1
|
He M, Ditto JC, Gardner L, Machesky J, Hass-Mitchell TN, Chen C, Khare P, Sahin B, Fortner JD, Plata DL, Drollette BD, Hayden KL, Wentzell JJB, Mittermeier RL, Leithead A, Lee P, Darlington A, Wren SN, Zhang J, Wolde M, Moussa SG, Li SM, Liggio J, Gentner DR. Total organic carbon measurements reveal major gaps in petrochemical emissions reporting. Science 2024; 383:426-432. [PMID: 38271520 DOI: 10.1126/science.adj6233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry-reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.
Collapse
Affiliation(s)
- Megan He
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jenna C Ditto
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Lexie Gardner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jo Machesky
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Tori N Hass-Mitchell
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Christina Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Peeyush Khare
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Bugra Sahin
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Desiree L Plata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Brian D Drollette
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Katherine L Hayden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jeremy J B Wentzell
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Richard L Mittermeier
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Amy Leithead
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Patrick Lee
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Andrea Darlington
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Sumi N Wren
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | | | - Samar G Moussa
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Shao-Meng Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - John Liggio
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Murphy BN, Sonntag D, Seltzer KM, Pye HOT, Allen C, Murray E, Toro C, Gentner DR, Huang C, Jathar S, Li L, May AA, Robinson AL. Reactive organic carbon air emissions from mobile sources in the United States. ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:13469-13483. [PMID: 38516559 PMCID: PMC10953806 DOI: 10.5194/acp-23-13469-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) emitted to the atmosphere, especially in urban environments of the United States. We update existing methods for calculating mobile source organic particle and vapor emissions in the United States with over a decade of laboratory data that parameterize the volatility and organic aerosol (OA) potential of emissions from on-road vehicles, nonroad engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from Teflon filters combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility distribution of ROC emissions. This new approach consists of source-specific filter artifact corrections and state-of-the-science speciation including explicit intermediate-volatility organic compounds (IVOCs), yielding the first bottom-up volatility-resolved inventory of US mobile source emissions. Using the Community Multiscale Air Quality model, we estimate mobile sources account for 20 %-25 % of the IVOC concentrations and 4.4 %-21.4 % of ambient OA. The updated emissions and air quality model reduce biases in predicting fine-particle organic carbon in winter, spring, and autumn throughout the United States (4.3 %-11.3 % reduction in normalized bias). We identify key uncertain parameters that align with current state-of-the-art research measurement challenges.
Collapse
Affiliation(s)
- Benjamin N. Murphy
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Darrell Sonntag
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Karl M. Seltzer
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Havala O. T. Pye
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Christine Allen
- General Dynamics Information Technology, 79 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Evan Murray
- Office of Transportation and Air Quality, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, United States
| | - Claudia Toro
- Office of Transportation and Air Quality, U.S. Environmental Protection Agency, Ann Arbor, MI 48105, United States
| | - Drew R. Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shantanu Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Li Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
| | - Andrew A. May
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Allen L. Robinson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213, United States
| |
Collapse
|
3
|
Sheu R, Fortenberry CF, Walker MJ, Eftekhari A, Stönner C, Bakker A, Peccia J, Williams J, Morrison GC, Williams BJ, Gentner DR. Evaluating Indoor Air Chemical Diversity, Indoor-to-Outdoor Emissions, and Surface Reservoirs Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10255-10267. [PMID: 34270218 PMCID: PMC8461992 DOI: 10.1021/acs.est.1c01337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h-1, doubling with ventilation. While the largest single-compound emissions observed were furfural (61-275 mg h-1) and acetic acid, observations spanned a wide range of individual volatile chemical products (e.g., terpenoids, glycol ethers, phthalates, other oxygenates), highlighting the abundance of long-lived reservoirs resulting from prior indoor use or materials, and their gradual transport outdoors.
Collapse
Affiliation(s)
- Roger Sheu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Claire F Fortenberry
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael J Walker
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
| | - Christof Stönner
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Alexa Bakker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
| | - Brent J Williams
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Lu X, Weiner E, Smiley E, Widdowson M, Isaacman-VanWertz G. Detailed chemical characterization of the composition and variability of soil gas at remediated residential heating oil discharges. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125372. [PMID: 33930950 DOI: 10.1016/j.jhazmat.2021.125372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Underground storage tanks containing petroleum or other hazardous substances are used widely for residential storage of home heating oil. Spills and leaks of fuel from these tanks are common, and resulting subsurface petroleum vapors may pose health risks. However, understanding of this risk is limited by a lack of observational data on the chemical composition of vapors from discharged fuel. We present here the composition of soil gas sampled at 66 remediated residential sites of underground heating oil discharges throughout Virginia using a newly developed data analysis technique that allows characterization of hydrocarbons by carbon number and degree of unsaturation. Measured concentrations of total petroleum hydrocarbons exceeded 100,000 μg/m3 at 12 sites, but its composition varied widely between sites. Concentrations of hydrocarbons from chemical classes differing by more than a few carbon numbers or degrees of unsaturation are found to be poorly correlated. Furthermore, differences in composition are poorly described by metrics expected to indicate subsurface weathering (e.g., discharge year, or ratio of n-heptadecane to pristane). These results suggest that the composition and magnitude of residual contamination at remediated subsurface discharges is driven by rarely documented spill characteristics (e.g., age and composition of source material, discharge rate, etc.).
Collapse
Affiliation(s)
- Xin Lu
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061-0105, United States
| | - Ellen Weiner
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061-0105, United States
| | - Elizabeth Smiley
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061-0105, United States
| | - Mark Widdowson
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061-0105, United States
| | - Gabriel Isaacman-VanWertz
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061-0105, United States.
| |
Collapse
|
5
|
Niu Y, Liu J, Yang R, Zhang J, Shao B. Atmospheric pressure chemical ionization source as an advantageous technique for gas chromatography-tandem mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Khare P, Machesky J, Soto R, He M, Presto AA, Gentner DR. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. SCIENCE ADVANCES 2020; 6:6/36/eabb9785. [PMID: 32917599 PMCID: PMC7467703 DOI: 10.1126/sciadv.abb9785] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 05/14/2023]
Abstract
Asphalt-based materials are abundant and a major nontraditional source of reactive organic compounds in urban areas, but their emissions are essentially absent from inventories. At typical temperature and solar conditions simulating different life cycle stages (i.e., storage, paving, and use), common road and roofing asphalts produced complex mixtures of organic compounds, including hazardous pollutants. Chemically speciated emission factors using high-resolution mass spectrometry reveal considerable oxygen and reduced sulfur content and the predominance of aromatic (~30%) and intermediate/semivolatile organic compounds (~85%), which together produce high overall secondary organic aerosol (SOA) yields. Emissions rose markedly with moderate solar exposure (e.g., 300% for road asphalt) with greater SOA yields and sustained SOA production. On urban scales, annual estimates of asphalt-related SOA precursor emissions exceed those from motor vehicles and substantially increase existing estimates from noncombustion sources. Yet, their emissions and impacts will be concentrated during the hottest, sunniest periods with greater photochemical activity and SOA production.
Collapse
Affiliation(s)
- Peeyush Khare
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Jo Machesky
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Solutions for Energy, Air, Climate and Health (SEARCH), School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | - Ricardo Soto
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Megan He
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
- Solutions for Energy, Air, Climate and Health (SEARCH), School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
7
|
Drollette BD, Gentner DR, Plata DL. Waste Containment Ponds Are a Major Source of Secondary Organic Aerosol Precursors from Oil Sands Operations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9872-9881. [PMID: 32806916 DOI: 10.1021/acs.est.0c01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface mining and bitumen extraction of oil sands (OS) generates over one million barrels of heavy oil each day in the Alberta Oil Sands Region of Canada. Recent observations suggest that emissions from OS development contribute to secondary organic aerosol (SOA) formation, but the chemical composition, mass fluxes, and sources of those emissions are poorly delineated. Here, we simulated OS extraction and used comprehensive two-dimensional gas chromatography to quantify and characterize direct air emissions, bitumen froth, residual wastewater, and tailings components, ultimately enabling fate modeling of over 1500 chromatographic features simultaneously. During the non-ice cover season, tailings ponds emissions contributed 15 000-72 000 metric tonnes of hydrocarbon SOA precursors, translating to 3000-13 000 tonnes of SOA, whereas direct emissions during the extraction process itself were notably smaller (960 ± 500 tonnes SOA yr-1). These results suggest that tailings pond waste management practices should be targeted to reduce environmental emissions.
Collapse
Affiliation(s)
- Brian D Drollette
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Exponent, Incorporated, Maynard, Massachusetts 01754, United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Isaacman-VanWertz G, Lu X, Weiner E, Smiley E, Widdowson M. Characterization of Hydrocarbon Groups in Complex Mixtures Using Gas Chromatography with Unit-Mass Resolution Electron Ionization Mass Spectrometry. Anal Chem 2020; 92:12481-12488. [DOI: 10.1021/acs.analchem.0c02308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gabriel Isaacman-VanWertz
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061-0105, United States
| | - Xin Lu
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061-0105, United States
| | - Ellen Weiner
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061-0105, United States
| | - Elizabeth Smiley
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061-0105, United States
| | - Mark Widdowson
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061-0105, United States
| |
Collapse
|
9
|
Gallego E, Folch J, Teixidor P, Roca FJ, Perales JF. Outdoor air monitoring: Performance evaluation of a gas sensor to assess episodic nuisance/odorous events using active multi-sorbent bed tube sampling coupled to TD-GC/MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133752. [PMID: 31401501 DOI: 10.1016/j.scitotenv.2019.133752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In order to evaluate the performance of a commercially available metal oxide semiconductor gas sensor (TGS 2602, Figaro Engineering Inc.) for activating a monitoring system when a nuisance/odorous pollution episode of volatile organic compounds (VOCs) occur, a widely used active sampling methodology based on multi-sorbent bed tubes (Carbotrap, Carbopack X and Carboxen 569) and analysis through automatic thermal desorption-gas chromatography/mass spectrometry was used. Daily 24 h samples of multi-sorbent bed tubes were taken over a period of 14 days using an air collector pump sampler specially designed in the LCMA-UPC laboratory. Simultaneously, daily episodic samples were taken according to the activation of another LCMA-UPC sampler by the metal oxide semiconductor gas sensor. Sampling was done throughout January-February 2019 at El Morell (Tarragona, Spain), near the petrochemical area. All episode samples present higher concentrations of VOCs than 24 h samples, with an average ratio of 3.5 times for Total VOCs. VOC familial distributions present very similar values in 24 h and episode samples (r2 = 0.7466), correlating significatively (F-Snedecor, p < 0.05). A higher level of VOCs in the atmosphere in general, not derived from a specific compound or a VOC/s family/ies, seems to be the trigger of the activation of the sampler by the sensor. On the other hand, no significant correlations are observed between alcohols concentrations and relative humidity (F-Snedecor, p < 0.05). Additionally, Total VOCs concentrations in episode samples are in agreement with higher percentages of NE-SSE wind directions, coming from the petrochemical complex. Hence, these aspects validate the use of the evaluated sensor for its application for the activation of samplers in air quality evaluations when episodic events occur, an interesting and innovative technique. Thus, this study is an important contribution to the understanding of the performance of gas sensors and proposes an expansion of their field of use.
Collapse
Affiliation(s)
- Eva Gallego
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain.
| | - Jaume Folch
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| | - Pilar Teixidor
- Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Lluís Solé Sabarís 1-3, E 08034 Barcelona, Spain.
| | - Francisco Javier Roca
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| | - José Francisco Perales
- Laboratori del Centre de Medi Ambient, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya (LCMA-UPC), Avda. Diagonal, 647, E 08028 Barcelona, Spain
| |
Collapse
|