1
|
Wu J, Wang R, Tan Y, Liu L, Chen Z, Zhang S, Lou X, Yun J. Hybrid machine learning model based predictions for properties of poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose. J Chromatogr A 2024; 1727:464996. [PMID: 38763087 DOI: 10.1016/j.chroma.2024.464996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Ruobing Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Yan Tan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Lulu Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Zhihong Chen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Songhong Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Xiaoling Lou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| |
Collapse
|
2
|
Wu H, Guang C, Zhang W, Mu W. Recent development of phenyllactic acid: physicochemical properties, biotechnological production strategies and applications. Crit Rev Biotechnol 2023; 43:293-308. [PMID: 34965820 DOI: 10.1080/07388551.2021.2010645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phenyllactic acid (PLA) is capable of inhibiting the growth of many microorganisms, showing a broad-spectrum antimicrobial property, which allows it to hold vast applications in the: food, feed, pharmaceutical, and cosmetic industries, especially in the field of food safety. Recently, the production of PLA has garnered considerable attention due to the increasing awareness of food safety from the public. Accordingly, this review mainly updates the recent development for the production of PLA through microbial fermentation and whole-cell catalysis (expression single-, double-, and triple-enzyme) strategies. Firstly, the: physicochemical properties, existing sources, and measurement methods of PLA are systematically covered. Then, the inhibition spectrum of PLA is summarized, and synchronously, the antimicrobial and anti-biofilm mechanisms of PLA on commonly pathogenic microorganisms in foods are described in detail, thereby clarifying the reason for extending the shelf life of foods. Additionally, the factors affecting the production of PLA are summarized from the biosynthesis and catabolism pathway of PLA in microorganisms, as well as external environmental parameters insights. Finally, the downstream treatment process and applications of PLA are discussed and outlined. In the future, clinical data should be supplemented with the metabolic kinetics of PLA in humans and to evaluate animal toxicology, to enable regulatory use of PLA as a food additive. A food-grade host, such as Bacillus subtilis and Lactococcus lactis, should also be developed as a cell vector expressing enzymes for PLA production from a food safety perspective.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Li T, Qin Z, Wang D, Xia X, Zhou X, Hu G. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid. World J Microbiol Biotechnol 2022; 39:36. [PMID: 36472665 DOI: 10.1007/s11274-022-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Phenyllactic acid (PLA), a natural antimicrobial substance, has many potential applications in the food, animal feed, pharmaceutical and cosmetic industries. However, its production is limited by the complex reaction steps involved in its chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, enzymatic or whole-cell catalysis was developed as an alternative method for PLA production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value PLA. Specially, the advantages and disadvantages of the using of the three kinds of substrates, which includes phenylpyruvate, phenylalanine and glucose as starting materials by natural or engineered microbes is summarized. Notably, the bio-conversion of PLA often requires the consumption of expensive coenzyme NADH. To overcome the issues of NADH regeneration, efficiently internal cofactor regeneration systems constructed by co-expressing different enzyme combinations composed of lactate dehydrogenase with others for enhancing the PLA production, as well as their possible improvements, are discussed. In particular, the construction of fusion proteins with different linkers can achieve higher PLA yield and more efficient cofactor regeneration than that of multi-enzyme co-expression. Overall, this review provides a comprehensive overview of PLA biosynthesis pathways and strategies for increasing PLA yield through biotechnology, providing future directions for the large-scale commercial production of PLA and the expansion of downstream applications.
Collapse
Affiliation(s)
- Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China
| | - Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China.
| | - Xue Xia
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Xiaojie Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Ge Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
4
|
Meruvu H. Redefining methods for augmenting lactic acid bacteria robustness and phenyllactic acid biocatalysis: Integration valorizes simplicity. Crit Rev Food Sci Nutr 2022; 64:4397-4409. [PMID: 36322699 DOI: 10.1080/10408398.2022.2141681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of phenyllactic acid (PLA) has been reported by several researchers, but so far, no mention has been made of augmented PLA production using an orchestrated assembly of simple techniques integrated to improve lactic acid bacteria (LAB) metabolism for the same. This review summarizes sequentially tailoring LAB growth and metabolism for augmented PLA catalysis through several strategies like monitoring LAB sustenance by choosing appropriate starter PLA-producing LAB strains isolated from natural environments, with desirably fastidious growth rates, properties like acidification, proteolysis, bacteriophage-resistance, aromatic/texturing-features, etc.; entrapping chosen LAB strains in novel cryogels and/or co-cultivating two/more LAB strains to improve their biotransformation potential and promote growth dependency/sustainability; adopting adaptive evolution methods designed to improve LAB strains under selection pressure inducing desired phenotypes tolerant to stress factors like heat, salt, acid, and solvent; monitoring physico-chemical LAB fermentation factors like temperature, pH, dissolved oxygen content, enzymes, and cofactors for PLA biosynthesis; and modulating purification/downstream processes to extract substantial PLA yields. This review paper serves as a comprehensive preliminary guide that can evoke a strategic experimental plan to produce industrial-scale PLA yields using simple techniques orchestrated together in the pursuit of conserving time, effort, and resources.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
5
|
Zhang W, Zhao F, Li Y, Lou X, Dai C, Lv W, Qu X, Zheng S, Chen B, Galaev IY, Yun J. Suspension and transformation performance of poly(2-hydroxyethyl methacrylate)-based anion exchange cryogel beads with immobilized Lactobacillus paracasei cells as biocatalysts towards biosynthesis of phenyllactic acid in stirred tank bioreactors. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Isolation, purification, identification, and discovery of the antibacterial mechanism of ld-phenyllactic acid produced by Lactiplantibacillus plantarum CXG9 isolated from a traditional Chinese fermented vegetable. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Preparation and characterization of semi-hydrophobic cryogels for culture of Lactobacillus strains and bioconversion towards phenyllactic acid bioproduction. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
|
9
|
The potential use of a gyroid structure to represent monolithic matrices for bioseparation purposes: Fluid dynamics and mass transfer analysis via CFD. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Analysis of flow profiles and mass transfer of monolithic chromatographic columns: the geometric influence of channels and tortuosity. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Erol K, Bolat M, Tatar D, Nigiz C, Köse DA. Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Sun HL, Chuai J, Wei H, Zhang X, Yu H. Multi-functional organic gelator derived from phenyllactic acid for phenol removal and oil recovery. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:46-53. [PMID: 30502572 DOI: 10.1016/j.jhazmat.2018.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Supramolecular gels, a fascinating class of soft materials, are of great interest for their wide applications. In this work, a series of organic gelators derived from phenyllactic acid were prepared, and their gelation properties were further investigated. It was found that the gelator 1e bearing a hydrazine moiety could congeal 17 kinds of common organic liquids (polar and non-polar) efficiently. Meanwhile, the morphological structures and dominant factors of the gel were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), concentration and temperature-dependent 1H NMR. Crucially, the gelator displayed outstanding performances in toxic phenol removal and spilled oil and petroleum products recovery. Moreover, it also displayed a satisfactory recyclability, which will greatly promote its application in practice. These impressive results will provide a novel avenue for the water treatment and the development of functional supramolecular gel materials.
Collapse
Affiliation(s)
- He-Lue Sun
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jing Chuai
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Haoqi Wei
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xin Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Haitao Yu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|