affiliation(s)
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, 54000, Nancy, France
| | - Jordan Beurton
- Université de Lorraine, CITHEFOR, 54000, Nancy, France.,Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France
| | | | | | - Annie Tu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000, Strasbourg, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000, Strasbourg, France
| | | |
Collapse
|
6
|
Adelantado C, Zougagh M, Ríos Á. Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View. Crit Rev Anal Chem 2021; 52:1094-1111. [PMID: 33427485 DOI: 10.1080/10408347.2020.1859983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An overview on the increasing role of capillary electrophoresis in characterization and direct analysis of nanomaterials is herein presented. The niche of electrophoretic approaches in nanometrology is so relevant that nonmetallic, metal, metal oxide nanoparticles, and quantum dots have been analyzed to be targeted via capillary electrophoresis with conventional detection systems or coupling arrangements aimed at increasing selectivity and sensitivity toward either pristine or conjugated nanoparticles. Moreover, parameters altering intrinsic properties of nanoparticles may be optimized to gather the desired results and identify nanomaterials according to their size, shape, or associations with binding agents. The usefulness and quickness of capillary electrophoresis for quantifying or screening ultrasmall-sized particles enables this technique to set an example for analysis of standards or previously synthesized nanostructures in research or routine laboratories. Abundant evidence of the suitability of electrophoretic approaches for characterization and direct determination of nanomaterials in actual samples has been provided in this review, together with a discussion about hyphenation with state-of-the art detectors and comparison between capillary electrophoresis with other separation approaches. This permits scientific community to be optimistic in the short term.
Collapse
Affiliation(s)
- Carlos Adelantado
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| |
Collapse
|
7
|
Řemínek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis 2020; 42:19-37. [PMID: 32901975 DOI: 10.1002/elps.202000185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis represents a promising technique in the field of pharmaceutical analysis. The presented review provides a summary of capillary electrophoretic methods suitable for routine quality control analyses of small molecule drugs published since 2015. In total, more than 80 discussed methods are sorted into three main sections according to the applied electroseparation modes (capillary zone electrophoresis, electrokinetic chromatography, and micellar, microemulsion, and liposome-electrokinetic chromatography) and further subsections according to the applied detection techniques (UV, capacitively coupled contactless conductivity detection, and mass spectrometry). Key parameters of the procedures are summarized in four concise tables. The presented applications cover analyses of active pharmaceutical ingredients and their related substances such as degradation products or enantiomeric impurities. The contribution of reported results to the current knowledge of separation science and general aspects of the practical applications of capillary electrophoretic methods are also discussed.
Collapse
Affiliation(s)
- Roman Řemínek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Baron D, Rozsypal J, Michel A, Secret E, Siaugue JM, Pluháček T, Petr J. Study of interactions between carboxylated core shell magnetic nanoparticles and polymyxin B by capillary electrophoresis with inductively coupled plasma mass spectrometry. J Chromatogr A 2020; 1609:460433. [PMID: 31427136 DOI: 10.1016/j.chroma.2019.460433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
In this work, interactions of carboxylated core shell magnetic nanoparticles with polymyxin B sulfate were studied by connecting capillary electrophoresis with inductively coupled plasma mass spectrometry. The interaction was probed by affinity mode of capillary electrophoresis with 25 mM phosphate buffer at physiological pH. 54Fe, 56Fe, 57Fe, 34S, and 12C isotopes were used to monitor the migration of an electroosmotic flow marker and the interaction of the nanoparticles with polymyxin B. The analysis of interaction data showed two distinct interaction regions, one with low polymyxin B concentration, the second with high polymyxin B concentration. These regions differed in the strength of the interaction, 1.49 × 107 M-1 and 1.60 × 104 M-1, and in the stoichiometry of 0.7 and 3.5, respectively. These differences can be explained by the decrease of electrostatic repulsion between nanoparticles caused by polymyxin B. This is also in agreement with the nanoparticles peak shapes: sharp for low polymyxin B concentrations and broad for high polymyxin B concentrations.
Collapse
Affiliation(s)
- Daniel Baron
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jan Rozsypal
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Aude Michel
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Emilie Secret
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Jan Petr
- Department of Analytical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| |
Collapse
|
9
|
Quality control of gold nanoparticles as pharmaceutical ingredients. Int J Pharm 2019; 569:118583. [DOI: 10.1016/j.ijpharm.2019.118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
10
|
Capillary electrophoresis with dual detection UV/C 4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta 2019; 1085:117-125. [PMID: 31522725 DOI: 10.1016/j.aca.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022]
Abstract
Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few μL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.
Collapse
|
11
|
Beurton J, Clarot I, Stein J, Creusot B, Marcic C, Marchioni E, Boudier A. Long-lasting and controlled antioxidant property of immobilized gold nanoparticles for intelligent packaging. Colloids Surf B Biointerfaces 2019; 176:439-448. [DOI: 10.1016/j.colsurfb.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
12
|
Wan T, Tang F, Yin Y, Zhang M, Choi MMF, Yang X. Size‐dependent electrophoretic migration and separation of water‐soluble gold nanoclusters by capillary electrophoresis. Electrophoresis 2019; 40:1345-1352. [PMID: 30680763 DOI: 10.1002/elps.201800347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/29/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Wan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Fenglin Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Yanru Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Maoxue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Martin M. F. Choi
- Department of ChemistryHong Kong Baptist University Hong Kong SAR P. R. China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| |
Collapse
|
13
|
Pallotta A, Clarot I, Sobocinski J, Fattal E, Boudier A. Nanotechnologies for Medical Devices: Potentialities and Risks. ACS APPLIED BIO MATERIALS 2018; 2:1-13. [DOI: 10.1021/acsabm.8b00612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Igor Clarot
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
| | | | - Elias Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | |
Collapse
|
14
|
Adelantado C, Algarra M, Zougagh M, Ríos Á. Use of capillary electrophoresis for characterisation of vinyl-terminated Au nanoprisms and nanooctahedra. Electrophoresis 2018; 39:1437-1442. [DOI: 10.1002/elps.201800035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlos Adelantado
- Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha; Ciudad Real Spain
- Regional Institute for Applied Science Research (IRICA); Ciudad Real Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry; Faculty of Science of University of Málaga.; Málaga Spain
- Centro de Química da Madeira Universidade da Madeira; Funchal Portugal
| | - Mohammed Zougagh
- Regional Institute for Applied Science Research (IRICA); Ciudad Real Spain
- Castilla-La Mancha Science and Technology Park; Albacete Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha; Ciudad Real Spain
- Regional Institute for Applied Science Research (IRICA); Ciudad Real Spain
| |
Collapse
|
15
|
Pallotta A, Philippe V, Boudier A, Leroy P, Clarot I. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles. Talanta 2018; 179:307-311. [DOI: 10.1016/j.talanta.2017.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
16
|
Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary Electrophoresis: Trends and Recent Advances. Anal Chem 2018; 90:1464-1481. [PMID: 29298038 PMCID: PMC5994730 DOI: 10.1021/acs.analchem.8b00015] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Iro K Ventouri
- TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
18
|
Guihen E. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography. Electrophoresis 2017; 38:2184-2192. [DOI: 10.1002/elps.201600564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth Guihen
- Graduate Entry Medical School (GEMS) and the Materials and Surface Science Institute (MSSI); Faculty of Education and Health Sciences; University of Limerick; Ireland
| |
Collapse
|