1
|
Knödler M, Frank K, Kerpen L, Buyel JF. Design, optimization, production and activity testing of recombinant immunotoxins expressed in plants and plant cells for the treatment of monocytic leukemia. Bioengineered 2023; 14:2244235. [PMID: 37598369 PMCID: PMC10444015 DOI: 10.1080/21655979.2023.2244235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/22/2023] Open
Abstract
Antibody-drug conjugates (ADCs) can improve therapeutic indices compared to plain monoclonal antibodies (mAbs). However, ADC synthesis is complex because the components are produced separately in CHO cells (mAb) and often by chemical synthesis (drug). They are individually purified, coupled, and then the ADC is purified, increasing production costs compared to regular mAbs. In contrast, it is easier to produce recombinant fusion proteins consisting of an antibody derivative, linker and proteinaceous toxin, i.e. a recombinant immunotoxin (RIT). Plants are capable of the post-translational modifications needed for functional antibodies and can also express active protein toxins such as the recombinant mistletoe lectin viscumin, which is not possible in prokaryotes and mammalian cells respectively. Here, we used Nicotiana benthamiana and N. tabacum plants as well as tobacco BY-2 cell-based plant cell packs (PCPs) to produce effective RITs targeting CD64 as required for the treatment of myelomonocytic leukemia. We compared RITs with different subcellular targeting signals, linkers, and proteinaceous toxins. The accumulation of selected candidates was improved to ~ 40 mg kg-1 wet biomass using a design of experiments approach, and corresponding proteins were isolated with a purity of ~ 80% using an optimized affinity chromatography method with an overall yield of ~ 84%. One anti-CD64 targeted viscumin-based drug candidate was characterized in terms of storage stability and cytotoxicity test in vitro using human myelomonocytic leukemia cell lines. We identified bottlenecks in the plant-based expression platform that require further improvement and assessed critical process parameters that should be considered during process development for plant-made RITs.
Collapse
Affiliation(s)
- Matthias Knödler
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Katharina Frank
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lucy Kerpen
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Vienna, Austria
| |
Collapse
|
2
|
Knödler M, Reunious PW, Buyel JF. Risk assessment and bioburden evaluation of Agrobacterium tumefaciens-mediated transient protein expression in plants using the CaMV35S promoter. BMC Biotechnol 2023; 23:14. [PMID: 37286972 DOI: 10.1186/s12896-023-00782-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Large-scale transient expression of recombinant proteins in plants is increasingly used and requires the multi-liter cultivation of Agrobacterium tumefaciens transformed with an expression vector, which is often cloned in Escherichia coli first. Depending on the promoter, unintentional activity can occur in both bacteria, which could pose a safety risk to the environment and operators if the protein is toxic. To assess the risk associated with transient expression, we first tested expression vectors containing the CaMV35S promoter known to be active in plants and bacteria, along with controls to measure the accumulation of the corresponding recombinant proteins. We found that, in both bacteria, even the stable model protein DsRed accumulated at levels near the detection limit of the sandwich ELISA (3.8 µg L-1). Higher levels were detected in short cultivations (< 12 h) but never exceeded 10 µg L-1. We determined the abundance of A. tumefaciens throughout the process, including infiltration. We detected few bacteria in the clarified extract and found none after blanching. Finally, we combined protein accumulation and bacterial abundance data with the known effects of toxic proteins to estimate critical exposures for operators. We found that unintended toxin production in bacteria is negligible. Furthermore, the intravenous uptake of multiple milliliters of fermentation broth or infiltration suspension would be required to reach acute toxicity even when handling the most toxic products (LD50 ~ 1 ng kg-1). The unintentional uptake of such quantities is unlikely and we therefore regard transient expression as safe in terms of the bacterial handling procedure.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Paul Winman Reunious
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
3
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Wu Q, Li SR, Wang YH, Wang HG, Wang ZM, Li M, Lin DQ. Effects of sodium chloride addition on immunoglobulin G partitioning and solubility in polyethylene glycol/hydroxypropyl starch aqueous two-phase system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Bernau CR, Knödler M, Emonts J, Jäpel RC, Buyel JF. The use of predictive models to develop chromatography-based purification processes. Front Bioeng Biotechnol 2022; 10:1009102. [PMID: 36312533 PMCID: PMC9605695 DOI: 10.3389/fbioe.2022.1009102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatography is the workhorse of biopharmaceutical downstream processing because it can selectively enrich a target product while removing impurities from complex feed streams. This is achieved by exploiting differences in molecular properties, such as size, charge and hydrophobicity (alone or in different combinations). Accordingly, many parameters must be tested during process development in order to maximize product purity and recovery, including resin and ligand types, conductivity, pH, gradient profiles, and the sequence of separation operations. The number of possible experimental conditions quickly becomes unmanageable. Although the range of suitable conditions can be narrowed based on experience, the time and cost of the work remain high even when using high-throughput laboratory automation. In contrast, chromatography modeling using inexpensive, parallelized computer hardware can provide expert knowledge, predicting conditions that achieve high purity and efficient recovery. The prediction of suitable conditions in silico reduces the number of empirical tests required and provides in-depth process understanding, which is recommended by regulatory authorities. In this article, we discuss the benefits and specific challenges of chromatography modeling. We describe the experimental characterization of chromatography devices and settings prior to modeling, such as the determination of column porosity. We also consider the challenges that must be overcome when models are set up and calibrated, including the cross-validation and verification of data-driven and hybrid (combined data-driven and mechanistic) models. This review will therefore support researchers intending to establish a chromatography modeling workflow in their laboratory.
Collapse
Affiliation(s)
- C. R. Bernau
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - M. Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. Emonts
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - R. C. Jäpel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Vienna, Austria
- *Correspondence: J. F. Buyel,
| |
Collapse
|
6
|
Opdensteinen P, Meyer S, Buyel JF. Nicotiana spp. for the Expression and Purification of Functional IgG3 Antibodies Directed Against the Staphylococcus aureus Alpha Toxin. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin subclass IgG1 is bound and neutralized effectively by Staphylococcus aureus protein A, allowing the bacterium to evade the host’s adaptive immune response. In contrast, the IgG3 subclass is not bound by protein A and can be used to treat S. aureus infections, including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). However, the yields of recombinant IgG3 are generally low because this subclass is prone to degradation, and recovery is hindered by the inability to use protein A as an affinity ligand for antibody purification. Here, we investigated plants (Nicotiana spp.) as an alternative to microbes and mammalian cell cultures for the production of an IgG3 antibody specific for the S. aureus alpha toxin. We targeted recombinant IgG3 to different subcellular compartments and tested different chromatography conditions to improve recovery and purification. Finally, we tested the antigen-binding capacity of the purified antibodies. The highest IgG3 levels in planta (>130 mg kg−1 wet biomass) were achieved by targeting the endoplasmic reticulum or apoplast. Although the purity of IgG3 exceeded 95% following protein G chromatography, product recovery requires further improvement. Importantly, the binding affinity of the purified antibodies was in the nanomolar range and thus comparable to previous studies using murine hybridoma cells as the production system.
Collapse
|
7
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
8
|
Opdensteinen P, Lobanov A, Buyel JF. A combined pH and temperature precipitation step facilitates the purification of tobacco-derived recombinant proteins that are sensitive to extremes of either parameter. Biotechnol J 2021; 16:e2000340. [PMID: 33247609 DOI: 10.1002/biot.202000340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/03/2020] [Indexed: 11/06/2022]
Abstract
Incubation at pH 4.0 or blanching at ∼65°C facilitates the purification of biopharmaceutical proteins from plants by precipitating most of the host cell proteins (HCPs) before chromatography. However, both methods are compatible only with pH or thermostable target proteins whereas many target proteins may irreversibly denature, e.g., at pH < 4.0. Here, we developed a combined pH/temperature treatment for clarified tobacco extracts and intact leaves. The latter were subjected to a blanching procedure, i.e., the submersion into a hot buffer. Using a design of experiments approach we identified conditions that remove ∼70% of HCPs at ∼55°C, using the thermosensitive antibody 2G12 and the pH-sensitive DsRed as model proteins. We found that pH and temperature exerted a combined effect during the precipitation of HCPs in the pH range 5.0-7.0 at 35°C-60°C. For clarified extracts, the temperature required to achieve a DsRed purity threshold of 20% total soluble protein (TSP) increased from 54°C to 63°C when the pH was increased from 6.4 to 7.3. The pH-stable antibody 2G12 was less responsive to the combined treatment, but the purity of 1% TSP was achieved at 35°C instead of 44°C when the pH was reduced from 6.3 to 5.8. When blanching intact leaves, product losses were not exacerbated at pH 4.0. Indeed, the highest DsRed purity (58% TSP) was achieved at this pH, combined with a temperature of 60°C and an incubation time of 30 min. In contrast, the highest 2G12 purity (0.7% TSP) was achieved at pH 5.1 and 40°C with an incubation time of 20 min. Our data suggest that a combined pH/temperature regime can avoid extreme values of either parameter; therefore, broadening the applicability of these simple purification techniques to other recombinant proteins.
Collapse
Affiliation(s)
| | - Aleksandr Lobanov
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
9
|
Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021; 47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Molecular farming in plants is an emerging platform for the production of pharmaceutical proteins, and host species such as tobacco are now becoming competitive with commercially established production hosts based on bacteria and mammalian cell lines. The range of recombinant therapeutic proteins produced in plants includes replacement enzymes, vaccines and monoclonal antibodies (mAbs). But plants can also be used to manufacture toxins, such as the mistletoe lectin viscumin, providing an opportunity to express active antibody-toxin fusion proteins, so-called recombinant immunotoxins (RITs). Mammalian production systems are currently used to produce antibody-drug conjugates (ADCs), which require the separate expression and purification of each component followed by a complex and hazardous coupling procedure. In contrast, RITs made in plants are expressed in a single step and could therefore reduce production and purification costs. The costs can be reduced further if subcellular compartments that accumulate large quantities of the stable protein are identified and optimal plant growth conditions are selected. In this review, we first provide an overview of the current state of RIT production in plants before discussing the three key components of RITs in detail. The specificity-defining domain (often an antibody) binds cancer cells, including solid tumors and hematological malignancies. The toxin provides the means to kill target cells. Toxins from different species with different modes of action can be used for this purpose. Finally, the linker spaces the two other components to ensure they adopt a stable, functional conformation, and may also promote toxin release inside the cell. Given the diversity of these components, we extract broad principles that can be used as recommendations for the development of effective RITs. Future research should focus on such proteins to exploit the advantages of plants as efficient production platforms for targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
10
|
Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A. Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol 2020; 61:209-216. [PMID: 32058899 DOI: 10.1016/j.copbio.2020.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Millions of people around the world suffer from heavy social and health burdens related to HIV/AIDS and its associated opportunistic infections. To reduce these burdens, preventive and therapeutic vaccines are required. Effective HIV vaccines have been under investigation for several decades using different animal models. Potential plant-made HIV vaccine candidates have also gained attention in the past few years. In addition to this, broadly neutralizing antibodies produced in plants which can target conserved viral epitopes and neutralize mutating HIV strains have been identified. Numerous epitopes of envelope glycoproteins and capsid proteins of HIV-1 are a part of HIV therapy. Here, we discuss some recent findings aiming to produce anti-HIV-1 recombinant proteins in engineered plants for AIDS prophylactics and therapeutic treatments.
Collapse
Affiliation(s)
| | | | | | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana.
| |
Collapse
|
11
|
Knödler M, Rühl C, Emonts J, Buyel JF. Seasonal Weather Changes Affect the Yield and Quality of Recombinant Proteins Produced in Transgenic Tobacco Plants in a Greenhouse Setting. FRONTIERS IN PLANT SCIENCE 2019; 10:1245. [PMID: 31649707 PMCID: PMC6791924 DOI: 10.3389/fpls.2019.01245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 05/07/2023]
Abstract
Transgenic plants have the potential to produce recombinant proteins on an agricultural scale, with yields of several tons per year. The cost-effectiveness of transgenic plants increases if simple cultivation facilities such as greenhouses can be used for production. In such a setting, we expressed a novel affinity ligand based on the fluorescent protein DsRed, which we used as a carrier for the linear epitope ELDKWA from the HIV-neutralizing antibody 2F5. The DsRed-2F5-epitope (DFE) fusion protein was produced in 12 consecutive batches of transgenic tobacco (Nicotiana tabacum) plants over the course of 2 years and was purified using a combination of blanching and immobilized metal-ion affinity chromatography (IMAC). The average purity after IMAC was 57 ± 26% (n = 24) in terms of total soluble protein, but the average yield of pure DFE (12 mg kg-1) showed substantial variation (± 97 mg kg-1, n = 24) which correlated with seasonal changes. Specifically, we found that temperature peaks (>28°C) and intense illuminance (>45 klx h-1) were associated with lower DFE yields after purification, reflecting the loss of the epitope-containing C-terminus in up to 90% of the product. Whereas the weather factors were of limited use to predict product yields of individual harvests conducted for each batch (spaced by 1 week), the average batch yields were well approximated by simple linear regression models using two independent variables for prediction (illuminance and plant age). Interestingly, accumulation levels determined by fluorescence analysis were not affected by weather conditions but positively correlated with plant age, suggesting that the product was still expressed at high levels, but the extreme conditions affected its stability, albeit still preserving the fluorophore function. The efficient production of intact recombinant proteins in plants may therefore require adequate climate control and shading in greenhouses or even cultivation in fully controlled indoor farms.
Collapse
Affiliation(s)
- Matthias Knödler
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Clemens Rühl
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Jessica Emonts
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes Felix Buyel
- Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ;
| |
Collapse
|
12
|
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:720. [PMID: 31244868 PMCID: PMC6579924 DOI: 10.3389/fpls.2019.00720] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Over the last three decades, the expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform. However, the market is still dominated by prokaryotic and mammalian expression systems, the former offering high production capacity at a low cost, and the latter favored for the production of complex biopharmaceutical products. Although plant systems are now gaining widespread acceptance as a platform for the larger-scale production of recombinant proteins, there is still resistance to commercial uptake. This partly reflects the relatively low yields achieved in plants, as well as inconsistent product quality and difficulties with larger-scale downstream processing. Furthermore, there are only a few cases in which plants have demonstrated economic advantages compared to established and approved commercial processes, so industry is reluctant to switch to plant-based production. Nevertheless, some plant-derived proteins for research or cosmetic/pharmaceutical applications have reached the market, showing that plants can excel as a competitive production platform in some niche areas. Here, we discuss the strengths of plant expression systems for specific applications, but mainly address the bottlenecks that must be overcome before plants can compete with conventional systems, enabling the future commercial utilization of plants for the production of valuable proteins.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Geleen, Netherlands
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|