1
|
Liu Z, Hu Z, Hu W, Ji T, Chen Z. Etched stainless steel wire modified with conjugated microporous polymers-F6 for jacket-free stir bar sorptive extraction of benzoylureas in juice sample. Analyst 2024; 149:3673-3680. [PMID: 38819227 DOI: 10.1039/d4an00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Benzoylurea (BU) insecticides have been widely used for pest control as third-generation insecticides. Considering that their residues in food may cause adverse effects on human health, the upper limits of BUs remaining in food have been set by the administration. Therefore, it is essential to develop a sensitive and efficient analytical method to determine the residues of BUs in food. Stir bar sorptive extraction (SBSE) is a novel sample preparation technique, and stainless steel wire (SSW) is an ideal substrate for an SBSE device. In this work, a novel SBSE device of SSW jacket-free stir bar with a dumbbell shape was designed and prepared. The conjugated microporous polymer CMP-F6, which possesses a porous structure, high hydrophobicity and rich fluorine-containing functional groups, was immobilized on the surface of SSW by the method of polyacrylonitrile glue adhesion. Compared with previous studies, which used SSW as a substrate, the method of etching partial SSW with hydrochloric acid, on the one hand, made the surface of SSW rough and easy to modify the extraction coating, and on the other hand, converted itself into a dumbbell-shaped structure, which is conducive to improving the extraction efficiency and stability of the SBSE device. The method of SBSE-HPLC-UV was established for determining five BUs. Owing to the hydrophobic interaction and F-F interaction between CMP-F6 and analytes, this method showed good extraction efficiency and had good linearity (R2 ≥ 0.9945) and high sensitivity (LODs in the range of 0.1-0.2 ng mL-1). It was used for the analysis of benzoylurea in an apple juice sample, and the recoveries were 74.3-117.9%.
Collapse
Affiliation(s)
- Zichun Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zhuang Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Wei Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Tao Ji
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Zilin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| |
Collapse
|
2
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules 2023; 28:molecules28031229. [PMID: 36770896 PMCID: PMC9920342 DOI: 10.3390/molecules28031229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The ubiquitous presence of emerging contaminants in the environment is an issue of great concern. Notably, for some of them, no established regulation exists. Benzophenones are listed as emerging contaminants, which have been identified in the environment as well as in human fluids, such as urine, placenta, and breast milk. Their accumulation and stability in the environment, combined with the revealed adverse effects on ecosystems including endocrine, reproductive, and other disorders, have triggered significant interest for research. Benzophenones should be extracted from environmental samples and determined for environmental-monitoring purposes to assess their presence and possible dangers. Numerous sample preparation methods for benzophenones in environmental matrices and industrial effluents have been proposed and their detection in more complex matrices, such as fish and sludges, has also been reported. These methods range from classical to more state-of-the-art methods, such as solid-phase extraction, dispersive SPE, LLE, SBSE, etc., and the analysis is mostly completed with liquid chromatography, using several detection modes. This review critically outlines sample preparation methods that have been proposed to date, for the extraction of benzophenones from simple and complex environmental matrices and for cleaning up sample extracts to eliminate potential interfering components that coexist therein. Moreover, it provides a brief overview of their occurrence, fate, and toxicity.
Collapse
|
4
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|
5
|
Liu Z, Zhou W, Hong Y, Hu W, Li Z, Chen Z. Covalent organic framework-V modified porous polypropylene hollow fiber with detachable dumbbell-shaped structure for stir bar sorptive extraction of benzophenones. J Chromatogr A 2022; 1664:462798. [PMID: 35026601 DOI: 10.1016/j.chroma.2021.462798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
Polypropylene hollow fiber is a kind of ideal material for stir bar sorptive extraction (SBSE) which possesses the advantages of porous structure, large specific surface area, high mechanical strength, and good solvent resistance. In this work, a novel SBSE device using the polypropylene hollow fiber-based stir bar with the detachable dumbbell-shaped structure was designed and prepared. Covalent organic framework-V (COF-V), which possesses porous structure, sphere shape with large specific surface area, was synthesized at room temperature and grown on polypropylene hollow fiber by polydopamine modification method. Compared with previous studies which used etched poly(ether ether ketone) as supporting material, polypropylene hollow fiber omitted the complicated, difficult and dangerous pretreatment process with high concentrated sulfuric acid. The immobilization of COF-V on the polypropylene hollow fiber significantly endows them with multiple interaction abilities including hydrophobic interaction and π-π interaction. The stir bar showed good performance and stability for the extraction of four benzophenones including BP-1, BP-6, BP-3 and Ph-BP. By coupling with HPLC-UV, the COF-V@polypropylene hollow fiber based SBSE method showed wide linear range (0.1-200 ng/mL), excellent linearity (R2 ≥ 0.9979), high sensitivity (LODs in the range of 0.02-0.03 ng/mL), and good repeatability (RSD ≤ 5.21%). This method was successfully applied to the analysis of benzophenones in soil and sunscreen samples.
Collapse
Affiliation(s)
- Zichun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100800, China
| | - Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Wei Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zhentao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100800, China.
| |
Collapse
|
6
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
7
|
Manousi N, Zachariadis GA, Deliyanni EA. On the use of metal-organic frameworks for the extraction of organic compounds from environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59015-59039. [PMID: 32077018 DOI: 10.1007/s11356-020-07911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The determination of trace metals and organic contaminants in environmental samples, such as water, air, soil, and sediment, is until today a challenging process for the analytical chemistry. Metal-organic frameworks (MOFs) are novel porous nanomaterials that are composed of metal ions and an organic connector. These materials are gaining more and more attention due to their superior characteristics, such as high surface area, tunable pore size, mechanical and thermal stability, luminosity, and charge transfer ability between metals and ligands. Among the various applications of MOFs are gas storage, separation, catalysis, and drug delivery. Recently, MOFs have been successfully introduced in the field of sample preparation for analytical chemistry and they have been used for sample pretreatment of various matrices. This review focuses on the applications of MOFs as novel adsorbents for the extraction of organic compounds from environmental samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
8
|
Preparation of magnetic yolk-shell structured metal-organic framework material and its application in pharmacokinetics study of alkaloids. Anal Bioanal Chem 2021; 413:6987-6999. [PMID: 34535814 DOI: 10.1007/s00216-021-03656-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
In this study, a magnetic yolk-shell structured metal-organic framework material (Fe3O4@YS-UiO-66-NH2) is prepared by the directional etching of Co2+/peroxymonosulfate and in situ magnetization. The characteristic properties of the material were investigated by using field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer-Emmett-Teller, and contact angle test. The Fe3O4@YS-UiO-66-NH2 shows the advantages of large surface area, good magnetic property, and satisfactory stability, as well as giving high affinity to alkaloids (ALs) via hydrophilic interaction, hydrogen bonding, and π-π interaction. The results of static adsorption experiment indicate that the Fe3O4@YS-UiO-66-NH2 possesses high adsorption capacity towards ALs and the adsorption behaviors are fitted with Langmuir adsorption isotherm model. Furthermore, a magnetic solid-phase extraction using Fe3O4@YS-UiO-66-NH2 and HPLC method was developed for the analysis of ALs in spiked samples with the recovery of 89.6-100.8%. In addition, the proposed method was successfully applied in the pharmacokinetics study of berberine, coptisine, and palmatine in the rat. In short, the developed method might be used for high-efficient recognition and determination of ALs in plasma sample, which would also provide a new way to fabricate magnetic functionalized metal-organic framework in separation science.
Collapse
|
9
|
FENG J, JI X, LI C, SUN M, HAN S, FENG J, SUN H, FENG Y, SUN M. [Recent advance of new sample preparation materials in the analysis and detection of environmental pollutants]. Se Pu 2021; 39:781-801. [PMID: 34212580 PMCID: PMC9404022 DOI: 10.3724/sp.j.1123.2021.02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
To successfully analyze complex samples and detect trace targets, sample pretreatment is essential. Efficient sample pretreatment techniques can remove or reduce interference from the sample matrix. It can also enrich analytes, thereby improving analytical accuracy and sensitivity. In recent years, various sample preparation techniques, including SPE, magnetic dispersion SPE, pipette tip SPE, stir bar extraction, fiber SPME, and in-tube SPME, have received increasing attention in environmental analysis and monitoring. The extraction efficiency mainly depends on the type of adsorbent material. Therefore, the development of efficient adsorbents is a crucial step toward sample preparation. This review summarizes and discusses the research advances in extraction materials over recent years. These extraction materials contain inorganic adsorbents, organic adsorbents, and inorganic-organic hybrid materials such as graphene, graphene oxide, carbon nanotubes, inorganic aerogels, organic aerogels, triazinyl-functionalized materials, triazine-based polymers, molecularly imprinted polymers, covalent organic frameworks, metal-organic frameworks, and their derivatives. These materials have been applied to extract different types of pollutants, including metal ions, polycyclic aromatic hydrocarbons, plasticizers, alkanes, phenols, chlorophenols, chlorobenzenes, polybrominated diphenyl ethers, perfluorosulfonic acids, perfluorocarboxylic acids, estrogens, drug residues, and pesticide residues, from environmental samples (such as water and soil samples). These sample preparation materials possess high surface areas, numerous adsorption sites, and allow extraction via various mechanisms, such as π-π, electrostatic, hydrophobic, and hydrophilic interactions, as well as hydrogen and halogen bond formation. Various sample pretreatment techniques based on these extraction materials have been combined with various detection methods, including chromatography, mass spectrometry, atomic absorption spectroscopy, fluorescence spectroscopy, and ion mobility spectroscopy, and have been extensively used for the determination of environmental pollutants. The existing challenges associated with the development of sample preparation techniques are proposed, and prospects for such extraction materials in environmental analysis and monitoring are discussed. Major trends in the field, including the development of efficient extraction materials with high enrichment ability, good selectivity, excellent thermal stability, and chemical stability, are discussed. Green sample pretreatment materials, environmentally friendly synthesis methods, and green sample pretreatment methods are also explored. Rapid sample pretreatment methods that can be conducted within minutes or seconds are of significant interest. Further, online sample pretreatment and automatic analysis methods have attracted increasing attention. Besides, real-time analysis and in situ detection have been important development directions, and are expected to be widely applicable in environmental analysis, biological detection, and other fields. Modern synthesis technology should be introduced to synthesize specific extraction materials. Controllable preparation methods for extraction materials, such as the in situ growth or in situ preparation of extraction coatings, will acquire importance in coming years. It will also be important to adopt high-performance materials from other fields for sample pretreatment. Organic-inorganic hybrid extraction materials can combine the advantages both organic materials and inorganic materials, and mutually compensate for any disadvantages. Extraction materials doped with nanomaterials are also promising. Although existing sample pretreatment techniques are relatively efficient, it is still imperative to develop novel sample preparation methods.
Collapse
Affiliation(s)
- Juanjuan FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangping JI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunying LI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingxia SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sen HAN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiaqing FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haili SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yang FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Fu J, Lai H, Zhang Z, Li G. UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples. Anal Chim Acta 2021; 1161:338464. [PMID: 33896560 DOI: 10.1016/j.aca.2021.338464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Recently, metal-organic frameworks (MOFs) based substrates have shown great potential for the quantitative analysis of food samples by surface-enhanced Raman scattering (SERS) due to their unique properties. Herein, we developed two UiO-66 MOFs/gold nanoparticles (AuNPs) based substrates by self-assembly, including UiO-66/AuNPs suspension substrate and UiO-66(NH2)/AuNPs/Nylon-66 flexible membrane substrate, for quantitative analysis of complex food samples by SERS. UiO-66/AuNPs suspension substrate was prepared for SERS-based determination of a carcinogenic heterocyclic amine in barbecue meat. UiO-66(NH2)/AuNPs/Nylon-66 membrane substrate was fabricated for the simultaneous separation, enrichment, and in situ analysis of Sudan Red 7B in chilli products. The heterocyclic amine and Sudan dye in real samples could be detected and quantified with the recoveries of 82.3-110% and 84.5-114% and relative standard deviations (RSDs) of 3.1-11.0% and 1.9-5.6% (n = 3) by use of these two substrates, respectively. These two UiO-66/AuNPs based substrates combined molecular enrichment and SERS activity, achieving excellent analytical accuracy and widening SERS application in practical food safety analysis.
Collapse
Affiliation(s)
- Jingtai Fu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huasheng Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
A nanocomposite probe of graphene quantum dots and magnetite nanoparticles embedded in a selective polymer for the enrichment and detection of ceftazidime. Talanta 2020; 218:121168. [DOI: 10.1016/j.talanta.2020.121168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
13
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
14
|
Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta 2020; 211:120723. [DOI: 10.1016/j.talanta.2020.120723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
|
15
|
Alinaghi Langari AA, Firoozichahak A, Alizadeh S, Nematollahi D, Farhadian M. Efficient extraction of aromatic amines in the air by the needle trap device packed with the zirconium based metal-organic framework sorbent. RSC Adv 2020; 10:13562-13572. [PMID: 35492999 PMCID: PMC9051570 DOI: 10.1039/d0ra00687d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, development of a needle trap device (NTD) packed with UiO-66 adsorbent was used for the sampling of the aromatic amine compounds (including aniline, N,N-dimethylaniline and o-toluidine) followed by gas chromatography (GC) with flame-ionization detector (FID) analysis. The UiO-66 sorbent was synthesized and then packed inside a spinal needle (Gauge 22). The synthesized sorbent was characterized with the XRD, FE-SEM, EDS and FT-IR techniques. This study was conducted both in the laboratory and in the real samples. In the laboratory, the sampling parameters (such as temperature and humidity) and desorption parameters (including desorption temperature and desorption time) were optimized using Response Surface Methodology (RSM) by Central Composite Design (CCD). The results indicated that the performance of the sampling device decreased with increasing the sampling humidity and temperature. Moreover, the highest peak area responses of the studied analytes were observed at a desorption time of 3 minutes and desorption temperature of 270 °C. The values of the limit of detection (LOD) and limit of quantitation (LOQ) were in the range 0.01-0.02 and 0.03-0.05 ng mL-1, respectively. Our findings demonstrated that NTD packed with synthesized UiO-66 has good repeatability (RSD = 1.3-6.8%) and acceptable reproducibility (with three NTDs) (RSD = 1.3-9.7%). Comparison of the results between NTD-UiO-66 and NIOSH2002 showed a sufficient correlation (0.98-0.99) between two methods. Therefore, the results indicated that the NTD packed with the UiO-66 adsorbent can be used as a powerful technique for occupational and environmental monitoring.
Collapse
Affiliation(s)
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | | | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
16
|
Jia Y, Wang Y, Yan M, Wang Q, Xu H, Wang X, Zhou H, Hao Y, Wang M. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J Chromatogr A 2020; 1615:460766. [DOI: 10.1016/j.chroma.2019.460766] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
|