1
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
2
|
Ma X, Suo T, Zhao F, Shang Z, Chen Y, Wang P, Li B. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II). Anal Bioanal Chem 2023; 415:2281-2289. [PMID: 36952025 DOI: 10.1007/s00216-023-04650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cadmium ion (Cd(II)) is a pernicious environmental pollutant that has been shown to contaminate agricultural lands, accumulate through the food chain, and seriously threaten human health. At present, Cd(II) monitoring is dependent on centralized instruments, necessitating the development of rapid and on-site detection platforms. Against this backdrop, the present study reports on the development of a fluorometric aptasensor designed to target Cd(II), which is achieved through the integration of strand displacement amplification (SDA) and CRISPR/Cas12a. In the absence of Cd(II), the aptamer initiates SDA, resulting in the generation of a profusion of ssDNA that activates Cas12a, leading to a substantial increase in fluorescence output. Conversely, the presence of Cd(II) curtails the SDA efficiency, culminating in a significant reduction in fluorescence output. The proposed approach has been demonstrated to enable the selective detection of Cd(II) at concentrations of 60 pM, with the performance of the aptasensor validated in real water and rice samples. The proposed platform based on aptamer-target interaction holds immense promise as a signal-amplified and precise method for the detection of Cd(II) and has the potential to transform current hazard detection practices in food samples.
Collapse
Affiliation(s)
- Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing, 100101, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Nanjing Jiangbei New Area Biopharmaceutical Public Platform Co., Ltd., Nanjing, 211899, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhaoyang Shang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhou B, Yang R, Sohail M, Kong X, Zhang X, Fu N, Li B. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta 2023; 254:124120. [PMID: 36463799 DOI: 10.1016/j.talanta.2022.124120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
CRISPR is reshaping biosensing technology due to its programmability, sensitivity, and specificity. Most current CRISPR-based biosensors are developed based on Cas12 and Cas13, while the biosensing potentials of the newly discovered Cas14 have not been fully elucidated yet. Herein, a fluorometric biosensor named HARRY (highly sensitive aptamer-regulated Cas14 R-loop for bioanalysis) was developed. The diblock ssDNA is designed to contain the activator sequence of Cas14 and the aptamer sequence of specific targets. In the absence of targets, the ssDNA activates Cas14a, then the Cas14a trans-cleavages the fluorescent reporter, causing fluorescence enhancement. In the presence of the targets, ssDNA-target assembly is formed via aptamer interaction, resulting in the inhibition of Cas14a activation. HARRY can detect ATP, Cd2+, histamine, aflatoxin B1, and thrombin with detection limits at the low-nanomolar level, which shows improvement compared with Cas12a-based aptasensors in sensitivity and versatility. We reasoned that the improvement is derived from the ssDNA specificity of Cas14a and found that the detection limit of HARRY is correlated to the binding affinities of aptamers. This study unlocks the potential of Cas14a in versatile aptasensing, which may inspire the development of CRISPR-based biosensors from the Cas14a branch.
Collapse
Affiliation(s)
- Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoxue Kong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Sohail M, Qin L, Li S, Chen Y, Zaman MH, Zhang X, Li B, Huang H. Molecular reporters for CRISPR/Cas: from design principles to engineering for bioanalytical and diagnostic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Ding R, Chen Y, Wang Q, Wu Z, Zhang X, Li B, Lin L. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharm Anal 2021; 12:355-364. [PMID: 35811614 PMCID: PMC9257440 DOI: 10.1016/j.jpha.2021.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qiusu Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhengzhang Wu
- Jiangsu Conat Biological Products Co., Ltd., Taixing, Jiangsu, 225400, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author.
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author. .
| |
Collapse
|
7
|
An exonuclease protection and CRISPR/Cas12a integrated biosensor for the turn-on detection of transcription factors in cancer cells. Anal Chim Acta 2021; 1165:338478. [PMID: 33975701 DOI: 10.1016/j.aca.2021.338478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) are critical proteins that regulate the expression of genes, and the abnormal change of TFs levels is directly related to physical dysfunctions. Herein, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensor for the measurement of TFs level with the assistance of exonuclease protection assay. A dsDNA (activator) with the ability to activate Cas12a was engineered to contain TFs binding domain, and the binding between TFs and the activator can protect the dsDNA from being digested by exonuclease III (Exo III). The reserved activator then triggered a CRISPR/Cas12a reporting reaction to produce fluorescent signal for detection. In the detection of nuclear factor-kappa B (NF-κB) p50 subunit, the limit of detection of 0.2 pM and limit of quantification of 0.6 pM were obtained respectively, and the performance of this biosensor has been challenged by cell nucleoprotein extracts. Additionally, this method can be applied in the screening and evaluation of TFs inhibitors, calculating the IC50 of oridonin. Integrating merits including high sensitivity, low cost, and good portability, this method may enrich the arsenal for TFs-related applications.
Collapse
|
8
|
Li B, Xia A, Xie S, Lin L, Ji Z, Suo T, Zhang X, Huang H. Signal-Amplified Detection of the Tumor Biomarker FEN1 Based on Cleavage-Induced Ligation of a Dumbbell DNA Probe and Rolling Circle Amplification. Anal Chem 2021; 93:3287-3294. [PMID: 33529005 DOI: 10.1021/acs.analchem.0c05275] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flap endonuclease 1 (FEN1), an endogenous nuclease with the ability to cleave the 5' overhang of branched dsDNA, is of significance in DNA replication and repair. The overexpression of FEN1 is common in cancer because of the ubiquitous upregulation of DNA replication; thus, FEN1 has been recognized as a potential biomarker in oncological investigations. However, few analytical methods targeting FEN1 with high sensitivity and simplicity have been developed. This work developed a signal-amplified detection of FEN1 based on the cleavage-induced ligation of a dumbbell DNA probe and rolling circle amplification (RCA). A flapped dumbbell DNA probe (FDP) was rationally designed with a FEN1 cleavable flap at the 5' end. The cleavage generated a nick site with juxtaposed 5' phosphate and 3' hydroxyl ends, which were linkable by T4 DNA ligase to form a closed dumbbell DNA probe (CDP) with a circular conformation. The CDP functioned as a template for RCA, which produced abundant DNA that could be probed using SYBR Green I. The highly sensitive detection of FEN1 with a limit of detection of 15 fM was achieved, and this method showed high specificity, which enabled the quantification of FEN1 in real samples. The inhibitory effects of chemicals on FEN1 were also evaluated. This study represents the first attempt to develop an FEN1 assay that involves signal amplification, and the novel biosensor method enriches the tools for FEN1-based diagnostics.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Anqi Xia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
9
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Li B, Xia A, Zhang S, Suo T, Ma Y, Huang H, Zhang X, Chen Y, Zhou X. A CRISPR-derived biosensor for the sensitive detection of transcription factors based on the target-induced inhibition of Cas12a activation. Biosens Bioelectron 2020; 173:112619. [PMID: 33221511 DOI: 10.1016/j.bios.2020.112619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are the key proteins for the decision of cell fates, and they have been recognized as potent markers for diagnostic and treatment of diseases. Herein, we report on a highly sensitive biosensor for the detection of TFs based on the CRISPR/Cas12a system. This biosensor was accomplished based on the competitive binding of the Cas12a-crRNA and TFs towards a dsDNA referred to as activator. Without TFs, the activator can be recognized by Cas12a-crRNA and cause the activation of the DNase activity of Cas12a. When TFs were added, the TFs can bind with the activator because the activator was designed to contain the specific binding sites of target TFs. We find that this binding can inhibit the association between Cas12a-crRNA and the activator, which hinders the activation of Cas12a. As a proof-of-concept, the rapid detection of five kinds of TFs was presented, and the detection was extended to the analysis of TFs expression in xenograft solid tumors from mice. This investigation is the first attempt to apply CRISPR technology in the sensing of TFs, and it discloses that the blocking of activator can be applied as a new sensing mechanism for the development of CRISPR-based biosensor.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Anqi Xia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yujie Ma
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|