1
|
Durand A, Dron J, Prudent P, Wortham H, Dalquier C, Reuillard M, Austruy A. Evaluation of the atmospheric pollution by pesticides using lichens as biomonitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177286. [PMID: 39477126 DOI: 10.1016/j.scitotenv.2024.177286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The extensive use of pesticides combined with their persistence in the environment requires new methodologies to assess more effectively the population exposure to pesticides via air pollution. Biomonitoring pesticides with lichens has been poorly documented, although it represents a complementary approach to the usual active samplings, with an exposure to pesticides accumulated and integrated over several months. An optimized extraction procedure from the lichen Xanthoria parietina followed by a gas chromatographic-tandem mass spectrometric analysis is proposed here to quantify simultaneously 48 pesticides considered in France as priority active substances to monitor in the air. This method has been applied to lichen samples collected in 24 sites in southern France covering urban, industrial, and agricultural areas in order to identify potential contrasts related to anthropogenic activities. Fifteen pesticides (six fungicides, five insecticides, and four herbicides), including four active compounds currently banned by EU legislation, were detected in at least one site. Lindane, diflufenican, difenoconazole, and boscalid were the most common pesticides found in all sites. Urban sites appeared generally less contaminated compared to industrial and rural ones, but a strong heterogeneity was noticed between locations. The biomonitoring with lichens revealed unexpected contaminated areas, partly due to the use of herbicides for vegetation control in industrial and railway installations. The spatial distribution also suggests an input of pesticides by atmospheric transport at the local and regional scales.
Collapse
Affiliation(s)
| | - Julien Dron
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France
| | | | | | - Caroline Dalquier
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France; Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Mathilde Reuillard
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France
| | - Annabelle Austruy
- Institut Écocitoyen pour la Connaissance des Pollutions, Fos-sur-Mer, France
| |
Collapse
|
2
|
Uribe DM, Ortega LM, Grassi MT, Dolatto RG, Sánchez NE. Lichens as bio-monitors of polycyclic aromatic hydrocarbons: Measuring the impact of features and traffic patterns. Heliyon 2023; 9:e20087. [PMID: 37810017 PMCID: PMC10559864 DOI: 10.1016/j.heliyon.2023.e20087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The role of road characteristics, including gradient and speed control devices, in influencing emission dynamics remains to be fully elucidated. Most studies have focused on fuel consumption as an indirect indicator of sector emissions instead of directly quantifying specific pollutants, like polycyclic aromatic hydrocarbons (PAHs). This research approach is often due to the complexities involved in capturing these pollutants and their subsequent analysis. Bio-monitors, such as lichens, offer an economically viable method. Their wide distribution across various habitats enables the comparison of PAH levels in diverse environments. Against this background, The present work analyses the ability of tropical lichens to indicate the effect that traffic patterns and geometric design features of roads (traffic activity, road gradient, traffic control devices, and vehicular speed) have on the emission of PAH concentration. Results showed that PAHs in lichens strongly correlated with the road gradient (Spearman correlation, p < 0.005 with R = 0.98 ). Each 1% increase in road gradient implies a rise of 24 ngPAH/gLichen in National Road. Additionally, a trend coherent of PAH concentration with the vehicle speed profile was observed on Panamericana Road. Speed control devices were associated with higher concentrations of PAHs due to acceleration and braking actions that increment fuel consumption. Finally, the results evidenced that lichens helped determine the source of aromatics and their carcinogenic potential using the diagnostic ratio of PAHs and the carcinogenic equivalence sum, respectively.
Collapse
Affiliation(s)
- Diana Marcela Uribe
- Programa de Ingeniería Ambiental, Universidad del Cauca, carrera 2 #15N, Popayán, Cauca, Colombia
| | - Lina María Ortega
- Programa de Ingeniería Ambiental, Universidad del Cauca, carrera 2 #15N, Popayán, Cauca, Colombia
| | - Marco Tadeu Grassi
- Department of Chemistry, Universidade Federal do Paraná, Jardim das Américas, Caixa Postal 19032, CEP 81531-980, Curitiba, Brazil
| | - Rafael Garrett Dolatto
- Department of Chemistry, Universidade Federal do Paraná, Jardim das Américas, Caixa Postal 19032, CEP 81531-980, Curitiba, Brazil
| | - Nazly Efredis Sánchez
- Departamento de Ingeniería Ambiental y Sanitaria, Universidad del Cauca, Carrera 2 #15N, Popayán, Cauca, Colombia
| |
Collapse
|
3
|
Fernandéz LMO, Ante DMU, Grassi MT, Dolatto RG, Sánchez NE. Determination of polycyclic aromatic hydrocarbons extracted from lichens by gas chromatography–mass spectrometry. MethodsX 2022; 9:101836. [PMID: 36117675 PMCID: PMC9472079 DOI: 10.1016/j.mex.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022] Open
Abstract
Lichens are well-known biomonitors for semi-volatile pollutants, due to their ability to absorb and retain different chemical compounds such as Polycyclic Aromatic Hydrocarbons (PAHs), directly linked to levels in the atmosphere. Based on that, this paper proposes an analytical method capable of quantifying 16 EPA-PAHs from lichens found in an intertropical zone, as a natural alternative to typical capture methods, with the aim of monitoring atmospheres polluted by toxic compounds. An analytical protocol, including sample pre-treatment, followed by ultrasound extraction, clean-up in a chromatographic column, concentration and quantification by Gas Chromatography-Mass Spectrometry (GC-MS) using Selective Ion Monitoring has been developed. Additionally, a set of guidelines on lichen collection and sample handling is given, in order to achieve representative samples.Limits of quantification (LOQ) and detection (LOD) varied from 2.0 to 16 µg/L and 1.0 to 5.0 µg/L, respectively. Calibration curves had correlation coefficients higher than 0.99 in all cases. Validation of the method for determining PAHs concentration associated to 30 lichen samples collected along two roads, with high and low traffic volumes was carried out. The method showed good performance according to the sources of PAHs, traffic patterns and gradient in roads.
Collapse
|
4
|
PAHs presence and source apportionment in honey samples: Fingerprint identification of rural and urban contamination by means of chemometric approach. Food Chem 2022; 382:132361. [DOI: 10.1016/j.foodchem.2022.132361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
|
5
|
Horb EC, Wentworth GR, Makar PA, Liggio J, Hayden K, Boutzis EI, Beausoleil DL, Hazewinkel RO, Mahaffey AC, Sayanda D, Wyatt F, Dubé MG. A decadal synthesis of atmospheric emissions, ambient air quality, and deposition in the oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:333-360. [PMID: 34676977 PMCID: PMC9299045 DOI: 10.1002/ieam.4539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 05/20/2023]
Abstract
This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Erin C. Horb
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Gregory R. Wentworth
- Resource Stewardship DivisionAlberta Environment and ParksEdmontonAlbertaCanada
- Present address: Environmental Protection BranchEnvironment and Climate Change CanadaEdmontonAlbertaCanada
| | - Paul A. Makar
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - John Liggio
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - Katherine Hayden
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | | | | | | | - Ashley C. Mahaffey
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Diogo Sayanda
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | | |
Collapse
|
6
|
Golzadeh N, Barst BD, Baker JM, Auger JC, McKinney MA. Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116625. [PMID: 33582641 DOI: 10.1016/j.envpol.2021.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Rising global demand for energy promotes extensive mining of natural resources, such as oil sands extractions in Alberta, Canada. These extractive activities release hazardous chemicals into the environment, such as polycyclic aromatic compounds (PACs), which include the parent polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and sulfur-containing heterocyclic dibenzothiophenes (DBTs). In areas adjacent to industrial installations, Indigenous communities may be exposed to these PACs through the consumption of traditional foods. Our objective was to evaluate and compare the concentrations of total PACs (∑PAC), expressed as the sum of the 16 U.S. EPA priority PAHs (∑PAH), 49 alkylated PAHs (∑alkyl-PAH), and 7 DBTs (∑DBT) in plant and animal foods collected in 2015 by the Bigstone Cree Nation in Alberta, Canada. We analyzed 42 plant tissues, 40 animal muscles, 5 ribs, and 4 pooled liver samples. Concentrations of ∑PAC were higher in the lichen, old man's beard (Usnea spp.) (808 ± 116 ng g-1 w.w.), than in vascular plants, and were also higher in smoked moose (Alces alces) rib (461 ± 120 ng g-1 w.w.) than in all other non-smoked animal samples. Alkylated-PAHs accounted for between 63% and 95% of ∑PAC, while the concentrations of ∑PAH represented 4%-36% of ∑PAC. Contributions of ∑DBT to ∑PAC were generally lowest, ranging from <1% to 14%. While the concentrations of benzo(a)pyrene (B[a]P) and ∑PAH4 (∑benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and B[a]P) in all samples were below guideline levels for human consumption as determined by the European Commission, guideline levels for the more prevalent alkylated PAHs are not available. Given the predominance of alkylated PAHs in all food samples and the potentially elevated toxicity relative to parent PAHs of this class of PACs, it is critical to consider a broader range of PACs other than just parent PAHs in research conducted close to oil sands mining activities.
Collapse
Affiliation(s)
- Nasrin Golzadeh
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Benjamin D Barst
- Water and Environmental Research Center (WERC), University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Janelle M Baker
- Department of Anthropology, Centre for Social Sciences, Athabasca University, Athabasca, Alberta, Canada
| | - Josie C Auger
- Nukskahtowin and Faculty of Humanities and Social Sciences, Centre for World Indigenous Knowledge and Research, Athabasca University, Athabasca, Alberta, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Zhang Y, Chen YJ, Song Y, Dong C, Cai Z. Atmospheric pressure gas chromatography-tandem mass spectrometry analysis of fourteen emerging polycyclic aromatic sulfur heterocycles in PM2.5. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Ahad JME, Macdonald RW, Parrott JL, Yang Z, Zhang Y, Siddique T, Kuznetsova A, Rauert C, Galarneau E, Studabaker WB, Evans M, McMaster ME, Shang D. Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:114988. [PMID: 32679437 DOI: 10.1016/j.envpol.2020.114988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of sampling techniques and strategies are needed to analyze polycyclic aromatic compounds (PACs) and interpret their distributions in various environmental media (i.e., air, water, snow, soils, sediments, peat and biological material). In this review, we provide a summary of commonly employed sampling methods and strategies, as well as a discussion of routine and innovative approaches used to quantify and characterize PACs in frequently targeted environmental samples, with specific examples and applications in Canadian investigations. The pros and cons of different analytical techniques, including gas chromatography - flame ionization detection (GC-FID), GC low-resolution mass spectrometry (GC-LRMS), high performance liquid chromatography (HPLC) with ultraviolet, fluorescence or MS detection, GC high-resolution MS (GC-HRMS) and compound-specific stable (δ13C, δ2H) and radiocarbon (Δ14C) isotope analysis are considered. Using as an example research carried out in Canada's Athabasca oil sands region (AOSR), where alkylated polycyclic aromatic hydrocarbons and sulfur-containing dibenzothiophenes are frequently targeted, the need to move beyond the standard list of sixteen EPA priority PAHs and for adoption of an AOSR bitumen PAC reference standard are highlighted.
Collapse
Affiliation(s)
- Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| | - Robie W Macdonald
- Institute of Ocean Sciences, Department of Fisheries and Oceans, Sidney, BC, V8L 4B2, Canada
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Zeyu Yang
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Elisabeth Galarneau
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | | | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| | - Mark E McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Dayue Shang
- Pacific Environmental Science Centre, Environment and Climate Change Canada, North Vancouver, BC, V7H 1B1, Canada
| |
Collapse
|
9
|
Rauert C, Harner T, Ahad JME, Percy KE. Using tree cores to evaluate historic atmospheric concentrations and trends of polycyclic aromatic compounds in the Oil Sands region of Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139996. [PMID: 32540666 DOI: 10.1016/j.scitotenv.2020.139996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Tree cores and bark were sampled from jack pine trees at 18 sites in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada, to investigate spatial and temporal trends of polycyclic aromatic compounds (PACs). Spatial trends were investigated in the bark samples, where ΣPAC concentrations ranged from 75 to 3615 ng/g. Highest concentrations were observed from trees within 40 km of the nearest mining or upgrading facility perimeter fence, in line with previous deposition studies in the AOSR. The sampled tree cores were separated into segments representing 5 years of growth/atmospheric collection by counting tree rings. A significant increase in PAC concentrations over the lifetime of the tree was observed at sites with the highest PAC concentrations, and the average % increase in concentration from 1970 to 2015 was in line with average % growth in bitumen extraction in the AOSR. Finally, the concentrations in the tree core segments representing collection from 2010 to 2015 were converted into an atmospheric PAC concentration using previously published wood-air partition coefficients. The calculated atmospheric concentrations were within the same range as concentrations reported from the passive atmospheric sampling network in this region. The importance of site location is highlighted, with forest edge sites providing an improved comparison for atmospheric exposure and deposition. This is the first study to use tree cores to calculate an atmospheric concentration of PACs, demonstrating the applicability of this methodology for providing historic atmospheric data.
Collapse
Affiliation(s)
- Cassandra Rauert
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, Canada.
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec City, QC G1K 9A9, Canada
| | - Kevin E Percy
- Atlantic Forest Research Collaborative, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
10
|
Mukhopadhyay S, Dutta R, Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. CHEMOSPHERE 2020; 251:126441. [PMID: 32443242 DOI: 10.1016/j.chemosphere.2020.126441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern. PAHs adsorption to plant cell wall is facilitated by transpiration and plant root lipids which help PAHs transfer from roots to leaves and stalks, causing more accumulation of contaminants with the increase in lipid content. Hence, these bioaccumulators can be utilized as biomonitors for indirect assessment of ambient air pollution. Efficacy of specific plants, lichens and mosses as useful biomonitors of airborne PAHs pollution has been discussed in this review along with prevalent classical and modified extraction techniques coupled with proper analytical procedures in order to gain an insight into the assessment of atmospheric PAHs concentrations. Different modern and modified solvent extraction techniques along with conventional Soxhlet method are identified for extraction of PAHs from accumulative bioindicators and analytical methods are also developed for accurate determination of PAHs. Process parameters like choice of solvent, temperature, time of extraction, pressure and matrix characteristics are usually checked. An approach of biomonitoring of PAHs using plants, lichens and mosses has been discussed here as they usually trap the atmospheric PAHs and mineralize them.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
11
|
Davidson CJ, Foster KR, Tanna RN. Forest health effects due to atmospheric deposition: Findings from long-term forest health monitoring in the Athabasca Oil Sands Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134277. [PMID: 31689668 DOI: 10.1016/j.scitotenv.2019.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 05/05/2023]
Abstract
Oil sands developments release acidifying compounds (SO2 and NO2) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities. Sulphur, BC and trace metal concentrations in lichens increased between 2008 and 2014. Source apportionment studies suggest fugitive dust in proximity to mining is a primary source of BC, trace element and organic compound deposition, and BC deposition may be neutralizing acidifying deposition. Sulphur accumulation in soils and nitrogen effects on vegetation may indicate early stages of acidification. Deposition estimates for sites close to emissions sources exceed proposed regulatory trigger levels, suggesting a detailed assessment of acidification risk close to the emission sources is warranted. However, there is no evidence of widespread acidification as suggested by recent modeling studies, likely due to high BC deposition. FHM Program evolution should include continued integration with modeling approaches, ongoing collection and assessment of monitoring data and testing for change over time, and addition of monitoring sites to fill gaps in regional coverage.
Collapse
Affiliation(s)
| | | | - Rajiv N Tanna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Landis MS, Berryman SD, White EM, Graney JR, Edgerton ES, Studabaker WB. Use of an epiphytic lichen and a novel geostatistical approach to evaluate spatial and temporal changes in atmospheric deposition in the Athabasca Oil Sands Region, Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1005-1021. [PMID: 31539933 DOI: 10.1016/j.scitotenv.2019.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Temporal and spatial atmospheric deposition trends of elements to the boreal forest surrounding bitumen production operations in the Athabasca Oil Sands Region (AOSR), Alberta, Canada were investigated as part of a long-term lichen bioindicator study. The study focused on eight elements (sulfur, nitrogen, aluminum, calcium, iron, nickel, strontium, vanadium) that were previously identified as tracers for the major oil sand production sources. Samples of the in situ epiphytic lichen Hypogymnia physodes were collected in 2002, 2004, 2008, 2011, 2014, and 2017 within a ~150 km radius from the center of surface oil sand production operations in the AOSR. Site-specific time series analysis conducted at eight jack pine upland sites that were repeatedly sampled generally showed significant trends of increasing lichen concentrations for fugitive dust linked elements, particularly at near-field (<25 km from a major oil sands production operation) sample locations. Multiple regional scale geostatistical models were developed and evaluated to characterize broad-scale changes in atmospheric deposition based on changes in H. physodes elemental concentrations between 2008 and 2014. Empirical Bayesian kriging and cokriging lichen element concentrations with oil sands mining, bitumen upgrading, coke materials handling, and limestone quarry/crushing influence variables produced spatial interpolation estimates with the lowest validation errors. Gridded zonal mean lichen element concentrations were calculated for the two comprehensive sampling years (2008, 2014) and evaluated for spatial and temporal change. Lichen sulfur concentrations significantly increased in every grid cell within the domain with the largest increases (44-88%) in the central valley in close proximity to the major surface oil sand production operations, while a minor nitrogen concentration decrease (-20%) in a single grid cell was observed. The areal extent of fugitive dust element deposition generally increased with significantly higher deposition to lichens restricted to the outer grids of the enhanced deposition field, reflecting new and expanding surface mining activity.
Collapse
Affiliation(s)
| | | | | | - Joseph R Graney
- Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
13
|
Landis MS, Studabaker WB, Pancras JP, Graney JR, White EM, Edgerton ES. Source apportionment of ambient fine and coarse particulate matter polycyclic aromatic hydrocarbons at the Bertha Ganter-Fort McKay community site in the Oil Sands Region of Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:540-558. [PMID: 30802668 DOI: 10.1016/j.scitotenv.2019.02.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
A comprehensive filter-based particulate matter polycyclic aromatic hydrocarbon (PAH) source apportionment study was conducted at the Wood Buffalo Environmental Association Bertha Ganter-Fort McKay (BGFM) community monitoring station from 2014 to 2015 to quantify ambient concentrations and identify major sources. The BGFM station is located in close proximity to several surface oil sands production facilities and was previously found to be impacted by their air emissions. 24-hour integrated PM2.5 and PM10-2.5 samples were collected on a 1-in-3-day schedule yielding 108 complete organic/inorganic filter sets for source apportionment modeling. During the study period PM2.5 averaged 8.6 ± 11.8 μg m-3 (mean ± standard deviation), and PM10-2.5 averaged 8.5 ± 9.5 μg m-3. Wind regression analysis indicated that the oil sands production facilities were significant sources of PM2.5 mass and black carbon (BC), and that wildland fires were a significant source of the highest PM2.5 (>10 μg m-3) and BC events. A six-factor positive matrix factorization (PMF) model solution explained 95% of the measured PM2.5 and 78% of the measured ΣPAH. Five sources significantly contributed to PM2.5 including: Biomass Combustion (3.57 μg m-3; 40%); Fugitive Dust (1.86 μg m-3; 28%); Upgrader Stack Emissions (1.44 μg m-3; 21%); Petrogenic PAH (1.20 μg m-3; 18%); and Transported Aerosol (0.43 μg m-3 and 6%). However, the analysis indicated that only the pyrogenic PAH source factor significantly contributed (78%) to the measured ΣPAH. A five-factor PMF model dominated by fugitive dust sources explained 98% of PM10-2.5 mass and 86% of the ΣPAH. The predominant sources of PM10-2.5 mass were (i) Haul Road Dust (4.82 μg m-3; 53%), (ii) Mixed Fugitive Dust (2.89 μg m-3; 32%), (iii) Fugitive Oil Sand (0.88 μg m-3; 10%), Mobile Sources (0.23 μg m-3; 2%), and Organic Aerosol (0.06 μg m-3; 1%). Only the Organic Aerosol source significantly contributed (86%) to the measured ΣPAH.
Collapse
Affiliation(s)
| | | | | | - Joseph R Graney
- Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
14
|
Chibwe L, Manzano CA, Muir D, Atkinson B, Kirk JL, Marvin CH, Wang X, Teixeira C, Shang D, Harner T, De Silva AO. Deposition and Source Identification of Nitrogen Heterocyclic Polycyclic Aromatic Compounds in Snow, Sediment, and Air Samples from the Athabasca Oil Sands Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2981-2989. [PMID: 30741540 DOI: 10.1021/acs.est.8b06175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic compounds (PACs) can have multiple sources in the Athabasca Oil Sands Region (AOSR). The current study was designed to identify and explore the potential of nitrogen heterocyclic PACs (NPACs) as source indicators in snowpack, lake sediment and passive air samples from the AOSR during 2014-2015. Source samples including petroleum coke (petcoke), haul road dust, and unprocessed oil sands were also analyzed. Samples were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, and liquid chromatography-high resolution Orbitrap mass spectrometry. Over 200 NPACs were identified and classified into at least 24 isomer groups, including alkylated carbazoles, benzocarbazoles, and indenoquinolines. Levels of NPACs in environmental samples decreased with distance from the main developments and with increasing depth in lake sediments but were detected within 50 km from the major developments. The composition profiles of several NPAC isomer classes, such as dimethylcarbazoles, showed that petcoke had a distinct distribution of NPACs compared to the haul road dust and unprocessed oil sands ores and was the most similar source material to near-field environmental samples. These results suggest that petcoke is a major contributing source for the identified NPACs and that these compounds have the potential to be used as source indicators for future research in the AOSR.
Collapse
Affiliation(s)
- Leah Chibwe
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Carlos A Manzano
- Center for Environmental Science, Faculty of Science , University of Chile , Santiago 7800003 , Chile
- School of Public Health , San Diego State University , San Diego , CA 92182 , United States of America
| | - Derek Muir
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Beau Atkinson
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Christopher H Marvin
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Camilla Teixeira
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Dayue Shang
- Pacific and Yukon Laboratory for Environmental Testing , Environment & Climate Change Canada , North Vancouver , BC V7H 1B1 , Canada
| | - Tom Harner
- Air Quality Processes Research Division , Environment & Climate Change Canada , Toronto , ON M3H 5T4 , Canada
| | - Amila O De Silva
- Aquatic Contaminants Research Division , Environment & Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| |
Collapse
|
15
|
Landis MS, Studabaker WB, Patrick Pancras J, Graney JR, Puckett K, White EM, Edgerton ES. Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1241-1257. [PMID: 30841398 DOI: 10.1016/j.scitotenv.2018.11.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 05/22/2023]
Abstract
The sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) atmospheric deposition in the boreal forests surrounding bitumen production operations in the Athabasca Oil Sands Region (AOSR), Alberta, Canada were investigated as part of a 2014 passive in-situ bioindicator source apportionment study. Epiphytic lichen species Hypogymnia physodes samples (n = 127) were collected within a 150 km radius of the main surface oil sand production operations and analyzed for total sulfur, total nitrogen, forty-three elements, twenty-two PAHs, ten groups of C1-C2-alkyl PAHs and dibenzothiophenes (polycyclic aromatic compounds; PACs), five C1- and C2-alkyldibenzothiophenes, and retene. The ΣPAH + PAC in H. physodes ranged from 54 to 2778 ng g-1 with a median concentration of 317 ng g-1. Source apportionment modeling found an eight-factor solution that explained 99% of the measured ΣPAH + PAC lichen concentrations from four anthropogenic oil sands production sources (Petroleum Coke, Haul Road Dust, Stack Emissions, Raw Oil Sand), two local/regional sources (Biomass Combustion, Mobile Source), and two lichen biogeochemical factors. Petroleum Coke and Raw Oil Sand dust were identified as the major contributing sources of ΣPAH + PAC in the AOSR. These two sources accounted for 63% (43.2 μg g-1) of ΣPAH + PAC deposition to the entire study domain. Of this overall 43.2 μg g-1 contribution, approximately 90% (39.9 μg g-1) ΣPAH + PAC was deposited within 25 km of the closest oil sand production facility. Regional sources (Biomass Combustion and Mobile Sources) accounted for 19% of ΣPAH + PAC deposition to the entire study domain, of which 46% was deposited near-field to oil sand production operations. Source identification was improved over a prior lichen-based study in the AOSR through incorporation of PAH and PAC analytes in addition to inorganic analytes.
Collapse
Affiliation(s)
| | | | | | - Joseph R Graney
- Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY, USA
| | | | | | | |
Collapse
|
16
|
Ncube S, Madikizela L, Cukrowska E, Chimuka L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Ncube S, Lekoto G, Cukrowska E, Chimuka L. Development and optimisation of a novel three-way extraction technique based on a combination of Soxhlet extraction, membrane assisted solvent extraction and a molecularly imprinted polymer using sludge polycyclic aromatic hydrocarbons as model compounds. J Sep Sci 2017; 41:918-928. [DOI: 10.1002/jssc.201701216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Somandla Ncube
- Molecular Sciences Institute, School of Chemistry; University of Witwatersrand; Johannesburg South Africa
| | - Goitsemang Lekoto
- Molecular Sciences Institute, School of Chemistry; University of Witwatersrand; Johannesburg South Africa
- National Metrology Institute of South Africa; Pretoria South Africa
| | - Ewa Cukrowska
- Molecular Sciences Institute, School of Chemistry; University of Witwatersrand; Johannesburg South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry; University of Witwatersrand; Johannesburg South Africa
| |
Collapse
|
18
|
Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase. Anal Bioanal Chem 2017; 410:1511-1524. [PMID: 29238863 DOI: 10.1007/s00216-017-0795-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
Abstract
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH2) stationary phase. The retention behavior of PASH on the NH2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Collapse
Affiliation(s)
- Walter B Wilson
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8390, Gaithersburg, MD, 20899, USA.
| | - Hugh V Hayes
- Department of Chemistry, University of Central Florida, Physical Sciences Bld. 4111, Orlando, FL, 32816, USA
| | - Lane C Sander
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8390, Gaithersburg, MD, 20899, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Physical Sciences Bld. 4111, Orlando, FL, 32816, USA
| | - Stephen A Wise
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8390, Gaithersburg, MD, 20899, USA
| |
Collapse
|
19
|
Musharraf SG, Siddiqi F, Ali A, Thadhani VM. Sensitive analysis of bioactive secondary metabolites in lichen species using liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2017; 146:279-284. [DOI: 10.1016/j.jpba.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022]
|