1
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
2
|
MacKeown H, Benedetti B, Scapuzzi C, Di Carro M, Magi E. A Review on Polyethersulfone Membranes in Polar Organic Chemical Integrative Samplers: Preparation, Characterization and Innovation. Crit Rev Anal Chem 2022; 54:1758-1774. [PMID: 36263980 DOI: 10.1080/10408347.2022.2131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Wang Y, Liu H, Yang X. Development of quantitative structure-property relationship model for predicting the field sampling rate (R s) of Chemcatcher passive sampler. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10415-10424. [PMID: 31939012 DOI: 10.1007/s11356-020-07616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Passive sampling technology has been considered as a promising tool to measure the concentration of environmental contaminants. With this technology, sampling rate (Rs) is an important parameter. However, as experimental methods employed to obtain the Rs value of a given compound were time-consuming, laborious, and expensive. A cost-effective method for deriving Rs is urgent. In addition, considering the great dependence of Rs value on water matrix properties, the laboratory measured Rs may not be a good alternative for field Rs. Thus, obtaining the field Rs is very necessary. In this study, a multiparameter quantitative structure-property relationship (QSPR) model was constructed for predicting the field Rs of 91 polar to semi-polar organic compounds. The determination coefficient (R2Train), leave-one-out cross-validated coefficient (Q2LOO), bootstrap coefficient (Q2BOOT), and root mean square error (RMSETrain) of the training set were 0.772, 0.706, 0.769, and 0.230, respectively, while the external validation coefficient (Q2EXT) and RMSEEXT of the validation set were 0.641 and 0.253, respectively. According to the acceptable criteria (Q2 > 0.600, R2 > 0.700), the model had good robustness, goodness-of-fit, and predictive performances. Therefore, we could use the model to fill the data gap for substances within the applicability domain on their missing Rs value.
Collapse
Affiliation(s)
- Yaqi Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huihui Liu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xianhai Yang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
4
|
Li Y, Yao C, Zha D, Yang W, Lu G. Selection of performance reference compound (PRC) for passive sampling of pharmaceutical residues in an effluent dominated river. CHEMOSPHERE 2018; 211:884-892. [PMID: 30119020 DOI: 10.1016/j.chemosphere.2018.07.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
A passive sampling device, a polar organic chemical integrative sampler (POCIS), was used to monitor 13 pharmaceuticals and 8 transformation products in upstream and downstream wastewater treatment plant effluent. A POCIS laboratory calibration study was performed to determine uptake behavior and the effect of water flow on the sampling rate. Most compounds showed a linear accumulation, and the sampling rate values ranged from 0.031 to 0.559 L/day. The developed POCIS samplers were used in field experiments in a wastewater-impacted river. Using the calculated sampling rates, the time-weighted average concentration values were measured by three different approaches: (1) laboratory calibration sampling rates (2) performance reference compound (PRC) correction sampling rates and (3) field calibration sampling rates. Nine deuterated compounds (acetaminophen-d3, antipyrine-d3, sulfamethoxazole-d4, carbamazepine-d10, diclofenac acid-d4, clofibric acid-d4, bezafibrate-d6, ibuprofen-d3 and naproxen-d3) were studied as PRCs. Antipyrine-d3 was successfully tested as a PRC for sulfamethoxazole, ibuprofen, 2-hydroxy ibuprofen, diclofenac acid, 4-hydroxydiclofenac acid, carbamazepin, carbamazepin 10,11-epoxide, sulfadiazine, 1-naphthol, antipyrine, naproxen and 4-chlorobenzoic acid. Finally, the POCIS was used to monitor target compounds in river water and measure their attenuation. For most compounds, the POCIS attenuation results were not significantly different from those of the spot samples, which demonstrated that a POCIS with a PRC correction can determine the attenuation of organic micropollutants in rivers.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| | - Daoping Zha
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| | - Wen Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, HoHai University, Nanjing, Jiangsu Province, 210098, China.
| |
Collapse
|
5
|
Mijangos L, Ziarrusta H, Prieto A, Zugazua O, Zuloaga O, Olivares M, Usobiaga A, Paschke A, Etxebarria N. Evaluation of polar organic chemical integrative and hollow fibre samplers for the determination of a wide variety of organic polar compounds in seawater. Talanta 2018; 185:469-476. [DOI: 10.1016/j.talanta.2018.03.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
6
|
Męczykowska H, Kobylis P, Stepnowski P, Caban M. Calibration of Passive Samplers for the Monitoring of Pharmaceuticals in Water-Sampling Rate Variation. Crit Rev Anal Chem 2016; 47:204-222. [DOI: 10.1080/10408347.2016.1259063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hanna Męczykowska
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Paulina Kobylis
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Magda Caban
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|