1
|
Ju YR, Su CR, Chen CF, Shih CF, Gu LS. Single and mixture toxicity of benzophenone-3 and its metabolites on Daphnia magna. CHEMOSPHERE 2024; 366:143536. [PMID: 39419330 DOI: 10.1016/j.chemosphere.2024.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Benzophenone-3 (BP-3) is one of the organic ultraviolet (UV) filters widely used in personal care products, resulting in its ubiquitous occurrence in aquatic systems. This study discovered the potential risks of benzophenone-3 and its metabolites (BP-1 and BP-8) in aquatic environments. This study investigated the toxicity of three single BPs and their mixtures' effects on the survival of Daphnia magna. All three BP types were found to have toxic effects on D. magna, with median effective concentration (EC50) values of 22.55 mg/L for BP-1, 1.89 mg/L for BP-3, and 2.36 mg/L for BP-8, after 48 h of exposure. When the three BPs were binary and ternary mixtures, the EC50 values fell within 2.74-32.26 mg/L. Binary and tertiary mixtures of the three BPs indicated no strong synergistic or antagonistic effects. The mixture toxicity predictions using the classical mixture concept of concentration addition and measured toxicity data showed good predictability. The ecological risks of BPs were assessed using the maximum measured environmental concentrations of BPs collected from a river in Taiwan, divided by their respective predicted no-effect concentration (PNEC) values derived from the assessment factor (AF) method. The result showed a low ecological risk for the sum of three BPs. However, BP-3 had the highest potential risk, while BP-1 was the lowest among the three BPs. Therefore, BP-3 should pay attention to long-term environmental monitoring and management. This study provides valuable information for establishing scientifically-based water quality criteria for BPs and evaluating and managing the potential risk of BPs in the aquatic environment.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Chang-Rui Su
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Fu Shih
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Li-Siang Gu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| |
Collapse
|
2
|
Song X, Peng M, Luo Q, Huang X. Task specific microextraction column based on monolith for magnetic field-assisted in-tube solid phase microextraction of vanadium species in complex samples prior to online chromatographic analysis. Talanta 2024; 270:125528. [PMID: 38118323 DOI: 10.1016/j.talanta.2023.125528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
The dominant species of vanadium (V) are V(IV) and V(V) which exhibit different toxicity and biological effects. Thus, speciation of V(IV) and V(V) is highly essential. Efficient sample preparation is the core step in the quantification of V(IV) and V(V). In the present study, a new task specific microextraction column based on monolith mingled with Fe3O4 nanoparticles (MBMC) was in situ synthesized in capillary and utilized as the extraction phase of magnetic field-assisted in-tube solid phase microextraction (MA-IT-SPME) of V(IV) and V(V) species which were coordinated with ethylene diamine tetraacetic acid (EDTA). The prepared MBMC presented porous and superparamagnetic properties, and possessed abundant functional groups. Results revealed that the exertion of magnetic field during adsorption and eluting steps boosted the extraction efficiency of V(IV)-EDTA and V(V)-EDTA chelates from 65.1 % to 55.7 %-90.0 % and 80.1 %, respectively. Under the beneficial extraction parameters, the established MA-IT-SPME was online hyphenated with HPLC/DAD to perform speciation of trace vanadium in water and vegetable samples, the achieved limits of detection were 0.054-0.060 μg/L and 1.4-1.5 μg/kg in water and vegetable samples, respectively, and the spiked recoveries varied from 82.5 to 118 %. In addition, relevant extraction mechanism under magnetic field was explored. In comparison with existing methods, the developed MA-IT-SPME technique displays some attractive merits such as automation, good anti-interference ability, high extraction efficiency, low cost and less use of organic solvent, in the capture of V species. The established online MBMC@MA-IT-SPME-HPLC/DAD system can become a competitive approach for sensitive speciation of V(IV) and V(V) at trace levels in complex samples.
Collapse
Affiliation(s)
- Xiaochong Song
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Mingming Peng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Qing Luo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Sartore DM, Vargas Medina DA, Bocelli MD, Jordan-Sinisterra M, Santos-Neto ÁJ, Lanças FM. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J Sep Sci 2023; 46:e2300215. [PMID: 37232209 DOI: 10.1002/jssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.
Collapse
Affiliation(s)
- Douglas M Sartore
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Deyber A Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcio D Bocelli
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Marcela Jordan-Sinisterra
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Álvaro J Santos-Neto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Fernando M Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
5
|
do Nascimento DS, Volpe V, Fernandez C, Oresti M, Ashton L, Grünhut M. Confocal Raman spectroscopy assisted by chemometric tools: A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Dinmohammadpour Z, Yamini Y, Nazraz M, Shamsayei M. A new configuration for in-tube solid phase microextraction based on a thin-film coating. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Song X, Wu J, Pang J, Wu Y, Huang X. Task specific monolith for magnetic field-reinforced in-tube solid phase microextraction of mercury species in waters prior to online HPLC quantification. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125141. [PMID: 33485231 DOI: 10.1016/j.jhazmat.2021.125141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel sorbent based on task specific monolith doped with Fe3O4 was in situ fabricated in capillary and acted as the extraction medium of magnetic field-reinforced in-tube solid phase microextraction (MFR/IT-SPME) to trap and preconcentrate mercury species which were coordinated with dithizone to form chelates. Various characterization technologies evidenced that the obtained monolithic adsorbent presented porous and super paramagnetic properties, and possessed abundant functional groups. Results evidenced that the implementation of magnetic field during extraction stages enhanced the extraction efficiency of studied Hg chelates from 48.5% to 75.3% to 69.9-94.4%. Under the optimized extraction parameters, the introduced MFR/IT-SPME was online coupled to HPLC/DAD to quantify mercury species at ultra-trace levels in various water samples. Limits of detection varied from 0.0067 μg/L to 0.016 μg/L, and the RSDs for precision were below 7.5%. Additionally, related extraction mechanism was deduced and revealed multiple forces co-contributed to the enrichment. The reliability and accuracy of suggested online approach for speciation analysis of mercury was well proved by confirmatory experiments.
Collapse
Affiliation(s)
- Xiaochong Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China
| | - Jiangyi Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China
| | - Jinling Pang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China
| | - Yuanfei Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiaojia Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
8
|
Magnetism-assisted in-tube solid phase microextraction for the on-line chromium speciation in environmental water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Safari M, Yamini Y. Application of magnetic nanomaterials in magnetic in-tube solid-phase microextraction. Talanta 2021; 221:121648. [PMID: 33076165 DOI: 10.1016/j.talanta.2020.121648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Development of magnetic nanomaterials has greatly promoted the innovation of in-tube solid-phase microextraction. This review article gives an insight into recent advances in the modifications and applications of magnetic nanomaterials for in-tube solid-phase microextraction. Also, different magnetic nanomaterials which have recently been utilized as in-tube solid-phase microextraction sorbents are classified. This study shows that magnetic nanomaterials have gained significant attention owing to large specific surface area, selective absorption, and surface modification. Magnetic in-tube solid-phase microextraction has been applied for the analysis of food samples, biological, and environmental. However, for full development of magnetic in-tube SPME, effort is still needed to overcome limitations, such as mechanical stability, selectivity and low extraction efficiency. To achieve these objectives, research on magnetic in-tube SPME is mainly focused in the preparation of new extractive phases.
Collapse
Affiliation(s)
- Meysam Safari
- Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
10
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
11
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
12
|
Development of magnetism-reinforced in-tube solid phase microextraction combined with HPLC for the sensitive quantification of cobalt(II) and nickel(II) in environmental waters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Mikrochim Acta 2020; 187:541. [DOI: 10.1007/s00604-020-04527-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
|
14
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|
15
|
Liu S, Huang Y, Qian C, Xiang Z, Ouyang G. Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
17
|
Kharbouche L, Gil García MD, Lozano A, Hamaizi H, Martínez Galera M. Determination of personal care products in water using UHPLC–MS after solid phase extraction with mesoporous silica‐based MCM‐41 functionalized with cyanopropyl groups. J Sep Sci 2020; 43:2142-2153. [DOI: 10.1002/jssc.201901148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Leila Kharbouche
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Dolores Gil García
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Ana Lozano
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Hadj Hamaizi
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Martínez Galera
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| |
Collapse
|
18
|
Trujillo‐Rodríguez MJ, Pino V, Miró M. High‐throughput microscale extraction using ionic liquids and derivatives: A review. J Sep Sci 2020; 43:1890-1907. [DOI: 10.1002/jssc.202000045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Verónica Pino
- Departamento de Química (Unidad Departamental de Química Analítica)Universidad de La Laguna (ULL) Tenerife Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL) Tenerife Spain
| | - Manuel Miró
- FI‐TRACE group, Department of ChemistryUniversity of the Balearic Islands Palma Spain
| |
Collapse
|
19
|
Pang J, Song X, Huang X, Yuan D. Porous monolith-based magnetism-reinforced in-tube solid phase microextraction of sulfonylurea herbicides in water and soil samples. J Chromatogr A 2020; 1613:460672. [DOI: 10.1016/j.chroma.2019.460672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
|
20
|
Magnetism-reinforced in-tube solid phase microextraction for the online determination of trace heavy metal ions in complex samples. Anal Chim Acta 2019; 1090:82-90. [DOI: 10.1016/j.aca.2019.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
|
21
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
22
|
Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta 2019; 199:317-323. [DOI: 10.1016/j.talanta.2019.02.081] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
|
23
|
|
24
|
Li K, Zhao S, Yan Y, Zhang D, Peng M, Wang Y, Guo G, Wang X. In-tube solid-phase microextraction capillary column packed with mesoporous TiO 2 nanoparticles for phosphopeptide analysis. Electrophoresis 2019; 40:2142-2148. [PMID: 31032959 DOI: 10.1002/elps.201900055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 01/27/2023]
Abstract
In this study, an in-tube solid-phase microextraction column packed with mesoporous TiO2 nanoparticles, coupled with MALDI-TOF-MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO2 nanoparticles with high specific surface areas, prepared by a sol-gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid-phase extraction method, the TiO2 -packed column with an effective length of 1 cm exhibited excellent selectivity (α-casein/β-casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β-casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides. These performance characteristics make this system suitable for the detection of phosphorylated peptides in practical biosamples, such as nonfat milk.
Collapse
Affiliation(s)
- Ke Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Shuo Zhao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Yong Yan
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Dongtang Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Manhua Peng
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Yanan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P. R. China
| |
Collapse
|
25
|
|
26
|
Mei M, Huang X, Chen L. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Costa Queiroz ME, Donizeti de Souza I, Marchioni C. Current advances and applications of in-tube solid-phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Chen R, Zhou H, Liu M, Yan H, Qiao X. Ionic liquids-based monolithic columns: Recent advancements and their applications for high-efficiency separation and enrichment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ziemblińska-Bernart J, Nowak I, Rykowska I. Fast dispersive liquid–liquid microextraction based on magnetic retrieval of in situ formed an ionic liquid for the preconcentration and determination of benzophenone-type UV filters from environmental water samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ji X, Feng J, Wang X, Tian Y, Li C, Luo C, Sun M. Diamond nanoparticles coating for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons. J Sep Sci 2018; 41:4480-4487. [DOI: 10.1002/jssc.201800862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
31
|
Fresco-Cala B, Cárdenas S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal Chim Acta 2018; 1031:15-27. [DOI: 10.1016/j.aca.2018.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022]
|
32
|
Chisvert A, Benedé JL, Salvador A. Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques – A review. Anal Chim Acta 2018; 1034:22-38. [DOI: 10.1016/j.aca.2018.05.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
|
33
|
Maciel EVS, de Toffoli AL, Lanças FM. Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns. J Sep Sci 2018; 42:258-272. [PMID: 30289207 DOI: 10.1002/jssc.201800824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Determination of target analytes present in complex matrices requires a suitable sample preparation approach to efficiently remove the analytes of interest from a medium containing several interferers while at the same time preconcentrating them aiming to improve the output signal detection. Online multidimensional solid-phase separation techniques have been widely used for the analysis of different contaminants in complex matrices such as food, environmental, and biological samples, among others. These online techniques usually consist of two steps performed in two different columns (extraction and analytical column), the first being employed to extract the analytes of interest from the original medium and the latter to separate them from the interferers. The extraction column in multidimensional techniques presents a relevant role since their variations as building material (usually a tube), sorbent material, modes of application, and so on can significantly influence the extraction success. The main features of such columns are subject of constant research aiming improvements directly related to the performance of the separation techniques that utilize multidimensional analysis. The present review highlights the main features of extraction columns online coupled to chromatographic techniques, inclusive for in-tube solid-phase microextraction, online solid phase and turbulent flow, aiming the determination of analytes present at very low concentrations in complex matrices. It will critically describe and discuss some of the most common instrumental set up as well as comments on recent applications of these multidimensional techniques. Besides that, the authors have described some properties and enhancements of the extraction columns that are used as first dimension on these systems, such as type of column material (poly (ether ether ketone), fused silica, stainless steel, and other materials) and the way that the extractive phase is accommodated inside the tubing (filled and open tubular). Practical applications of this approach in fields such as environment, food, and bioanalysis are also presented and discussed.
Collapse
Affiliation(s)
| | - Ana Lúcia de Toffoli
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| |
Collapse
|
34
|
Wang X, Wang J, Du T, Kou H, Du X, Lu X. Determination of six benzotriazole ultraviolet filters in water and cosmetic samples by graphene sponge-based solid-phase extraction followed by high-performance liquid chromatography. Anal Bioanal Chem 2018; 410:6955-6962. [DOI: 10.1007/s00216-018-1301-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
35
|
V. Soares Maciel E, de Toffoli AL, Lanças FM. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis 2018; 39:1582-1596. [DOI: 10.1002/elps.201800009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos SP Brazil
| | | |
Collapse
|