1
|
Kongasseri A, Madhesan T, Krishna Kumar S, Pedugu Sivaraman S, Mitra S, Kancharlapalli Chinaraga P, Rao CVSB, Nagarajan S, Deivasigamani P, Mohan AM. Amide-decorated reusable C 18 silica-packed columns for the rapid, efficient and sequential separation of lanthanoids using reversed phase-high performance liquid chromatography. J Chromatogr A 2024; 1713:464509. [PMID: 37980811 DOI: 10.1016/j.chroma.2023.464509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The current work focuses on the sequential separation of trivalent lanthanides (except Pm3+) using modified C18 silica-packed supports through the reversed-phase high-performance liquid chromatography (RP-HPLC) technique. In the current research, four indigenously synthesized amphiphilic aromatic triamide derivatives, namely N1, N1, N3, N3, N5, N5-hexa(alkyl) benzene-1,3,5-tri carboxamide (alkyl = butyl, hexyl, octyl, and decyl), were employed as column modifiers. The results show that the separation of Ln3+ can be achieved systematically (< 12 min) by tuning the modifiers' functional group and hydrophobic chain and fine-tuning the column modification procedure and separation parameters. The chromatographic studies revealed that the use of 0.168 mmol of N1, N1, N3, N3,N5, N5-hexa(hexyl)benzene-1,3,5-tricarboxamide (HHBTA) coated column and 0.419 mmol of N1, N1, N3, N3, N5, N5-hexa(octyl) benzene-1,3,5-tricarboxamide (HOBTA) modified columns offered excellent separation for the lanthanoids, using 0.1 M α-hydroxyisobutyric acid (HIBA), as mobile phase. The separated lanthanoids were quantified by post-column derivatization reaction (after the separation process) using Arsenazo (III) as the post-column reagent by integrating with a UV-Visible detector fixed at 655 nm (λmax). A systematic study on the influence of various analytical features, such as the effect of the modifier's chain length and its concentration, mobile phase composition and pH, was performed and optimized for achieving the best separation protocols.
Collapse
Affiliation(s)
- Aswanidevi Kongasseri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Thirumalai Madhesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sangeetha Krishna Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sushmitha Pedugu Sivaraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Suchashrita Mitra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | | | - C V S Brahmmananda Rao
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Sivaraman Nagarajan
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Qi S, Xiong S, Xiong L, Li H, Liu B, Liu Y, Xiong K, Yan H, Lv K, Liu H, Hu S. Crystalline versus Amorphous: High-Performance Hafnium Phosphonate Framework for the Separation of Uranium and Transuranium Elements. Inorg Chem 2023. [PMID: 37413971 DOI: 10.1021/acs.inorgchem.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Metal phosphonate frameworks (MPFs) consisting of tetravalent metal ions and aryl-phosphonate ligands feature a large affinity for actinides and excellent stabilities in harsh aqueous environments. However, it remains elusive how the crystallinity of MPFs influences their performance in actinide separation. To this end, we prepared a new category of porous, ultrastable MPF with different crystallinities for uranyl and transuranium separation. The results demonstrated that crystalline MPF was generally a better adsorbent for uranyl than the amorphous counterpart and ranked as the top-performing one for uranyl and plutonium in strong acidic solutions. A plausible uranyl sequestration mechanism was unveiled by using powder X-ray diffraction in tandem with vibrational spectroscopy, thermogravimetry, and elemental analysis.
Collapse
Affiliation(s)
- Songzhu Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026 Hefei, China
| | - Shunshun Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Liangping Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Hao Li
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Boyu Liu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Yi Liu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Ke Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Heng Yan
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Kai Lv
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Hewen Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026 Hefei, China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| |
Collapse
|
3
|
Yan H, Liu Y, Zhang F, Ma K, Tang L, Liu X, Gu M, Han J, Wu F, Bu W, Yang C, Li L, Hu S. Combined separation-assay method for uranium in environmental water using a polyethylene-supported phosphonate coordination polymer membrane. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel‐like Spidroin‐based Protein Fiber. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906191] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiaolin Wang
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
5
|
Yuan Y, Yu Q, Wen J, Li C, Guo Z, Wang X, Wang N. Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogel‐like Spidroin‐based Protein Fiber. Angew Chem Int Ed Engl 2019; 58:11785-11790. [DOI: 10.1002/anie.201906191] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Qiuhan Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL) Department of Chemical & Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- College of Chemical and Environmental Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiaolin Wang
- Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621900 P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| |
Collapse
|
6
|
The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework. NANOMATERIALS 2018. [PMID: 29538348 PMCID: PMC5869657 DOI: 10.3390/nano8030166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs) to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols.
Collapse
|