1
|
Mudau M, Chinma CE, Ledbetter M, Wilkin J, Adebo OA. Gas chromatography-mass spectrometry analysis of metabolites in finger millet and Bambara groundnut as affected by traditional and novel food processing. J Food Sci 2024; 89:6394-6412. [PMID: 39219001 DOI: 10.1111/1750-3841.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Metabolite profiling is an analytical technique used to assess metabolites in complex biological samples. This technique allows for the identification of both targeted and untargeted metabolites. In this study, the effect of traditional (fermentation and malting) and novel processing (ultrasonication) on the metabolites of finger millet (FM) and Bambara groundnut (BGN) flour was investigated using gas chromatography-mass spectrometry. Various metabolite classes, including amino acids, alcohol, aldehyde, organic acid, ester, fatty acids, glycoside, and sugar, were identified in FM and BGN flours. The adopted processing techniques impacted metabolite composition, as evidenced by substantial variations in volatile compound levels and metabolite composition among the FM and BGN samples before and after traditional and novel processing. Important health-promoting compounds, such as oleic acid, linoelaidic acid, and linoleic acid, were identified at their highest levels in fermented FM and BGN flours. The results obtained from this study offer an important context for monitoring and regulating the metabolite composition of FM and BGN flours under traditional and novel processing. PRACTICAL APPLICATION: Fermentation, malting, and ultrasonication induced desirable changes in some health-promoting compounds of finger millet and Bambara groundnut flours. The food and pharmaceutical industries could benefit from these traditional- and novel-modified flours as they could be used as improved food sources with health benefits.
Collapse
Affiliation(s)
- Masala Mudau
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| | - Chiemela Enyinnaya Chinma
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Thiele U, Crocoll C, Tschöpe A, Drayß C, Kirschhöfer F, Nusser M, Brenner-Weiß G, Franzreb M, Bleher K. Efficient derivatization-free monitoring of glycosyltransferase reactions via flow injection analysis-mass spectrometry for rapid sugar analytics. Anal Bioanal Chem 2024; 416:5191-5203. [PMID: 39095616 PMCID: PMC11377506 DOI: 10.1007/s00216-024-05457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The widespread application of enzymes in industrial chemical synthesis requires efficient process control to maintain high yields and purity. Flow injection analysis-electrospray ionization-mass spectrometry (FIA-ESI-MS) offers a promising solution for real-time monitoring of these enzymatic processes, particularly when handling challenging compounds like sugars and glycans, which are difficult to quickly analyze using liquid chromatography-mass spectrometry due to their physical properties or the requirement for a derivatization step beforehand. This study compares the performance of FIA-MS with traditional hydrophilic interaction liquid chromatography (HILIC)-ultra high-performance liquid chromatography (UHPLC)-mass spectrometry (MS) setups for the monitoring of the enzymatic synthesis of N-acetyllactosamine (LacNAc) using beta-1,4-galactosyltransferase. Our results show that FIA-MS, without prior chromatographic separation or derivatization, can quickly generate accurate mass spectrometric data within minutes, contrasting with the lengthy separations required by LC-MS methods. The rapid data acquisition of FIA-MS enables effective real-time monitoring and adjustment of the enzymatic reactions. Furthermore, by eliminating the derivatization step, this method offers the possibility of being directly coupled to a continuously operated reactor, thus providing a rapid on-line methodology for glycan synthesis as well.
Collapse
Affiliation(s)
- Ulrich Thiele
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chantal Crocoll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - André Tschöpe
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carla Drayß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Katharina Bleher
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
3
|
Trespi S, Mazzotti M. HPLC method development for the quantification of a mixture of reacting species: The case of lactose. J Chromatogr A 2024; 1715:464553. [PMID: 38159403 DOI: 10.1016/j.chroma.2023.464553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Preparative and analytical chromatography are impaired by analytes that undergo a chemical reaction during the chromatographic separation, leading to peak distortion and systematic errors during the subsequent quantification phase. The pitfalls are highlighted through a combination of analytical results and numerical simulations. Two different quantification strategies for partially overlapping and reacting peaks are compared. A novel method development strategy based on the valley-to-peak ratio instead of the more common resolution is proposed. The method has been used to experimentally investigate the chromatographic behavior of a mutarotating sugar, lactose. The separation of the unprotected lactose isomers, α and β, has been optimized using a C18 column and pure water as the mobile phase. Phase dewetting phenomena during method development have also been studied and discussed.
Collapse
Affiliation(s)
- Silvio Trespi
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
4
|
Yang M, Mei H, Jiang Y, Zhang F, Yu Z, Yang B. Simultaneous chromatographic separation of the anomers of saccharides on a polymer sulfobetaine zwitterionic stationary phase. J Sep Sci 2024; 47:e2300905. [PMID: 38143272 DOI: 10.1002/jssc.202300905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Simultaneous chromatographic separation of the anomers of saccharides was achieved by using a polymer zwitterionic stationary phase functionalized by acrylamide-type sulfobetaine. By optimization of separation parameters including column temperature, pH, and flow rate, the column operated in hydrophilic interaction chromatography mode exhibited excellent separation selectivity toward five monosaccharides and their anomers (including ribose, xylose, galactose, glucose, and arabinose) and two disaccharides (lactose and maltose). Baseline separation could be achieved at mild operation conditions such as 20-30°C of column temperature or typical mobile phase composition (85% acetrontrile-15% 20 mM ammonium formate [NH4 FA]) with wide pH tolerance range of 2-8. This offers a rapid way to determine the configuration of α or β anomer of the saccharides.
Collapse
Affiliation(s)
- Min Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Haokun Mei
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yu Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Ziteng Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
5
|
Yuan H, Chen F, Zhang M, Ma S, Qu M, Zhao W, Zhao Y, Zhang S. Rapid identification and relative quantification of disaccharide isomers by three fragment ion pairs using ESI-MS/MS and its application in yellow rice wine. Food Chem 2023; 409:135340. [PMID: 36592600 DOI: 10.1016/j.foodchem.2022.135340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Small structural differences bring great difficulties on carbohydrates identification, especially in terms of their quantification. Herein, a novel ESI-MS/MS based strategy was established to discriminate and relatively quantified protonated PMP-disaccharides with different composition and glycosidic bond. Interestingly, protonated PMP labeled-disaccharides provided abundant fragment ions arising from cross-ring cleavage and glycosidic bond cleavage, which could afford diagnostic fragment patterns for isomers differentiation in combination of statistical analysis. It was worth to note that the relative intensity ratios (RIR) of three ion pairs could completely discriminate 16 disaccharides, and subsequently used to relatively quantified isomers in a binary mixture. Ultimately, this method was applied for the discrimination of yellow rice wine, and then the relative content of maltose and isomaltose were confirmed as well. In general, this method was easy to operation and effective for rapid differentiation and quantification of isomeric disaccharides in complex matrices.
Collapse
Affiliation(s)
- Hang Yuan
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Fangya Chen
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Meng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Shanshan Ma
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Mengyuan Qu
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Yufen Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
6
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
7
|
Separation of Monosaccharide Anomers on Photo-Click Cysteine-Based Stationary Phase: The α/β Interconversion Process Studied by Dynamic Hydrophilic Liquid Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9080203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In High-Performance Liquid Chromatography (HPLC), the separation of reducing sugars can typically show three possible typologies of chromatographic profiles (i.e., single peak, two resolved peaks and two peaks interconnected by a plateau) due to the rate at which the relevant α/β anomers interconversion (anomerization) can take place in relation to their elution-time. By analyzing these chromatographic profiles, thermodynamic and kinetic properties of anomerization phenomenon can be extrapolated. In this work we studied the anomerization of some monosaccharides by using a recently developed photo-click cysteine-based stationary phase through dynamic hydrophilic interaction liquid chromatography (D-HILIC) conditions. In the 5–25 °C temperature range, the ΔG#α→β and ΔG#β→α barriers were found to achieve values within the interval 21.1/22.2 kcal/mol for glucose, with differences between α→β and β→α reactions of about 0.4 kcal/mol. For xylose, in the same temperature range, the ΔG#α→β and ΔG#β→α barriers are between 20.7 to 21.5 kcal/mol, with differences between α→β and β→α reactions of about 0.2 kcal/mol. The experimental data are in agreement with those reported in literature, confirming the this new stationary phase using HILIC conditions is a robust platform to measure kinetic and thermodynamic properties of the isomerization reaction.
Collapse
|
8
|
Impact of HILIC Amino-Based Column Equilibration Conditions on the Analysis of Chitooligosaccharides. Chromatographia 2022. [DOI: 10.1007/s10337-021-04109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
10
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
11
|
Gao P, Huang X, Fang XY, Zheng H, Cai SL, Sun AJ, Zhao L, Zhang Y. Application of metabolomics in clinical and laboratory gastrointestinal oncology. World J Gastrointest Oncol 2021; 13:536-549. [PMID: 34163571 PMCID: PMC8204353 DOI: 10.4251/wjgo.v13.i6.536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolites are versatile bioactive molecules. They are not only the substrates and/or the products of enzymatic reactions but also act as the regulators in the systemic metabolism. Metabolomics is a high-throughput analytical strategy to qualify or quantify as many metabolites as possible in the metabolomes. It is an indispensable part of systems biology. The leading techniques in this field are mainly based on mass spectrometry and nuclear magnetic resonance spectroscopy. The metabolomic analysis has gained wide use in bioscience fields. In the tumor research arena, metabolomics can be employed to identify biomarkers for prediction, diagnosis, and prognosis. Chemotherapeutic effect evaluation and personalized medicine decision-making can also benefit from metabolomic analysis of patient biofluid or biopsy samples. Many cell-level studies can help in disease exploration. In this review, the basic features and principles of varied metabolomic analysis are introduced. The value of metabolomics in clinical and laboratory gastrointestinal cancer studies is discussed, especially for mass spectrometry applications. Besides, combined use of metabolomics and other tools to solve problems in cancer practice is briefly illustrated. In summary, metabolomics paves a new way to explore cancerous diseases in the light of small molecules.
Collapse
Affiliation(s)
- Peng Gao
- Department ofClinical Laboratory, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Xin Huang
- Department of Internal Medicine, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Xue-Yan Fang
- Department of Nursing, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Hui Zheng
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Shu-Ling Cai
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Ai-Jun Sun
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Liang Zhao
- Department of Internal Medicine, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Yong Zhang
- Department of Surgery, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| |
Collapse
|
12
|
Entropic-Based Separation of Diastereomers: Size-Exclusion Chromatography with Online Viscometry and Refractometry Detection for Analysis of Blends of Mannose and Galactose Methyl-α-pyranosides at “Ideal” Size-Exclusion Conditions. Chromatographia 2020. [DOI: 10.1007/s10337-020-03983-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe separation of carbohydrate diastereomers by an ideal size-exclusion mechanism, i.e., in the absence of enthalpic contributions to the separation, can be considered one of the grand challenges in chromatography: Can a difference in the location of a single axial hydroxy group on a pyranose ring (e.g., the axial OH being located on carbon 2 versus on carbon 4 of the ring) sufficiently affect the solution conformational entropy of a monosaccharide in a manner which allows for members of a diastereomeric pair to be separated from each other by size-exclusion chromatography (SEC)? Previous attempts at answering this question, for aqueous solutions, have been thwarted by the mutarotation of sugars in water. Here, the matter is addressed by employing the non-mutarotating methyl-α-pyranosides of d-mannose and d-galactose. We show for the first time, using SEC columns, the entropically driven separation of members of this diastereomeric pair, at a resolution of 1.2–1.3 and with only a 0.4–1% change in solute distribution coefficient over a 25 °C range, thereby demonstrating the ideality of the separation. It is also shown how the newest generation of online viscometer allows for improved sensitivity, thereby extending the range of this so-called molar-mass-sensitive detector into the monomeric regime. Detector multidimensionality is showcased via the synergism of online viscometry and refractometry, which combine to measure the intrinsic viscosity and viscometric radius of the sugars continually across the elution profiles of each diastereomer, methyl-α-d-mannopyranoside and methyl-α-d-galactopyranoside.
Collapse
|
13
|
High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractRefractive index detector is usually used in the analysis of sugars in mushrooms, which is characterized by poor sensitivity, reproducibility, and susceptibility to interference from co-eluting sample components. In the current study, identification and determination of free sugars in mushroom samples by high-performance liquid chromatography coupled to corona charged aerosol detector (HPLC-CAD) were presented for the first time. The best chromatographic separation was performed on a Shodex Asahipak NH2P-50 4E 5 μm and mobile phase composed of 75% acetonitrile and 25% water with flow rate was 1 mL/min. The developed method offers good linearity in concentration range 0.001–0.01 or 0.01–0.2 mg/mL for tested compounds with R2 > 0.99. Limit of detection (LOD) for analytes was in the range of 7.1–120.2 ng on column. HPLC-CAD method showed very good reproducibility (RSD < 5.1%). Fructose, mannitol, and glucose were detected in all examined mushroom samples. For white Agaricus bisporus, mannitol was the most abundant sugar (7.575 mg/g dw), whereas trehalose for Pleurotus ostreatus (3.426 mg/g dw). The developed method was successfully applied for quantification of free sugars and mannitol in mushrooms. The optimized method proved to be sensitive, reproducible, and accurate.
Collapse
|