1
|
Botcazon C, Ramos-Martín F, Rodríguez-Moraga N, Bergia T, Acket S, Sarazin C, Rippa S. Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies. Biophys Chem 2024; 314:107305. [PMID: 39154582 DOI: 10.1016/j.bpc.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Francisco Ramos-Martín
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Nely Rodríguez-Moraga
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Thomas Bergia
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Sébastien Acket
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Catherine Sarazin
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France.
| | - Sonia Rippa
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France.
| |
Collapse
|
2
|
Séité S, Harrison MC, Sillam-Dussès D, Lupoli R, Van Dooren TJM, Robert A, Poissonnier LA, Lemainque A, Renault D, Acket S, Andrieu M, Viscarra J, Sul HS, de Beer ZW, Bornberg-Bauer E, Vasseur-Cognet M. Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Commun Biol 2022; 5:44. [PMID: 35027667 PMCID: PMC8758687 DOI: 10.1038/s42003-021-02974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Kings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions. Anti-oxidant gene expression is downregulated, while peroxidability of membranes in queens decreases. Against expectations, we observed an upregulated gene expression in fat bodies of reproductives of several components of the IIS pathway, including an insulin-like peptide, Ilp9. This pattern does not lead to deleterious fat storage in physogastric queens, while simple sugars dominate in their hemolymph and large amounts of resources are allocated towards oogenesis. Our findings support the notion that all processes causing aging need to be addressed simultaneously in order to prevent it.
Collapse
Affiliation(s)
- Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Roland Lupoli
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Tom J M Van Dooren
- UMR UPMC 113, IRD 242, UPEC, CNRS 7618, INRA 1392, PARIS 7 113, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alain Robert
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Laure-Anne Poissonnier
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Arnaud Lemainque
- Genoscope, François-Jacob Institute of Biology, Alternative Energies and Atomic Energy Commission, University of Paris-Saclay, Evry, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystems, biodiversity, evolution) - UMR, 6553, Rennes, France
- University Institute of France, Paris, France
| | - Sébastien Acket
- University of Technology of Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Royallieu research Center, Compiègne, France
| | - Muriel Andrieu
- Cochin Institute, UMR INSERM U1016, CNRS 8104, University of Paris Descartes, CYBIO Platform, Paris, France
| | - José Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France.
- University of Paris-Est, Créteil, France.
- INSERM, Paris, France.
| |
Collapse
|
3
|
Aderiye BI, Iteke UN, Akinyeye RO, Oluwole OA. Monitoring degradation of restaurant wastewater by Lysinibacillus sphaericus C3-41. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1080/25765299.2021.1969741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- B. I. Aderiye
- Department of Microbiology, Ekiti State University, Ado-Ekiti, Nigeria
| | - U. N. Iteke
- Department of Microbiology, Ekiti State University, Ado-Ekiti, Nigeria
| | - R. O. Akinyeye
- Department of Applied Chemistry, Ekiti State University, Ado-Ekiti, Nigeria
| | - O. A. Oluwole
- Department of Microbiology, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
5
|
Liu XM, Zhang Y, Zhou Y, Li GH, Zeng BQ, Zhang JW, Feng XS. Progress in Pretreatment and Analysis of Fatty Acids in Foods: An Update since 2012. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2019.1673776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Min Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Qing Zeng
- Department of Pharmacy, The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Jian-Wei Zhang
- Department of Abdominal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Blitzblau HG, Consiglio AL, Teixeira P, Crabtree DV, Chen S, Konzock O, Chifamba G, Su A, Kamineni A, MacEwen K, Hamilton M, Tsakraklides V, Nielsen J, Siewers V, Shaw AJ. Production of 10-methyl branched fatty acids in yeast. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:12. [PMID: 33413611 PMCID: PMC7791843 DOI: 10.1186/s13068-020-01863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite the environmental value of biobased lubricants, they account for less than 2% of global lubricant use due to poor thermo-oxidative stability arising from the presence of unsaturated double bonds. Methyl branched fatty acids (BFAs), particularly those with branching near the acyl-chain mid-point, are a high-performance alternative to existing vegetable oils because of their low melting temperature and full saturation. RESULTS We cloned and characterized two pathways to produce 10-methyl BFAs isolated from actinomycetes and γ-proteobacteria. In the two-step bfa pathway of actinomycetes, BfaB methylates Δ9 unsaturated fatty acids to form 10-methylene BFAs, and subsequently, BfaA reduces the double bond to produce a fully saturated 10-methyl branched fatty acid. A BfaA-B fusion enzyme increased the conversion efficiency of 10-methyl BFAs. The ten-methyl palmitate production (tmp) pathway of γ-proteobacteria produces a 10-methylene intermediate, but the TmpA putative reductase was not active in E. coli or yeast. Comparison of BfaB and TmpB activities revealed a range of substrate specificities from C14-C20 fatty acids unsaturated at the Δ9, Δ10 or Δ11 position. We demonstrated efficient production of 10-methylene and 10-methyl BFAs in S. cerevisiae by secretion of free fatty acids and in Y. lipolytica as triacylglycerides, which accumulated to levels more than 35% of total cellular fatty acids. CONCLUSIONS We report here the characterization of a set of enzymes that can produce position-specific methylene and methyl branched fatty acids. Yeast expression of bfa enzymes can provide a platform for the large-scale production of branched fatty acids suitable for industrial and consumer applications.
Collapse
Affiliation(s)
- Hannah G Blitzblau
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA.
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA.
| | - Andrew L Consiglio
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Paulo Teixeira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | | | - Shuyan Chen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Oliver Konzock
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Gamuchirai Chifamba
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Austin Su
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
| | - Annapurna Kamineni
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Kyle MacEwen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Maureen Hamilton
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Vasiliki Tsakraklides
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Joe Shaw
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Manus Biosynthesis, 1030 Massachusetts Ave. #300, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Imatoukene N, Back A, Nonus M, Thomasset B, Rossignol T, Nicaud JM. Fermentation process for producing CFAs using Yarrowia lipolytica. J Ind Microbiol Biotechnol 2020; 47:403-412. [PMID: 32372295 DOI: 10.1007/s10295-020-02276-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Past research has sought to improve the production of cyclopropane fatty acids by the oleaginous yeast Yarrowia lipolytica by heterologously expressing the E. coli fatty acid synthase gene and improving cultivation processes. Cyclopropane fatty acids display properties that hold promise for biofuel applications. The E. coli fatty acid synthase gene was introduced into several genetic backgrounds of the yeast Y. lipolytica to optimize lipid synthesis; the mean cyclopropane fatty acid productivity was 43 mg L-1 h-1 on glucose, and the production rate reached its maximum (3.06 g L-1) after 72 h of cultivation in a bioreactor. The best strain (JMY6851) overexpressed simultaneously the E. coli cyclopropane fatty acid synthase gene under a hybrid promoter (hp8d) and Y. lipolytica LRO1 gene. In fed-batch process using crude glycerol as carbon source, JMY6851 strain displayed high lipid accumulation (78% of dry cell weight) and high biomass production (56 g L-1). After 165 h of cultivation, cyclopropane fatty acids represented 22% of the lipids produced; cyclopropane fatty acid productivity (103.3 mg L-1 h-1) was maximal at 72.5 h of cultivation.
Collapse
Affiliation(s)
- Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Centre Européen de Biotechnologie Et de Bioéconomie, Agro-Biotechnologies Industrielles, Rue des Rouges Terres, 51110, Pomacle, France.
| | - Alexandre Back
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| |
Collapse
|
9
|
Merlier F, Octave S, Tse Sum Bui B, Thomasset B. Evaluation of performance and validity limits of gas chromatography electron ionisation with Orbitrap detection for fatty acid methyl ester analyses. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019:e8609. [PMID: 31677298 DOI: 10.1002/rcm.8609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE While the GC-Orbitrap, marketed in 2015, represents a technological breakthrough in terms of sensitivity, resolution and mass stability, many studies have reported ion ratio modification in mass spectra using the standard 70 eV electron ionisation. METHODS We studied the influence of the acquisition and sample parameters leading to these modifications on fatty acid methyl esters (FAMEs). RESULTS FAMEs showed that these variations in relative intensities of ions were related to the acquisition parameters such as the mass range and the offset values of the C-TRAP, but also directly related to the column concentration of the sample, and especially that it was molecule-dependent. Advantageously, it is possible to use this feature to promote the molecular ions of FAMEs sometimes not present in a spectrum under electron ionisation at 70 eV. CONCLUSIONS The 70 eV electron ionisation mass spectra from the GC-Orbitrap were clearly molecule-dependent and could be due to metastable ions during storage states in the C-TRAP.
Collapse
Affiliation(s)
- Franck Merlier
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203, Compiègne Cedex, France
| | - Stéphane Octave
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203, Compiègne Cedex, France
| | - Bernadette Tse Sum Bui
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203, Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire (GEC), UMR-CNRS 7025, CS 60319, 60203, Compiègne Cedex, France
| |
Collapse
|
10
|
Czerwiec Q, Idrissitaghki A, Imatoukene N, Nonus M, Thomasset B, Nicaud JM, Rossignol T. Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast 2019; 36:143-151. [PMID: 30677185 DOI: 10.1002/yea.3379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 11/11/2022] Open
Abstract
Cyclopropane fatty acids, which can be simply converted to methylated fatty acids, are good unusual fatty acid candidates for long-term resistance to oxidization and low-temperature fluidity useful for oleochemistry and biofuels. Cyclopropane fatty acids are present in low amounts in plants or bacteria. In order to develop a process for large-scale biolipid production, we expressed 10 cyclopropane fatty acid synthases from various organisms in the oleaginous yeast Yarrowia lipolytica, a model yeast for lipid metabolism and naturally capable of producing large amounts of lipids. The Escherichia coli cyclopropane fatty acid synthase expression in Y. lipolytica allows the production of two classes of cyclopropane fatty acids, a C17:0 cyclopropanated form and a C19:0 cyclopropanated form, whereas others produce only the C17:0 form. Expression optimization and fed-batch fermentation set-up enable us to reach a specific productivity of 0.032 g·L-1 ·hr-1 with a genetically modified strain containing cyclopropane fatty acid up to 45% of the total lipid content corresponding to a titre of 2.3 ± 0.2 g/L and a yield of 56.2 ± 4.4 mg/g.
Collapse
Affiliation(s)
- Quentin Czerwiec
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Abdelghani Idrissitaghki
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), Compiègne Cedex, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|