1
|
Steimel KG, Hwang R, Dinh D, Donnell MT, More S, Fung E. Evaluation of chemicals leached from PET and recycled PET containers into beverages. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:251-260. [PMID: 36521108 DOI: 10.1515/reveh-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The use of recycled polyethylene terephthalate (rPET) containers, a recent shift in the beverage industry, poses new potential human health concerns including contamination from the original container; use of additives, detergents, and catalysts during recycling; and improper recycling practices. The purpose of this analysis was to evaluate available data regarding: (1) chemicals leached from PET and rPET in bottle form; (2) concentration of these chemicals; and (3) trends between rPET percent and concentration of chemicals leached. This analysis identified 211 scientific articles related to recycled plastic and leachables. Three articles met the inclusion criteria: (1) plastic was in bottle form; (2) plastic was made of PET or rPET; and (3) the study analyzed both PET and rPET using the same methods. This evaluation demonstrated that only nine compounds - benzene, styrene, acetaldehyde, 2-methyl-1,3-dioxolane, furan, bisphenol A (BPA), 2-buta-none, acetone, and limonene - have been studied. Notably, the leachable concentration of benzene, styrene, and BPA increased as the percent of recycled content increased from 0 to 100%. However, 2-methyl-1,3-dioxolane and furan implied a reverse trend, where the leachable concentration decreased as the percent of recycled content increased from 0 to 100%. The concentrations of 2-butanone, acetone, and limonene did not follow any suggested trend. Evidently, recycling PET can lead to changes in the leachables profile. This analysis further identified key areas of research, including testing a variety of liquid types, that need to be addressed to adequately conduct a human health risk assessment.
Collapse
Affiliation(s)
| | - Ruth Hwang
- Stantec (ChemRisk), San Francisco, CA, USA
| | - Dan Dinh
- Stantec (ChemRisk), Brooklyn, NY, USA
| | | | | | | |
Collapse
|
2
|
Undas AK, Groenen M, Peters RJB, van Leeuwen SPJ. Safety of recycled plastics and textiles: Review on the detection, identification and safety assessment of contaminants. CHEMOSPHERE 2023; 312:137175. [PMID: 36370761 DOI: 10.1016/j.chemosphere.2022.137175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.
Collapse
Affiliation(s)
- Anna K Undas
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands
| | - Marc Groenen
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands.
| | - Ruud J B Peters
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB, Wageningen, Netherlands
| | | |
Collapse
|
3
|
Mao H, Hsu T, Chen C, Huang K, Rwei S. Synthesis and characteristics of poly(ethylene terephthalate) with
EO‐PO‐EO
triblock copolymers: A thermal and mechanical property study. J Appl Polym Sci 2022. [DOI: 10.1002/app.51605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hsu‐I Mao
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Te‐Sheng Hsu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Chin‐Wen Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Kuan‐Wei Huang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Syang‐Peng Rwei
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
4
|
Toroslu AG. An Experimental Study on the Properties of Recycled High-Density Polyethylene. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3
. The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.
Collapse
|
5
|
Ubeda S, Aznar M, Nerín C, Kabir A. Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 2021; 233:122603. [PMID: 34215091 DOI: 10.1016/j.talanta.2021.122603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Oligomers are potential migrants from polymers or biopolymers intended to food packaging and they have to be under control. In order to comply with European regulation 10/2011, their concentration in migration must be below 0.01 μg g-1. In this work, fabric phase sorptive extraction (FPSE) was explored as an effective method for extraction and pre-concentration of oligomers migrated from a blend PLA-polyester material. Both food simulant B (3% acetic acid) and juice, as real food, were used for migration experiments. The parameters of FPSE were optimized and the analysis was done by UHPLC-QTOF and UHPLC-QqQ. A total of 21 oligomers were identified, 9 of them coming from PLA and 12 oligomers from the polyester part. These oligomers were formed by adipic acid (AA), phthalic acid (PA) and/or butanediol (BD), ten were cyclic and 11 were linear molecules. Using the optimized FPSE procedure in 3% acetic acid as food simulant, it was possible to identify 3 new compounds that were not detected by direct injection of the simulant into UHPLC-QTOF. In addition, 2 extra compounds, cyclic PA-BD4-AA3 and cyclic PA2-BD3-AA, were only identified in juice samples after FPSE extraction. Besides, in order to quantify the compounds identified, an isolation procedure for PLA oligomers was carried out. Two oligomers were isolated: cyclic (LA)6 and linear HO-(LA)4-H, both with a purity higher than 90% (LA: lactic acid). The highest concentration value was found for the cyclic oligomer [AA-BD]2, that showed 22.63 μg g-1 in 3% acetic acid and 19.64 μg g-1 in juice. The concentration of the total amount of remaining oligomers was below 7.56 μg g-1 in 3% acetic acid as well as in juice.
Collapse
Affiliation(s)
- Sara Ubeda
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Fl, 33199, USA
| |
Collapse
|
6
|
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021; 26:1263. [PMID: 33652755 PMCID: PMC7956554 DOI: 10.3390/molecules26051263] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time-temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.
Collapse
Affiliation(s)
- Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 70487 Iasi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, 16 University Street, 700115 Iaşi, Romania;
| |
Collapse
|
7
|
Kabir A, Samanidou V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021; 26:865. [PMID: 33562079 PMCID: PMC7915638 DOI: 10.3390/molecules26040865] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol-gel organic-inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol-gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol-gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.
Collapse
Affiliation(s)
- Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Migration of dihydroxyalkylamines from polypropylene coffee capsules to Tenax® and coffee by salt-assisted liquid–liquid extraction and liquid chromatography–mass spectrometry. Food Chem 2020; 321:126720. [DOI: 10.1016/j.foodchem.2020.126720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
|
9
|
Wrona M, Nerín C. Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Molecules 2020; 25:E752. [PMID: 32050512 PMCID: PMC7037176 DOI: 10.3390/molecules25030752] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, food packaging is a crucial tool for preserving food quality and has become an inseparable part of our daily life. Strong consumer demand and market trends enforce more advanced and creative forms of food packaging. New packaging development requires safety evaluations that always implicate the application of complex analytical methods. The present work reviews the development and application of new analytical methods for detection of possible food contaminants from the packaging origin on the quality and safety of fresh food. Among food contaminants migrants, set-off migrants from printing inks, polymer degradation products, and aromatic volatile compounds can be found that may compromise the safety and organoleptic properties of food. The list of possible chemical migrants is very wide and includes antioxidants, antimicrobials, intentionally added substances (IAS), non-intentionally added substances (NIAS), monomers, oligomers, and nanoparticles. All this information collected prior to the analysis will influence the type of analyzing samples and molecules (analytes) and therefore the selection of a convenient analytical method. Different analytical strategies will be discussed, including techniques for direct polymer analysis.
Collapse
Affiliation(s)
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, María de Luna, 3, 50018 Zaragoza, Spain;
| |
Collapse
|