1
|
He M, Xu M, Ling Y, Yong W, Yang M, Guo W. Rapid screening of antioxidants in biodegradable plastics by surface-assisted laser desorption ionization mass spectrometry. Analyst 2025. [PMID: 40326400 DOI: 10.1039/d5an00368g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Antioxidants are added into biodegradable plastics to prevent polymer degradation caused by oxidation, thereby prolonging the lifespan and maintaining the physical properties of plastics. However, during the degradation process, additives may be released into the environment or food, posing risks of pollution and health hazards. In this study, a surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) method was developed for rapid identification and quantification of antioxidants in biodegradable plastics. Graphene oxide (GO) was utilized as an ionization assistant to enhance ionization efficiency and minimize background interference. The method was optimized using four common antioxidants (1098, 1520, 1726, and 3114), achieving reliable identification through accurate mass measurements and tandem MS (MS/MS) analysis. Dynamic range curves were derived from standard solutions with determination coefficients exceeding 0.989. The performance of the method was also evaluated using authentic samples and commercially available biodegradable plastic products with recovery rates ranging from 78% to 109%, and limit of detection is 5.0 g kg-1. Sample preparation is straightforward and the entire analytical process can be completed within just a few minutes. This method is suitable for rapid qualitative detection of additives in biodegradable plastics as well as quantitative evaluation of substance content variations during plastic degradation. It shows promise as a valuable tool for quality control and safety assurance in the plastic industry.
Collapse
Affiliation(s)
- Muyi He
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| | - Meixia Xu
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| | - Wei Yong
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Quality and Inspection & Testing, Beijing 100176, China.
| |
Collapse
|
2
|
Wang Y, Xiong D, He X, Yu L, Li G, Wang T, Liu C, Liu Z, Li Z, Gao C. Rapid and Comprehensive Analysis of 41 Harmful Substances in Multi-Matrix Products by Gas Chromatography-Mass Spectrometry Using Matrix-Matching Calibration Strategy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2281. [PMID: 38793348 PMCID: PMC11122967 DOI: 10.3390/ma17102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Harmful substances in consumer goods pose serious hazards to human health and the environment. However, due to the vast variety of consumer goods and the complexity of their substrates, it is difficult to simultaneously detect multiple harmful substances in different materials. This paper presents a method for the simultaneous determination of 41 harmful substances comprising 17 phthalates (PAEs), 8 organophosphate flame retardants (OPFRs), and 16 polycyclic aromatic hydrocarbons (PAHs) in five types of products using the matrix-matching calibration strategy. The method employs an efficient ultrasonic extraction procedure using a mixture of dichloromethane and methylbenzene, followed by dissolution-precipitation and analysis through gas chromatography-mass spectrometry. Compared with previous experiments, we established a universal pretreatment method suitable for multi-matrix materials to simultaneously determine multiple harmful substances. To evaluate the effects of the matrix on the experimental results, we compared neat standard solutions and matrix-matching standard solutions. The results demonstrated that all compounds were successfully separated within 30 min with excellent separation efficiency. Additionally, the linear relationships of all analytes showed strong correlation coefficients (R2) of at least 0.995, ranging from 0.02 mg/L to 20 mg/L. The average recoveries of the target compounds (spiked at three concentration levels) were between 73.6 and 124.1%, with a relative standard deviation (n = 6) varying from 1.2% to 9.9%. Finally, we tested 40 different materials from consumer products and detected 16 harmful substances in 31 samples. Overall, this method is simple and accurate, and it can be used to simultaneously determine multiple types of hazardous substances in multi-matrix materials by minimizing matrix effects, making it an invaluable tool for ensuring product safety and protecting public health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cuiling Gao
- Shandong Institute for Product Quality Inspection, Jinan 250102, China; (Y.W.); (D.X.); (X.H.); (L.Y.); (G.L.); (T.W.); (C.L.); (Z.L.); (Z.L.)
| |
Collapse
|
3
|
Castro G, Cobo M, Rodríguez I. Identification of hazardous organic compounds in e-waste plastic using non-target and suspect screening approaches. CHEMOSPHERE 2024; 356:141946. [PMID: 38604518 DOI: 10.1016/j.chemosphere.2024.141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
End-of-life electric and electronic devices stand as one of the fastest growing wastes in the world and, therefore, a rapidly escalating global concern. A relevant fraction of these wastes corresponds to polymeric materials containing a plethora of chemical additives. Some of those additives fall within the category of hazardous organic compounds (HOCs). Despite the significant advances in the capabilities of analytical methods, the comprehensive characterization of WEEE plastic remains as a challenge. This research strives to identify the primary additives within WEEE polymers by implementing a non-target and suspect screening approach. Gas chromatography coupled to time-of-flight mass spectrometry (GC-QTOF-MS), using electron ionization (EI), was applied for the detection and identification of more than 300 substances in this matrix. A preliminary comparison was carried out with nominal resolution EI-MS spectra contained in the NIST17 library. BPA, flame retardants, UV-filters, PAHs, and preservatives were among the compounds detected. Fifty-one out of 300 compounds were confirmed by comparison with authentic standards. The study establishes a comprehensive database containing m/z ratios and accurate mass spectra of characteristic compounds, encompassing HOCs. Semi-quantification of the predominant additives was conducted across 48 WEEE samples collected from handling and dismantling facilities in Galicia. ABS plastic demonstrated the highest median concentrations, ranging from 0.154 to 4456 μg g-1, being brominated flame retardants and UV filters, the families presenting the highest concentrations. Internet router devices revealed the highest concentrations, containing a myriad of HOCs, such as tetrabromobisphenol A (TBBPA), tribromophenol (TBrP), triphenylphosphate (TPhP), tinuvin P and bisphenol A (BPA), most of which are restricted in Europe.
Collapse
Affiliation(s)
- G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - M Cobo
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Han W, Wang Z, Xie Q, Chen X, Su L, Xie H, Chen J, Fu Z. Plastic protective nets: A significant but neglected "reservoir" for priority chemicals as revealed by composition analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132905. [PMID: 37944235 DOI: 10.1016/j.jhazmat.2023.132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
As chemical-intensive products, plastics are potential sources of emerging contaminants and pose risks to the ecosystem. However, knowledge on the inventory and emissions of chemicals in plastics remains scarce, prohibiting the lifecycle assessment of their environmental exposure. Herein, full compositions of plastic protective nets (PPNs, one globally used plastics) were analyzed via nontarget screening with mass spectrometry, optical emission spectrometry, infrared spectroscopy and thermogravimetric analysis. Nontarget screening identified 861 non-polymeric organic chemicals, which were classified by network-like similarity analysis into 9 communities, dominated by phthalates (PAEs), aliphatic/oxalic esters and branched alkanes. Notably, around 80.8% (696) of the chemicals were first observed in plastics, suggesting aplenty plastic additives have previously been overlooked. Quantification results indicated PPNs contained higher levels of priority chemicals, including detrimental lead (1.17 × 104 ng/g), benzotriazoles ultraviolet stabilizers (6.66 × 103 ng/g) and PAEs (1.87 × 104 ng/g) than other plastics commonly reported. Emission projections revealed that dibutyl phthalate in PPNs had an annual release (1.83 × 103 kg) comparable to that from greenhouse films in China. These findings suggest PPNs are a significant but neglected "reservoir" for priority chemicals, which could inform future research on resolving plastic compositions, so as to promote sound chemical management.
Collapse
Affiliation(s)
- Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Yan M, Zhang N, Li X, Xu J, Lei H, Ma Q. Integrating Post-Ionization Separation via Differential Mobility Spectrometry into Direct Analysis in Real Time Mass Spectrometry for Toy Safety Screening. Anal Chem 2024; 96:265-271. [PMID: 38153235 DOI: 10.1021/acs.analchem.3c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Direct analysis in real time (DART) enables direct desorption and ionization of analytes, bypassing the time-consuming chromatographic separation traditionally required for mass spectrometry (MS) analysis. However, DART-MS suffers from matrix interference of complex samples, resulting in compromised detection sensitivity and quantitation accuracy. In this study, DART-MS was combined with differential mobility spectrometry (DMS) to provide an additional dimension of post-ionization ion mobility separation within a millisecond time scale, compensating for the lack of separation in DART-MS analysis. As proof-of-concept, primary aromatic amines (PAAs), a class of potentially hazardous chemicals, were analyzed in various toy products, including bubble solutions, finger paints, and plush toys. In addition to commercial Dip-it glass rod and metal mesh sampling tools, a customized rapid extractive evaporation device was designed for the accelerated extraction and sensitive analysis of solid toy samples. The incorporation of DMS in DART-MS analysis enabled the rapid separation and differentiation of isomeric analytes, leading to improved accuracy and reliability. The developed protocols were optimized and validated, achieving good linearity with correlation coefficients greater than 0.99 and acceptable repeatability with relative standard deviations less than 10%. Moreover, satisfactory sensitivity was realized with limits of detection and quantitation ranges of 0.2-5 and 1-20 μg/kg (μg/L) for the 11 PAA analytes. The established methodology was applied for the analysis of real toy samples (n = 18), which confirmed its appealing potential for toy safety screening and consumer health protection.
Collapse
Affiliation(s)
- Mengmeng Yan
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100091, China
| | - Nan Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoxu Li
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
6
|
Zhao E, Xiong X, Hu H, Li X, Wu C. Phthalates in plastic stationery in China and their exposure risks to school-aged children. CHEMOSPHERE 2023; 339:139763. [PMID: 37558002 DOI: 10.1016/j.chemosphere.2023.139763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Phthalates have been strictly banned in children's products in many countries. However, as a product with a high frequency of daily contact with children, stationery is not strictly regulated for phthalates in many countries and the occurrences and risks of phthalates in stationery are rarely reported. In this study, the contents of sixteen types of common phthalates in stationery were determined and the exposure risk of these phthalates to children was also estimated. The total contents of phthalates in all stationery ranged from 5.56 to 3.46 × 105 μg/g, with a median value of 1.48 × 104 μg/g. Polyvinyl chloride (PVC) desk mats (DMs) contained the highest contents of phthalates among all types of stationery. Percutaneous absorption and hand-to-mouth ingestion levels of phthalates for school-age children from the DMs were 2.03 × 10-5 - 10.14 μg/kg-Bw/day and 2.14 × 10-5 - 10.67 μg/kg-Bw/day, respectively. Di-2-ethylhexyl phthalate (DEHP) had the highest proportion, detection rate, and exposure level among all measured phthalates. Our study revealed that phthalates in PVC stationery, especially classroom DMs, at both contents and exposure risks, were higher than those in many other children's plastic products. It was necessary to strengthen the management of plastic stationery from the perspective of materials and phthalates addition.
Collapse
Affiliation(s)
- E Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
7
|
Online coupling of matrix solid-phase dispersion to direct analysis in real time mass spectrometry for high-throughput analysis of regulated chemicals in consumer products. Anal Chim Acta 2023; 1239:340677. [PMID: 36628757 DOI: 10.1016/j.aca.2022.340677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The current work is the first study on online coupling of matrix solid-phase dispersion (MSPD) to direct analysis in real time mass spectrometry (DART-MS) bridging with solid-phase analytical derivatization (SPAD) based on a graphene oxide nanosheets (GONs)-coated cotton swab. Proof-of-concept demonstrations were explored for high-throughput analysis of a diversity of regulated chemicals in consumer products such as textiles, toys, and cosmetics. On-demand sorbent combinations were blended with samples, packed into MSPD columns, and mounted on a homemade 3D-printed rack module for automated sample feeding. To achieve good synergy between MSPD and DART-MS, a cotton swab with a conical tip deposited with GONs was attached to the bottom of the MSPD column. The swabs serve as a solid-phase microextraction probe for convenient enrichment of the eluted analytes from MSPD, thermal desorption of the enriched analytes by DART, and sensitive detection by a hybrid quadrupole-Orbitrap mass spectrometer. Furthermore, the utility of an on-swab SPAD strategy was demonstrated for the detection of formaldehyde by use of the derivatizing reagent of dansyl hydrazine, contributing to improved ionization efficiency without compromising the overall coherence of the analytical workflow. The MSPD-DART-MS methodology was systematically optimized and validated, obtaining acceptable recovery (71.7-110.3%), repeatability (11.8-19.3%), and sensitivity (limits of detection and quantitation in the ranges of 6.2-19.5 and 23.7-75.9 μg/kg) for 32 target analytes. The developed protocol streamlined sample extraction, clean-up, desorption, ionization, and detection, highlighting the appealing potential for high-throughput analysis of samples with complex matrices.
Collapse
|
8
|
Guo Q, Yang Y, Zhang J. Rapid screening for 315 drugs in food and biological matrices by ultrahigh‐performance liquid chromatography quadrupole time of flight mass spectrometry and its application to a specific incident. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning Beijing Center for Disease Control and Prevention No. 16 Hepingli Middle Street Beijing P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning Beijing Center for Disease Control and Prevention No. 16 Hepingli Middle Street Beijing P. R. China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning Beijing Center for Disease Control and Prevention No. 16 Hepingli Middle Street Beijing P. R. China
| |
Collapse
|
9
|
Jędruchniewicz K, Ok YS, Oleszczuk P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125938. [PMID: 34010776 PMCID: PMC8076738 DOI: 10.1016/j.jhazmat.2021.125938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
The appearance of the virus SARS-CoV-2 at the end of 2019 and its spreading all over the world has caused global panic and increase of personal protection equipment usage to protect people against infection. Increased usage of disposable protective gloves, their discarding to random spots and getting to landfills may result in significant environmental pollution. The knowledge concerning possible influence of gloves and potential of gloves debris on the environment (water, soil, etc.), wildlife and humans is crucial to predict future consequences of disposable gloves usage caused by the pandemic. This review focuses on the possibility of chemical release (heavy metals and organic pollutants) from gloves and gloves materials, their adsorptive properties in terms of contaminants accumulation and effects of gloves degradation under environmental conditions.
Collapse
Affiliation(s)
- Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|