1
|
Song S, Cai L, Liu Y, Peng Z, Liu C, Jiao H, Li P, Liu Q, Yu M, Zhou T, Zhang Q, Hollert H, Zhao X, Jiang G. Development of a solubility parameter calculation-based method as a complementary tool to traditional techniques for indoor dust microplastic determination and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132189. [PMID: 37557042 DOI: 10.1016/j.jhazmat.2023.132189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Herein, a method based on solubility parameter calculation was first used to analyze microplastics in indoor dust. The limit of quantification (LOQ) reached 0.2 mg/g, and the result of reference material SRM 2585 (n = 3) was 14.8 mg/g ± 1.8 %, suggesting satisfying sensitivity and precision. Recoveries of spiking experiments were > 80 % with no obvious matrix interferences observed, except ethylene propylene diene monomer (EPDM) MPs. Further, 69 indoor dust samples were analyzed to verify the method and to assess exposure scenarios for graduate students in Tianjin, China. EPDM was identified in an indoor environment for the first time as the second most widely detected type after PET in this work. The mass-based result is complementary to the outcomes from thermogravimetric analysis-gas chromatography-mass spectrometry and laser direct infrared imaging. Significant correlations were found between total organic carbon (TOC), microplastics, and BDE-209 concentrations, indicating microplastics important contaminant vectors in indoor dust. Dormitory stays and PET contributed the most to health risks among the three exposure scenarios and detected four polymers, respectively. This work provides an approach with the potential for the standardized determination of microplastics in complex environmental matrices and reveals exposure characteristics of indoor dust microplastics.
Collapse
Affiliation(s)
- Shanjun Song
- National Institute of Metrology, Beijing 100013, China; Tianjin University of Technology, Tianjin 300384, China.
| | - Limei Cai
- National Institute of Metrology, Beijing 100013, China; Tianjin University of Technology, Tianjin 300384, China
| | - Yuhui Liu
- National Institute of Metrology, Beijing 100013, China
| | - Zijuan Peng
- National Institute of Metrology, Beijing 100013, China
| | - Chunyu Liu
- National Institute of Metrology, Beijing 100013, China; Tianjin University of Technology, Tianjin 300384, China
| | - Hui Jiao
- National Institute of Metrology, Beijing 100013, China
| | - Penghui Li
- Tianjin University of Technology, Tianjin 300384, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Miao Yu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Tao Zhou
- National Institute of Metrology, Beijing 100013, China
| | - Qinghe Zhang
- National Institute of Metrology, Beijing 100013, China
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Zuo R, Shi J, Han K, Xu D, Li Q, Zhao X, Xue Z, Xu Y, Wu Z, Wang J. Response relationship of environmental factors caused by toluene concentration during leaching of capillary zone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115366. [PMID: 35636110 DOI: 10.1016/j.jenvman.2022.115366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Due to the leaching of capillary water, the petroleum pollutants initially trapped in vadose zone may migrate to lower aquifer, thus increasing the risk of groundwater pollution. In order to explore the effect of capillary leaching on toluene-contaminated soil and the relationship between toluene concentration (TC) and environmental factors (EFs) during the leaching process, the sterilized and non-sterilized soil column experiments were designed. The EFs were used to estimate TC. The results showed that the difference between leaching and volatilization rates directly determined the changing trend of toluene concentration in capillary water. The toluene concentration in the medium always showed decreasing trend due to leaching. The indigenous microbial community structure of the non-sterilized soil column was analyzed by 16S rRNA sequencing. It was found that indigenous microorganisms could degrade toluene after 33.0 days of acclimatation. The microbial population was dominated by bacteria, among them the Ellin6055 strain and Pseudomonas, Pseudoxanthomonas, Cupriavidus, Bdellovibrio, Sphingobium, Phenylobacterium, Ramlibacter, Bradyrhizobium, Shinella genera. The Pseudomonas was the most crucial bacterial genus that degraded toluene. Indigenous microbial degradation was the fundamental reason for strong response relationship. Furthermore, we suggested a relationship of function between environmental factors (pH, DO, ORP) and time (t) for toluene attenuation: C0+ln(eAtαBγCβ)=CToluene, (α, β, γ represent the pH, DO, and ORP in leaching capillary water, respectively; A, B, and C represent undetermined coefficients), and the fitting coefficient R2 > 0.950. This relationship can only characterize the attenuation process of capillary zone leaching on toluene. However, it may still be utilized to give a theoretical foundation for understanding the dynamic of pollutant concentration change processes under specific environmental factors.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jian Shi
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Kexue Han
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Donghui Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Qiao Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Xiao Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Zhenkun Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yunxiang Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Ziyi Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
6
|
Klinčić D, Dvoršćak M, Jagić K, Mendaš G, Herceg Romanić S. Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5744-5758. [PMID: 31933075 DOI: 10.1007/s11356-020-07598-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs), present in the environment, animals, and humans. Their levels, distribution, and human exposure have been studied extensively, and over the last decade, various legal measures have been taken to prohibit or minimize their production and use due to the increasing amount of evidence of their harmful effects on human and animal health.Our aim here was to make a comprehensive and up-to-date review of the levels and distribution of PBDEs in the aquatic environment, air, and soil, in indoor dust, and in humans. To fulfill this, we searched through Web of Science for literature data reported in the last five years (2015-2019) on levels of at least six key PBDE congeners in abovementioned matrices. According to our summarized data, significant PBDE mass concentrations/fractions are still being detected in various sample types across the world, which implies that PBDE contamination is an ongoing problem. Secondary sources of PBDEs like contaminated soils and landfills, especially those with electronic and electrical waste (e-waste), represent a particular risk to the future and therefore require a special attention of scientists.
Collapse
Affiliation(s)
- Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia.
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10001, Zagreb, Croatia
| |
Collapse
|
8
|
Suo L, Huang W, Zhu Q, Ma L, Hu M. Accelerated solvent extraction coupled to high-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 11 organophosphorus flame retardants in aquatic products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5287-5293. [PMID: 29652444 DOI: 10.1002/jsfa.9067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/11/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND A new method based on accelerated solvent extraction was developed for the extraction and determination of 11 organophosphorus flame retardants by using a high-performance liquid chromatography-tandem mass spectrometry technique. RESULTS After optimization of the extraction temperature (80 °C), the extraction solvent (n-hexane), the flush volume (40%) and the static extraction time (4 min), all 11 organophosphorus flame retardants illustrated good linearities (R > 0.999). The limits of detection of the method ranged from 0.016 to 26.58 µg kg-1 in the different matrices. The recoveries were 90.4-111.2% with relative standard deviations 0.21-5.3% for the various aquatic products. CONCLUSION The proposed method was applied successfully to detect 11 organophosphorus flame retardants in aquatic products, including grass carp, ribbon fish, mud fish, common eel, shrimp and frog. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Suo
- Physical and Chemical Department, Nanchang Centre for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Weihua Huang
- Physical and Chemical Department, Nanchang Centre for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Qunying Zhu
- Physical and Chemical Department, Nanchang Centre for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Lifang Ma
- Physical and Chemical Department, Nanchang Centre for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Meihua Hu
- Physical and Chemical Department, Nanchang Centre for Disease Control and Prevention, Nanchang, Jiangxi, China
| |
Collapse
|